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Abstract

In this paper, we propose and study a generalized subset selection procedure for selecting the
best population. Based on the concept of generalized subset selection procedure, some selection
procedures for normal populations are proposed and studied. They are used, respectively, to select
the best population (populations) with respect to the largest mean, the largest pth quantile and the
largest signal-to-noise ratio. For the case of common unknown variance, the proposed generalized
subset selection procedure for selecting the largest mean becomes exactly the same as that has
been given in Hsu (in: T.J. Santner, A.C. Tamhane (Eds.), Design of Experiments: Ranking and
Selection, Marcel Dekker, New York, 1984, pp. 179–198). A Monte Carlo study shows that the
proposed generalized subset selection procedures behave satisfactorily. An illustration of a set
of real data is also given. c© 2001 Elsevier Science B.V. All rights reserved.

MSC: 62F07

Keywords: Ranking and selection; Generalized subset selection procedure; Generalized
probability of correct selection; Quantile; Signal-to-noise ratio

1. Introduction

Let �1; : : : ; �k be k (¿2) normal populations where observations Xij from �i are
independently distributed as N (
i; �2i ) (j = 1; : : : ; ni; i = 1; : : : ; k). All means 
i and
variances �2i are unknown. When 
i is the parameter of main interest, the prob-
lem of selecting the best population was studied in papers pioneered by Bechhofer
(1954) using the indiDerence zone approach and by Gupta (1956) employing the subset
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selection. A detailed discussion of these approaches and various related results can be
found in Gupta and Panchapakesan (1979) among others.
Let 
i be some function of 
i and �2i (i=1; : : : ; k). The population which is associated

with the largest 
i is called the best. And it is said that the selection criterion is the
quantity 
i. We are interested in selecting the best population.
Selection criterion in most results for selecting the best normal population so far is

commonly focused either on some function of 
i or some function of �2i . However,
in many practical situations, the pth quantile of population �i is an important quantity
to be considered. Also, the quantity of signal-to-noise ratio is an important index for
practical application, in particular, in industry statistics (e.g. see Box, 1988). On the
other hand, the quantity of signal-to-noise ratio is one of the most natural and also
most important to be considered for the criterion that controls the mean (to be large)
and simultaneously its associated variance (to be small).
In this paper, our selection criterion is considered, respectively, to be the mean, the

pth quantile and the signal-to-noise ratio. When selection criterion is population mean,
Hsu (1984) proposed a one-stage subset selection procedure for the case that �2i are
all equal but unknown, and Gupta and Wong (1982) proposed approximated subset
selections when �2i are unequal and unknown. Also, Santner and Tamhane (1984)
proposed a two-stage procedure for selecting the population associated with the largest
mean whose associated variance is under some control.
Based on the concept of generalized test variable (see, e.g., Tsui and Weerahandi,

1989; Zhou and Mathew, 1994; Weerahandi, 1995) and generalized conJdence intervals
of Weerahandi (1993, 1995), we propose generalized subset selection procedures in
Section 2. Procedures for selecting the largest mean for both cases of equal variance
and unequal variances are studied in Section 3. Finally, procedures for selecting the
largest pth quantile and the largest signal-to-noise ratio are, respectively, studied in
Sections 4 and 5. An illustration of a real data set is also given in Section 6.

2. Generalized subset selection procedure

Consider an observable random vector Xi with sample size ni from population �i,
i= 1; : : : ; k, with cumulative distribution function F�i , where �i = (
i; �i) is a vector of
unknown parameters, 
i being the parameter of interest, and �i is a vector of nuisance
parameters.
Suppose that xi is the observed value of Xi. For convenience, let X = (X1; : : : ;Xk),

x= (x1; : : : ; xk), �= (�1; : : : ; �k), � = (
1; : : : ; 
k), �= (�1; : : : ; �k), n = (n1; : : : ; nk), and

[1]6
[2]6 · · ·6
[k] be the ordered 
’s. Furthermore, let (k) denote some association
such that the population �(k) is associated with parameter 
[k]. Usually, based on the
observations of x, the goal is to propose a rule for selecting a non-empty subset from
the k populations and it is guaranteed that the probability that the best population
being in the subset selected is at least a preJxed number P∗ (1=k ¡P∗ ¡ 1). Let
P(CS|R) denote the probability of a correct selection (CS) using the procedure R, the
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P∗-condition is usually written by

inf
�

P(CS|R)¿P∗; (2.1)

where � is the parameter space of all k-tuples (�1; : : : ; �k). A statistic Yi(X) is said to
be a selection variable for 
i if it is an appropriate estimator of 
i. A subset selection
procedure can be slightly modiJed to be as follows:
R: For observed x and some given constant di, retain �i in the selected subset if

