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The sensitivity of Bayes procedures to the choice of a prior distribution
is a major concern for many Bayesians. A Bayesian analysis strongly
depends on modeling assumptions which make use of both prior and
likelihood and to study the impact of it on the utility function. In this
paper we investigate the effects of dual perturbations (prior and/or
likelihood) on the posterior inference. In particular, we develop local
sensitivity measures to detect how sensitive the posterior is with re-
spect to simultaneous perturbations in both prior and likelihood. We
then apply our methodology in (generalized) linear models to study
the effects on posterior distributions (or measures) using some notion
of distance between probability measures. Finally, discussion and an
example using real data are provided.

1. Introduction. A Bayesian analysis depends strongly on the modeling
assumptions, which make use of both prior and likelihood to study the im-
pact on the utility function. Even after fitting a standard statistical model
to a given set of data, one does not feel comfortable unless some sensitivity
checks are made for model adequacy. One way to measure the sensitivity of
the present model is to perturb the base model in potentially conceivable di-
rections to determine the effect of such alterations on the analysis. In many
situations, it is often difficult to specify or elicit a method that would yield a
convincing prior. The problem becomes more difficult for high dimensional
parameters. Thus, to perform a complete Bayesian analysis, one must use
some sensitivity measures to check model adequacy. Notable references are
due to Berger (1984,1990,1994) and those contained therein. The sensitiv-
ity analysis or the robustness issues in Bayesian inference can be classified
into two broad categories, global and local sensitivity. In global analysis one
considers a class of reasonable priors and calculates the range of quantities
of interest.
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Alternatively, in local analysis the effects of minor perturbations around
some elicited priors are studied along several conceivable directions. Recent
results involving global sensitivity analysis are contained in Berger (1990). In
contrast, a small but quickly growing literature on Bayesian local sensitivity
has developed lately; see Basu, Jamalamadaka and Liu (1993), Gustafson
and Wasserman (1993), Gustafson (1994), Ruggeri and Wasserman (1993)
and Ghosh and Dey (1994).

The major advantage of local sensitivity analysis is realized particularly
in multivariate problems, where the global analysis is too time consuming
and often analytically intractable. In the multivariate scenario, several ques-
tions arise. For example, how sensitive is the posterior marginal density for
one parameter when the prior of another parameter or the likelihood corre-
sponding to another parameter changes? These problems can be handled
in a reasonable manner through local sensitivity analysis.

To develop any reasonable sensitivity measures one needs to interpose
certain basic concepts. For example, 'What classes of perturbations are to
be considered?,' and 'How do we assess the discrepancies between the models
generated through these perturbations?'. Although there are several ways
to perturb a model, we will confine ourselves to e -contamination classes.
Recently there have appeared a few papers concerning the effects of dual
perturbation (prior and/or likelihood) on posterior inference. Such effects
were considered by Lavine (1991), Sivaganesan (1993) and later studied by
Basu (1994). Sivaganesan (1993) considers 6-contamination classes for prior
and likelihood perturbation and develops measure based on a derivative of
posterior quantity of interest w.r.t. e to identify those aspects which influ-
ence the robustness performance most. However, we develop local sensitiv-
ity measures based on derivatives of pseudodistance and divergence between
posteriors to detect how sensitive the posterior is with respect to the simul-
taneous perturbations in both prior and likelihood. We observe that the
local sensitivity measures are expressible in terms of certain Bayes factors.

The format of the paper is thus as follows. In Section 2 we develop
definitions and notations which will be used throughout the paper. Section
3 is devoted to the development of sensitivity measures under a pseudo-
distance function with applications to (generalized) linear models. In Section
4, we develop local sensitivity measures using ^-divergence with applications
to linear models. Finally in Section 5, we provide a real data example to
demonstrate the sensitivity measures in connection to a logistic regression
problem, where the detection of influential observations can be linked with
the local sensitivity measures.