and only if

min
j �=i

{g(Yi(x); Yj(x)) + di Ŝd(g(Yi(X); Yj(X)))}¿0;

where g is some real value function, Ŝd(g(Yi(X); Yj(X)) is some appropriate estimate
of the standard deviation of g(Yi(X); Yj(X)), and di = di(n; k; P∗) is some constant to
be chosen that the P∗-condition is satisJed.
Following the ideas of generalized test variable (Tsui and Weerahandi, 1989; Weer-

ahandi, 1995) and generalized conJdence intervals (Weerahandi, 1993, 1995), by re-
laxing some of the requirements in the selection variables, we deJne the generalized
selection variables as follows:

De�nition 2.1. Let Yi(X ; x; �) be a function of X and possibly x; � as well. The random
quantity Yi(X ; x; �) is said to be a generalized selection variable for 
i if

(a) the value Yi(x; x; �) is an appropriate estimate of 
i,
(b) the joint distribution of (Y1(X ; x; �); : : : ; Yk(X ; x; �)) does not depend on nuisance

parameter �,
(c) for Jxed x, P(Yi(X ; x; �)¿t) is an increasing function of 
i, the selection criterion,

for any given t.
Let g be a real value function. To construct a reasonable generalized sub-

set selection procedure for selecting the best population, we need the following
condition:

(d) the standard deviation of g(Yi(X ; x; �); Yj(X ; x; �)) is independent of � and depends
only on observed data x.

For observed x and given constant P∗ (1=k ¡P∗ ¡ 1), for each i, deJne di(x) to
be the constant (depending on x) such that

P
1=···=
k (g(Yi(X ; x; �); Yj(X ; x; �)) + di(x) Sd(g(Yi(X ; x; �); Yj(X ; x; �)))¿0

for all j; j �= i) = P∗: (2.2)

Then, a generalized subset selection procedure can be deJned as follows:
Rg: For observed x and some given constant di(x), which may depend on x, retain

�i in the selected subset if and only if

min
j �=i

{g(Yi(x; x; �); Yj(x; x; �)) + di(x) Sd(g(Yi(X ; x; �); Yj(X ; x; �)))}¿0: (2.3)
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Also, the probability of generalized CS (GCS) of Rg is deJned by

P(GCS|Rg) = P
(
min
j �=(k)

{g(Y(k)(X ; x; �); Yj(X ; x; �))

+d(k)(x) Sd(g(Y(k)(X ; x; �); Yj(X ; x; �)))}¿0
)

= P(g(Y(k)(X ; x; �); Yj(X ; x; �))

+d(k)(x) Sd(g(Y(k)(X ; x; �); Yj(X ; x; �)))¿0 for all j; j �= (k)):
Therefore, if the minimizer of the probability of GCS, i.e. the least favorable conJgu-
ration, occurs at 
1 = · · ·= 
k , then

inf
�

P(GCS|Rg) = P∗; (2.4)

where � is the parameter space of all k-tuples (
1; : : : ; 
k). We call condition (2.4) the
generalized P∗-condition. It is to be noted that the statement of (2.4) involves observed
x and thus it is usually diDerent from the usual P∗-condition (2.1). However, they may
be equivalent in some situations (see Remark 3.1).

Remark 2.1. As in the case of conventional selection variables, conditions (a) and
(c) of DeJnition 2.1 are imposed to ensure that Yi(X ; x; �) is a reasonable generalized
selection variable. Also, condition (a) of DeJnition 2.1 and condition (d) are imposed
to ensure that generalized subset selection procedure generates selection regions which
involve observed data x only. Condition (b) of DeJnition 2.1 is imposed to ensure
that a selection region can be deJned at desirable level in terms of probability of GCS
under presence of nuisance parameters.

Remark 2.2. The probability in (2.2) is deJned in terms of the random vector X for
given observed value x. The quantities di(x) in the generalized subset selection rule
Rg depend on the observed value x and thus it is quite diDerent from the classical
subset selection rule. As can be seen that (2.2) is a local property, local at x, and it
theoretically does not give any guarantee to the experimenter regarding the probability
of a correct selection in the frequentist sense (see also Figs. 1–6).