2. Definitions and Notations. Suppose X is a random variable with
density f(x \ θ) where θ is the parameter of interest. We allow both X and
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θ to be vector valued. Let Θ be the parameter space with A, the associated
σ-field over Θ. Suppose further V denotes the class of probability measures
on (Θ,*4), where P £ V is a particular member. The marginal density of X
is then defined by rap(#, f) = /Θ f(x \ θ)P(dθ) and the posterior probability
measure corresponding to P and / is defined as Px(f) = f(x \ )P/mp(x, / ) .

Let C(θ), θ £ Θ denote the class of conditional densities on X given 0,
where X denotes the sample space. Then, under linear perturbation classes
the perturbed prior and the likelihood are respectively given as

Qei = ( l - c i ) P + € lQ, 0 < 6 ! < l

and

gt2 = (l-€2)f + €2g, 0 < 6 2 < 1

P is the elicited prior, Q is the contamination which belongs to a certain
class, say Γ. Similarly, / is the elicited likelihood and g is the contamination
which belongs to a certain class Q. The class of 6-contamination was studied
in the context of Bayesian robustness by Berger and Berliner (1986) and
Sivaganesan and Berger (1989), among others.

3. Local Sensitivity Measures Under a Pseudo Distance Func-
tion.

3.1. Basic Theory. In this section, to study the change in the prior
and posterior measures, we introduce a pseudo-distance function, between
two probability measures P,Q £ V. Define a function d : V X V —• [0, oo)
such that d(P, Q) = p(P - Q) = p(δ) (say) where δ is a signed measure. We
assume that the p-function satisfies the conditions: (i) p(cδ) =\ c \ ρ(δ) and

An example of p is the total variation norm, defined by

p(δ) = supΛeΛ I δ(A) I .

Define

(3.1) λi(eue2;x) = d(Px(gC2),Qx

Cl(gt2))/d(Qx(ge2),P%ge2))

and

(3.2) Ueue2 χ) = d(Qx
tl(f),Q*ei(ge2))/d(Q*ei(g),Q*€l(f)).

Note that λi measures the relative change in the posteriors when prior is
contaminated under a contaminated likelihood. On the other hand λ2 mea-
sures the relative change in the posteriors when likelihood is contaminated
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along with a contaminated prior. Observe that

where λi = λι(eι,€2;x) = eιmQ(x,g€2)/mQei(x,gC2). Similarly, it can be
checked that λ2 = λ2(6i,£2;z) = ̂ 2fn^Q€1(

x'>9)/mQe1(
x^9e2)' ^ follows from

the definitions that λi(ei,62;z) and λ2(6i,e2;z) are invariant under the
choice of ^-function. It also follows that for each Q G V and g G C(θ),
the general form of the λ-functions, is

,6 2 ; x) = , i — 1,2;

where the constants c« 's depend on the marginals mp(x,f), mg(a;,/),
mp(x,g) and mg(a;,p). In order to study the general sensitivity measures,
we finally consider

(3.3) λ(ci,€2;x) = λi(€i,€2;x) + λ2(€i,€2;x).

The quantity λ(ci,e2;x) in (3.3) will be called the general sensitivity
measure, since several local and global diagnostics can be obtained form it.
These sensitivity measures are described below.

The local sensitivity of P in the direction of Q is given by

(3.4) i l ( P , Q ; a ) =

We may note that sχ(P,Q x) is proportional to the sensitivity measure
as defined in Gustafson and Wasserman (1993), the proportionality constant
being the ratio of distances between corresponding posteriors to priors. In
this way our definition does not depend on the kind of 'distance' we may
choose to use on the parameter space (except for the structure assumed
through p). Also from (3.1), it follows that <si(P, Q; x) is indeed the Frechet
derivative in the direction Q. It is to be noted that these directional deriva-
tives can be turned into an elicitation tool, i.e., finding the 'direction' in
which the derivative is largest (in absolute value) might indicate a partic-
ularly important direction in which to concentrate elicitation efforts. (See
Berger (1994)).

In the same spirit, we can propose the local sensitivity of / in the direc-
tion of g as,
to c\ / r \ v λ(0,62;x)

(3.5) s2(f,g;x)= km v J.
e2->0+ 6 2
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The joint local sensitivity is defined as the pair (θi(P,Q; x)-,s2(f^g; x)).
Finally, the overall local sensitivity is a function of the pair («si(P,Q',x),
52(/, g\ x)) Again, following Gustafson and Wasserman (1993), we can define
local sensitivity over different classes as

(3.6) 0
Qer

(3.7) 52(/, {/; x) =sup θ2(/, g; x)

where Γ and Q can be appropriately chosen.
Now, it is interesting to note that

and similarly,

The expressions (3.8) and (3.9) show that the local sensitivity mea-
sures are expressed as ratios of marginals and in particular, (3.9) is the
Bayes factor of one model with respect to the other. It also follows that
sι(P,Q;x)/s2(f,g;x) = mg(a:,/)/mp(x,^), the magnitude of which dic-
tates the shape of the overall sensitivity plot, which will be evidenced through
the example in Section 5.

Again, if p and q are respectively, the densities of P and Q, then it follows
that

(3.10) 81(P,Q;x) = J&f(x \ θ)^P(θ)dθ/mP(x,f) = Ep*[q(θ)/p(θ)}

where Epx denotes expectation under elicited posterior. The above equation
is a very useful formula for the computation of the local sensitivity measure,
since often we have samples from the elicited posterior using Markov Chain
Monte Carlo methods. Similarly, we can show that

(3.11)

which again can be computed easily using a sampling based approach.

3.2. Local Sensitivity Measures in Linear Models. In this section, we
obtain analytical expressions for the local sensitivity measures. Consider a
standard linear model where

Y ~Nn(Xβ,σ2L).
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Since we are interested in studying perturbation of the prior on /?, we assume
that σ2 is known. Suppose P ~ Np(βι,Vi) and Q ~ Np(β2,V2) where
/?!, /32, V\ and V2 are known. This produces from (3.14) (with identity link)
the corresponding priors for 0's as

(3.12) θi ~ Nn(Xβ0, XViX% i = 1,2.

The following theorem gives a closed form expression for the local sensitivity
measure.
THEOREM 3.1. For the normal linear model, i.e., under y \β ~ Nn(Xβ,I)
and under linear perturbation of the prior, the local sensitivity measure is
given as

(3.13) e x p | | [ | | y - X β x fVχ - \ \ y - X β 2

where || y - Xβ{ \\2

V= (y - Xβi)\I + XViX*)-1^ - Xβi), % = 1,2.
PROOF. The proof follows from the fact that mp{y,f) is Nn(Xβι,I +

and mQ(y, f) is Nn(Xβ2,1 +

Now, let us consider a perturbation of the likelihood. In our notation, /
stands for Nn(Xβ,I). A natural choice for a contaminated model is to posit
a correlation structure in the error distribution and in this regard we take g
to be Nn(Xβjc(I + «/)), where c is a positive constant and J is the matrix
of Γs. For prior specification we consider P to be Np(μ,A) where μ and A
are known. The following theorem gives the local sensitivity measure for the
likelihood perturbation.
THEOREM 3.2. For the normal linear model, under linear perturbation of the
likelihood function, the local sensitivity measure is given as

(3.14)

PROOF. The proof follows from the fact that the marginal distributions
mp(y,f) is Nn(Xμ,I + XAX*) and mp(y,g) is Nn(Xμ,c(I+J) + XAXt).D



On Local Sensitivity Measures in Bayesian Analysis 27

3.3. Local Sensitivity Measures and Leverages. Consider the local sensi-

tivity measure for the regression model with linear perturbation of the prior

as defined in (3.13). In this section, we show that the classical deletion ap-

proach to performing 'influential case analysis' (Cook and Weisberg (1982))