As in the Bayesian treatment, the idea is to do the best with the observed data rather
than on all possible samples. As also pointed out in Hamada and Weerahandi (2000),
generalized inference is not based on repeated sampling considerations. Nevertheless,
generalized procedures have desirable repeated sampling properties, e.g. the generalized
tests and conJdence intervals are typically procedures with guaranteed size (also see
Figs. 1 and 3 for cases (ii) and (iii) in Sections 3 and 4, respectively). For further
discussions and details in this direction, it is referred to Weerahandi (1995).
When a subset selection procedure has been applied, conclusion needs to be eval-

uated in terms of some statistical language. One way of evaluating the results of a
subset selection procedure is to state the probability of GCS under least favorable



Y.-P. Chang, W.-T. Huang / J. Statistical Planning and Inference 98 (2001) 239–258 243

conJguration. In addition to P∗ and k, the quantities di(x) depend on both n and data
x. Thus, it is not possible to tabulate di(x) in general.
Another way of reporting the results of subset selection procedure is in terms of

the so-called s-values (selection value) proposed by Hsu (1984). Note that, when the
sample x is observed, for P∗ ¡P∗∗, the selection under P∗ is a subset of the selection
under P∗∗. Hence, for some selection rule and an observed data x, the s-value of �i is
deJned to be the smallest value of P∗ such that �i is in the selected subset determined
by the selection rule satisfying the P∗-condition. Therefore, the population �i is in
the selected subset associated with P∗-condition if and only if the s-value of �i for
the observed data x is less than or equal to P∗. Note that, the s-value depends on
the observations x and the smaller the s-value of �i, the stronger the evidence (by
means of sample x) that �i is in the selected subset. Accordingly, we can extend the
concept of s-value to the generalized s-value by associating with the generalized subset
selection procedure.

De�nition 2.2. For some generalized subset selection rule and an observed data x, the
generalized s-value of �i is deJned to be the smallest value of P∗ for which �i is in
the selected subset determined by the generalized subset selection rule satisfying the
generalized P∗-condition.

Theorem 2.1. For the generalized subset selection procedure Rg de9ned by (2:3); let

ds
i (x) =−min

j �=i
g(Yi(x; x; �); Yj(x; x; �))

Sd(g(Yi(X ; x; �); Yj(X ; x; �)))
:

Then; the generalized s-value Ps
i (x) of �i is given by

Ps
i (x) = P
1=···=
k (g(Yi(X ; x; �); Yj(X ; x; �))

+ds
i (x) Sd(g(Yi(X ; x; �); Yj(X ; x; �)))¿0 for all j; j �= i):

Proof. Since, for any Jxed i and observed x,

P
1=···=
k (g(Yi(X ; x; �); Yj(X ; x; �)) + di(x) Sd(g(Yi(X ; x; �); Yj(X ; x; �)))¿0

for all j; j �= i)

is increasing in di(x), and for all j; j �= i,

g(Yi(x; x; �); Yj(x; x; �)) + di(x) Sd(g(Yi(X ; x; �); Yj(X ; x; �)))¿0

if and only if di(x)¿ds
i (x). Hence, if P

s
i (x)¿P∗ then di(x)¡ds

i (x) which indicates
that �i is not in the selected subset. On the other hand, if Ps

i (x)6P∗ then di(x)¿ds
i (x).

Therefore, �i is in the selected subset.

Obviously, the generalized s-value depends on the observations x. Furthermore, the
smaller the generalized s-value of �i, the stronger the sample evidence (evidence under
presence of x) that �i is in the selected subset.
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3. Selection criterion is population mean

Let the ordered values of the unknown 
i be denoted by 
[1]6
[2]6 · · ·6
[k].
Furthermore, let (i) denote the association such that the population �(i) is associated
with parameter 
[i]. Consider selection criterion to be 
i.

3.1. When �21 = · · ·= �2k = �2 are unknown

Let n∗=
∑k

i=1 (ni − 1), OX i=
∑ni

j=1 Xij=ni, S2p =
∑k

i=1

∑ni
j=1 (Xij − OX i)2=n∗, and Oxi and

s2p be the observed values of OX i and S2p , respectively. Consider the identity


i = OX i − �√
ni
Zi = OX i −

√
n∗S2p
niV

Zi;

where Zi =
√
ni( OX i − 
i)=� ∼ N(0; 1), V = n∗S2p =�

2 ∼ �2n∗ .
Obviously, Z1; : : : ; Zk and V are independent. We deJne the generalized selection

variable Yi(X ; x; �) based on the suPcient statistics OX i and S2p by

Yi(X ; x; �) =

√
n∗s2p
niV

Zi + 
i:

From the previously mentioned identity, the sample mean from �i can be
rewritten by

OX i =

√
n∗S2p
niV

Zi + 
i:

Obviously, the generalized selection variable Yi(X ; x; �) is derived from OX i in which S2p
is replaced by its observed value s2p. More exactly, let g1(X)= S2p , g2i(X)= Zi=