can be obtained as a special case of our local sensitivity measures. Again,

suppose P ~ Np(βι,Vι) and Q ~ Np(β2,V2), where we further assume that

βι = (XtX)~1Xty and Vi = (X^Y)""1, i.e., the elicited prior is normal with

mean equal to the least square estimate and with variance equal to the vari-

ance of the least square estimate. Such a choice of prior is somewhat artificial

but it is natural in practical problems when we do not have any precise infor-

mation. Next, we consider β2 = (XfaXy^Xfay^ and V2 = (X^Xyj)" 1

where y^ = (yu ..., yj_u yj+1,..., yn)' and X ( j ) is the matrix X with jth row

deleted. It follows immediately that

(3.15) β2 = βx - (1 - hjj)-\yj - x)β1)(XtX)-1xj

and

V2 = (X*X - xjx))-1

(3.16) = (X'X)-1 + (1 - Λ ^ ) - 1 ^ * ^ ) - 1 ^ ^ ^ ^ ) - 1 ,

where hjj is the jth diagonal element of the projection matrix

H = X{XtX)~1Xt. The following theorem shows the relationship between

the local sensitivity measure and the leverages which assumes that θχ(P, Q; y)

is a sensible measure.

THEOREM 3.3. For the linear regression model, under linear perturbation of

the prior, the local sensitivity measure under the above set up is given as

where β1 =

PROOF. First it follows that

I / + XVrf* I _ I X*X - XJX) I I 2X*X I
/ + XV2X

t I I X'X I I 2XΉ - XJX)
2(1 - hjj)

2 - hjj

Now, it can be shown that

II y - Xβx fVι = y\l - H)(I + H)-\l -H)y = y\l- H)y.
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To calculate \\ y — Xβ2 \\v > ^τs^ w e observe that

where

Uj = (1 - hjj)-1'2X{XtX)-1x3.

Thus,

Observing that (/ + i f ) " 1 = / — |if, which implies

. 1 1 (1 — h

2 2(2-

Finally, after some algebra, it follows that

(3.19) || „ - Xβ2 \\12= y\l - H)y + " ^ ~
an

Combining (3.18) and (3.19), the proof follows from (3.13). •

It is interesting to observe that <si(P, Q; y) is a decreasing function of hjj.

Since 0 < hjj < 1, θi(P, Q\ y) is also between 0 and 1.

3.4- Applications in Generalized Linear Models. Suppose yi, . . . ,y n are

independent observations, where y{ has the exponential density

(3.20) f(yi I θi) = exp{yiθi + b(θi) + c(ifc)}, * = 1, - , n.

Density in (3.20) is parameterized by the canonical parameter θi. The δ( )
and c( ) are known functions. The 0t 's are related to the regression coeffi-
cients by the equation

(3.21) θi = θ(ηi), ΐ = l , . . . , n ,

where ηι — x\β, x\ — (a?ti? ?^tp) is a 1 X p vector denoting the ith row
of the n X p matrix of covariates X, β = (β\,...,βp)

t is a p X 1 vector
of regression coefficients, and θ is a monotonic differentiate function. Any
model given by (3.20) and (3.21) is called a generalized linear model (GLM).
The density in (3.20) includes a large class of regression models such as
logistic and probit regression, Poisson regression, etc. (see McCullagh and
Nelder (1989)). Suppose our elicited prior on β is Np(βOi V) where β0 and V
are the known mean vector and covariance matrix respectively, so that we can
consider a linear perturbation of the prior Np(βo,V). It follows immediately
that
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and thus the prior for θ can be obtained as

τr(0) = (2π)-n/2 I XVX* Γ1/2

(3.22) exp{-V^.) - XβoYiXVX*)-1^-) - Xβ0
1

Thus, for given βo, V and the link function β( ),we can explicitly evaluate
p. We can now obtain the perturbation of π(θ) from (3.14) knowing the linear
perturbation of Np(β0, V) and hence <§i(P, Q; x) can be obtained from (3.8).
A closed form expression for S\(P, Q; x) is not possible in this case. However,
a Monte Carlo estimate of si(P, Q\ x) can be obtained using sampling based
approach which is performed in Section 5.

4. Local Sensitivity Measures under ^-Divergence. In this sec-

tion, instead of a pseudo-distance d, we consider φ -divergence between two

probability measures . Formally the (^-divergence between two probability

measures P and Q is defined as

(4.1) Dφ(P,Q)--

where ψ is a smooth convex function such that φ(l) = 0. Several well-known
divergence measures, e.g., Kullback-Liebler, Hellinger distance, Chi-squared
distance, etc. can be obtained by the appropriate choice of the (^-functions.
Sensitivity diagnostics based on (^-divergence were studied by Gustafson and
Wasserman (1993) and Ghosh and Dey (1994).

Now, to define several sensitivity measures based on the <£-divergence,
we assume interchange of limit and integral. We define the local sensitivity
measure for the prior perturbations as

(4.2) βn(ar) = lim
Dφ(Qtl,P)

Equation (4.3) follows from (4.1) by using Taylor's expansion. The quan-

tity s\ι(x) gives the ratio of the local curvature of <^-divergences between

posterior and prior.

Similarly, to define the sensitivity measure for the likelihood perturba-

tion, we consider

(4.4) *(,) =

t3,
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(4.5) = *L
&Dφ(P*{ge3),P*{f))\t2=o

C 2
^1Jφ\9t2^J ) |e2=0

Finally, a local sensitivity measure which captures both perturbations can

be defined as

(4.6) s12(x) =

(4.7)
jgrDφ(QCl,P)\ei=0

Now, in the following theorem, we give the formula for the local sensi-

tivity measures.

THEOREM 4.1. Under linear perturbation the local sensitivity measures based

on the ψ divergence are given as

( 4 8 )

Varp(§) lmp(x,/)J VarP(§)

and

P R O O F . The proof of (4.8) follows from Dey and Birmiwal (1994). Proofs

for (4.9) and (4.10) are similar which is given in Ghosh and Dey (1994).

It can be noticed that the above measures are free from the choice of the

(^-functions.

It is interesting to note that all the local sensitivity measures as defined

above depend on certain variance ratios and the ratios of marginals.

4-1. Results for Linear Models. In this section we revisit the linear
models problem as described in Section 3.3. In order to calculate s π (aι)
under linear perturbation, we use equation (4.3). We note that for any two
probability measures P x and P2, Varpλ{j^) can be calculated by using a
very simple formula (involving only first order moments of density ratio)

(4.11) ί& g
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Thus, from (4.8) sn(x) reduces to

(4.12) *n(*) = 4(P,Q;*

It follows from Berger (1985) that, if we assume Y ~ Nn(Xβ,I), P
Np(βi, Vi) and Q ~ NP(β2, F2), then P* ~ JVP(μ£, Vf) where

μζ = (X*X + V1-
1T\VΓιβι + X*y), Vζ = (X*X + Vf1)-1.

Similarly Q* ~ Np{μQ,V$) where

μQ

x = (X*X + V2-
1)-\V2-

1β2 + X'y^V? = (X*X + Vi1)-1.

Then we apply the following lemma twice.
LEMMA 4.1. For P ~ Np^!,Ai), Q ~ NP(μ2,A2) it follows that

provided 2A\ — A2 is positive definite.

It can be obtained that

where || ^ - β2 | |J= (/3χ ί 1

II UP _ //Q | | 2 _ / ^ P _ uQ\t(2Vp - VQYι(ap - uQ)II PJ: Âa: II*"" Vrx rx ) \ΔVx vx ) \rx rx )

and sι(P,Q;x) is obtained from (3.13).

5. An Illustrative Example. In this section we consider some bino-
mial count data and compute the local sensitivity measures as described in
previous sections. The data (from Lindsey (1993)) describes the effects of
salinity and temperature on the proportion of eggs on English sole hatching.
The covariates are salinity (xι) and temperature (x2). Here yι refers to the
number of eggs hatched, and follows a Bin(rii,pi), i = 1,..., 72. We identify
this model as / according to the above notation. Using the canonical link,
we consider 0t = log(pf /(l - Pi)) = x\β where x\ = (1,^1,^2) and β =
(60,61,62)* T o choose prior measures P and Q, we consider P ~ JV(/?i,Vi)
and Q ~ N(β2,V2) where βi and VJ are respectively the mean vector and
covariance matrix obtained by using logistic and probit regression models
(using GLIM). An alternative way to implement binomial regression is to
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use a transformation based on normal approximation. It is well known that
for a smooth function /ι, as Πi becomes large

h(pi) I β ~ N{x\β, (h'(pi))2pi(l-pi)/ni)

where % = yt /n t , i = l , . . . ,n(= 72). By choosing Λ(p) = log(p/(l - p))
and Λ(p) = Φ " 1 ^ ) , where Φ is the c.d.f. of the standard normal random
variable, we can have two plausible choices of contaminated model g.