√
V=n∗

and g∗i (a; b) =
√
a=nib, where ni, n∗, S2p , V and Zi are previously deJned. Then, it

is noted that OX i = g∗i (g1(X); g2i(X)) + 
i and Yi(X ; x; �) = g∗i (g1(x); g2i(X)) + 
i for
observed x. Therefore, the generalized selection variable Yi(X ; x; �) is a random quan-
tity of X based on a partial data (information) of x (i.e. g1(x)). When all data x is
utilized, Yi(x; x; �) = g∗i (g1(x); g2i(x)) + 
i becomes Oxi. Here, it is noted that the Jrst
and the second variable in Yi(X ; x; �) denote, respectively, the random sample and the
observed data from same experiment.
On the other hand, we can explain brieQy the modiJed term. Note that the main

part of OX i can be decomposed into a product form

OX i =

√n∗S2p
niV

(Zi) + 
i:

The part
√
n∗S2p =niV contains the information of scale parameter of OX i (since Zi has

variance 1). So, for the case of equal unknown variances, when x is observed, the
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“adjusted” quantity
√
n∗s2p=niV is “better” than the original

√
n∗S2p =niV in the sense

that it reduces the variation of the latter. In this sense, instead of considering OX i,
we consider Yi(X ; x; �) just to “standardize” its scale for selection and leaving the
part of statistic relating to information of mean unchanged. In this sense, Yi(X ; x; �)
is more “informative” than OX i for the purpose of comparisons of means. Therefore,
Yi(X ; x; �) is obtained from OX i through a process of selection-oriented adjustment. This
interpretation will be more obvious for other selection criteria of unequal variances,
pth quantile and signal-to-noise ratio.
Clearly, the distribution of Yi(X ; x; �) depends on (
i; �2) only through 
i, and when

all random quantities are replaced by its observed values,

Yi(x; x; �) = (n∗s2p=ni)
1=2(n∗s2p=�

2)−1=2
√
ni( Oxi − 
i)=� + 
i = Oxi

which is a naive estimate of 
i, and for Jxed x, P(Yi(X ; x; �)¿t) is an increasing
function of 
i for any given t. Therefore, Yi(X ; x; �) is indeed a generalized selection
variable of 
i. By a straightforward calculation, it can be obtained that

 ij(x) ≡ Sd(Yi(X ; x; �)− Yj(X ; x; �)) =

√
n∗s2p
n∗ − 2

(
1
ni
+
1
nj

)
:

For observed x, given constant P∗, and for each i, deJne di(x) to be the constant such
that ∫ ∞

0

∫ ∞

−∞

∏
j �=i

!

(√
nj
ni
z +

√
njv
n∗s2p

di(x) ij(x)

)
$(z)p�2

n∗
(v) dz dv= P∗; (3.1)

where !(·) and $(·) are, respectively, the standard normal distribution and density
function, and p�2

n∗
(·) is the density function of �2n∗ . In fact, Eq. (3.1) is equivalent to

∫ ∞

0

∫ ∞

−∞

∏
j �=i

!

(√
nj
ni
z +

√
njv

n∗ − 2
(
1
ni
+
1
nj

)
di(x)

)
$(z)p�2

n∗
(v) dz dv= P∗:

(3.2)

Indeed, here the quantities di(x) in fact are independent of x. For convenience, we
denote di instead of di(x). We can deJne the generalized selection procedure RM as
follows:
RM: For observed x and some given constant di, retain �i in the selected subset if

and only if

min
j �=i

{ Oxi − Oxj + di ij(x)}¿0: (3.3)

Theorem 3.1. The P(GCS|RM) satis9es the generalized P∗-condition if di satis9es
(3:2).
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Proof. The probability of GCS applying the generalized selection procedure RM is
given by

P(GCS|RM)

=P
(
min
j �=(k)

{Y(k)(X ; x; �)− Yj(X ; x; �) + d(k) (k) j(x)}¿0
)

=P(Y(k)(X ; x; �)− Yj(X ; x; �) + d(k) (k) j(x)¿0 for all j; j �= (k))

=P

(
Zj6

√
nj
n(k)

Z(k) +

√
njV
n∗s2p

(
[k] − 
j + d(k) (k) j(x)) for all j; j �= (k)
)

=
∫ ∞

0

∫ ∞

−∞
P

(
Zj6

√
nj
n(k)

z +

√
njv
n∗s2p

(
[k] − 
j + d(k) (k) j(x))

for all j; j �= (k)
)
$(z)p�2

n∗
(v) dz dv

=
∫ ∞

0

∫ ∞

−∞

∏
j �=(k)

!