In order to describe the graphical plots of λχ/ei and ^l^i we need to
compute the marginals, since λz /e;, i = 1,2, are expressible as a function
of all the marginals. Note that mp(y,g) and rriQ{y,g) have closed form
analytical expressions for both choices of g . On the contrary τnp(y,f) does
not have any closed form expression. We use a Monte Carlo estimate of
mp(y,f) given as

mP(yJ) = J f(y \ β)dP(β)

where /?W are samples from the prior P. In this example, we take N =

2,500 samples. In the expression for f(y \ /?(*)) we also used Stirling's

approximation for factorial whenever ίn*) is large.

We then plot λi/ei and λ2/62 functions for the given data against 6χ
and €2 in Figure 1, when g comes from logistic model. Figure 1 indicates
monotonicity of all the functions in terms of e\ and 62? the amounts of con-
tamination. For any pair of e\ and €2 values, the sensitivity measures can be
obtained from the graphs. To obtain the local sensitivity measure, it follows
that for the full model <si(P,Q x) = 9.43 and s2(f,g;x) = 16.94, when g
comes from a logistic model. From the magnitude of the local sensitivity
measures (using Jeffreys scale of evidence, Jeffreys (1961), also see Kass and
Raftery (1994)) it is clear that both choices of Q and g are sensitive. From
the data, we suspect that the observations 25, 26 and 27 are potential out-
liers. We then delete these observations and plot λt /€t , i = 1,2 in Figures la,
lb and lc to note the changes after deletion. Table 1 displays the values of
the local sensitivity measures for the full model and after deletion of poten-
tial outliers. It follows that the deletions have significant effects on the local
sensitivity measures. Similar graphs are drawn in Figure 2 where g comes
from probit model. Also, the effects of 25th, 26th and 27th observations
are studied through Figures 2a, 2b and 2c. Local sensitivity measures are
displayed in Table 1.
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TABLE 1.

Local Sensitivity Measures for the
Binomial Count Data

Models

Full Model
Obs. 25 deleted
Obs. 26 deleted
Obs. 27 deleted

Si

9.43
7.36
7.58
7.41

g: logistic

16.94
14.83
14.75
14.09

9.41
7.36
7.58
7.43

g: probit

16.91
14.77
14.73
14.12

It follows from Table 1 that observation 25, 26 and 27 are all influential
with respect to the change in local sensitivity measures.

A little study of Table 1 shows that the sensitivity measures s\ and S2
remain almost invariant when we move the transformation function h from
logistic to probit. Similar feature might be observed if we vary h over a
class of smooth functions giving rise to normal approximation. Let Q be
the class of densities g, obtained through the h function. Then S2{f,G\x)
as defined in (3.7) has value closed to as observed in Table 1. Thus, we
conclude that whatever approximation (using ^-function) we might use, the
binomial model remains sensitive to such choice of likelihoods (obtained via
normal approximation). This feature would have been overlooked if we just
perturbed the prior, thus establishing the need for dual perturbation as a
check for model adequacy.
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On Local Sensitivity Measures in Bayesian Analysis

discussion by
ISABELLA VERDINELLI

University of Rome, Italy
and Carnegie Mellon University, Pittsburgh, PA, U.S.A.

I enjoyed reading this interesting paper addressing the use of general
measures of local sensitivity. These measures allow one to consider the effect
on posterior inference of perturbations, not only in the prior distribution,
but also in the likelihood. I liked, in particular, the simple representations
(3.8) and (3.9), that express the local sensitivity measures as Bayes factors of
one model with respect to the other. The authors also show how to consider
these local sensitivity measures for Generalized Linear Models and do an
application to a data set to detect model adequacy.

I believe it is a good idea to extend Bayesian robustness to allow for un-
certainty in the model specification. One particular problem, arising when
perturbing the likelihood, is that the model's parameters need to maintain
their meaning when the likelihood is perturbed. In fact, the requirement
made in section 2 of the paper is that the base likelihood, /, and the con-
taminated likelihood, #, are compatible in the sense that they both belong
to the same location-scale family. This is quite reasonable, but it appears as
if, when examining the data set in section 5 this condition was overlooked.

The base model / of section 5 is the logistic model. The two possible
alternatives considered, g\ and g<ι say, are the normal regression model, after
a logit transformation, and the probit model. These three models are not in
the same location-scale family and the meaning of the respective parameters
does not appear to be the same. This has an effect on the diagnostic proposed
to detect sensitivity to model specifications. The perturbed likelihood is a
mixture either of the models / and g\, or of the models / and g<ι. The
local diagnostic, defined through the Frechet derivative of / in the direction
of #, depends on all the parameters involved in the two models, and I do
not quite understand whether the values of the diagnostics for the different
models proposed are in fact comparable.

Consider again formula (3.8) that represents the local sensitivity of P
in the direction of Q as the ratio πiQ(x, f)/mp(x, f). Note that that this
particular ratio is not quite a Bayes factor. In fact since

it can be thought of as a Bayes factor for the prior distributions. Although
it might be reasonable to extend the concept of model to the set of all the
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assumptions made, so that in the Bayesian framework a model would include
both the likelihood and the prior distribution, still the interpretation of the
above ratio is unclear.

Other authors (e.g. Gustafson and Wasserman, 1993) derived different
expressions for (3.8) that also involved a distance. While it seems an advan-
tage that this diagnostics does not depend on the type of distance chosen, I
still wonder if the interpretation of this measure of sensitivity to variation in
the prior distribution might be somewhat easier when a particular distance
is considered as well.

My next comment concerns the implementation of the Monte Carlo sam-
pling in the example. The authors chose to approximate integrals of the type
/ = / f(x\θ)P(dθ) by the Monte Carlo estimate / = N'1 Σ ^ f(x\θM)
where θ^\t = 1,2,...TV are sampled from the prior distribution P. This
results in an inefficient estimate of /. A better way to proceed would be to
compute instead:

where h(-) is a density and θ^\ t = 1,2,.. .N are sampled from the posterior

distribution, as in Gelfand and Dey (1994).

My last question is about the interpretation of the plots. They all look

very similar to me, and I do not understand if these pictures actually help

us to see the effect of deleting observations from the sample.
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DIPAK K. DEY, SUJIT K. GHOSH AND KUO-REN LOU

We thank the discussant for her kind and generally positive remarks.
We agree that the notion of compatibility of likelihood is very tricky. In this
paper we mention location and scale family as an example of compatibility.
However, in the illustrative example, the compatibility of / is made with g\
and #2 through the one-one transformation, i.e. through the function h of
the binomial proportion p.

We think that a model in a Bayesian framework is defined through the
likelihood and the prior. Thus Si(P, Q, x) is really a ratio of marginal likeli-
hoods and can be thought of as Bayes factor for the prior distributions and
Jeffreys' scale of evidence can be used for the model selection. Regarding
the difference in definition between ours with Gustufson and Wasserman
(1993), we want our sensitivity measures to be free from a particular choice
of distance, so that we can calibrate our measure.

The Monte Carlo estimates of the marginal distribution mentioned in this
paper are definitely less stable than the estimator proposed in Gelfand and
Dey (1994), but it is done to avoid a Metropolis step to keep the computation
simple. We agree that the nature of the plots are similar, e.g. monotonicity,
but the scales are totally different. See Table 1 for clarification.

Finally, we think deeper exploration of compatibility of models and dif-
ferent types of perturbations of the models may help us to develop better
understanding of robustness problem.
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