(√
nj
n(k)

z +

√
njv
n∗s2p

(
[k] − 
j + d(k) (k) j(x))

)
×$(z)p�2

n∗
(v) dz dv:

Hence, the minimum of P(GCS|RM) occurs at 
1=· · ·=
k . Therefore, by the deJnition
of d(k), P(GCS|RM)¿P∗.

Remark 3.1. Note that Gupta and Huang (1974, 1976), and Hsu (1984) have consid-
ered this problem. The procedure RH given by Hsu (1984) is deJned as follows:
RH: Retain �i in the selected subset, if and only if, for observed x,

min
j �=i

{
Oxi − Oxj + Disp

√
1
ni
+
1
nj

}
¿0;

where Di satisJes∫ ∞

0

∫ ∞

−∞

∏
j �=i

!
(√

nj
ni
z + Div

√
1 +

nj
ni

)
$(z)p�n∗ =

√
n∗(v) dz dv= P∗:

Take di=
√
(n∗ − 2)=n∗Di, then the generalized subset selection procedure RM deJned

by (3.3) is equivalent to that given in Hsu (1984). Also, by Hsu (1984), the procedure
RGH given by Gupta and Huang (1976) can be deJned as follows:
RGH: Retain �i in the selected subset, if and only if, for observed x,

min
j �=i

{
Oxi − Oxj + Dsp

√
1
ni
+
1
nj

}
¿0;

where D=max16i6k Di. Note that, when n1 = · · ·= nk = n, the procedure becomes the
classical rule which was Jrstly proposed and studied by Gupta (1956, 1965).
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It is to be noted that since the proposed generalized subset selection rule RM is
exactly equivalent to that of Hsu (1984), the generalized P∗-condition under present
situation is just the same as that of the usual P∗-condition.

3.2. When �2i are unequal and unknown

Consider the situation that variances are unequal. Let OX i =
∑ni

j=1 Xij=ni, S2i =∑ni
j=1 (Xij − OX i)2=ni, and Oxi and s2i be the observed values of OX i and S2i , respectively.

Consider the identity


i = OX i − �i√
ni
Zi = OX i − Si√

Vi
Zi;

where

Zi =
√
ni( OX i − 
i)=�i ∼ N(0; 1); (3.4)

Vi = niS2i =�
2
i ∼ �2ni−1; (3.5)

and Zi and Vi, i=1; : : : ; k, are independent. For observed x (and thus an estimate s2i ),
we deJne the generalized selection variable Yi(X ; x; �) based on the suPcient statistics
OX i and S2i by

Yi(X ; x; �) =
si√
Vi
Zi + 
i:

Clearly, the distribution of Yi(X ; x; �) depends on (
i; �2i ) only through 
i,

Yi(x; x; �) = si(nis2i =�
2
i )

−1=2√ni( OX i − 
i)=�i + 
i = Oxi

which is a naive estimate of 
i, and for Jxed x, P(Yi(X ; x; �)¿t) is an increasing
function of 
i for any given t. Therefore, Yi(X ; x; �) is indeed a generalized selection
variable of 
i. By a straightforward calculation, it can be obtained that

 ̃ij(x) ≡ Sd(Yi(X ; x; �)− Yj(X ; x; �)) =

√
s2i

ni − 3 +
s2j

nj − 3 : (3.6)

For observed x, given constant P∗, and for each i, deJne d̃i(x) to be constant such
that ∫ ∞

0

∫ ∞

−∞

∏
j �=i

P

(
tnj−16

√
nj − 1

v
si
sj
z +

√
nj − 1
sj

d̃i(x) ̃ij(x)

)
×$(z)p�2ni−1

(v) dz dv= P∗; (3.7)

where tnj−1 denotes a random variable of t-distribution with nj−1 degrees of freedom.
DeJne the generalized selection procedure R̃M as follows:
R̃M: For observed x and some given constant d̃i(x), retain �i in the selected subset

if and only if

min
j �=i

{ Oxi − Oxj + d̃i(x) ̃ij(x)}¿0:
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Theorem 3.2. The P(GCS|R̃M) satis9es the generalized P∗-condition if d̃i(x) satis9es
(3:7).

Proof. The probability of GCS applying the generalized selection procedure R̃M is
given by

P(GCS|R̃M)
=P

(
min
j �=(k)

{Y(k)(X ; x; �)− Yj(X ; x; �) + d̃(k)(x) ̃(k) j(x)}¿0
)

=P(Y(k)(X ; x; �)− Yj(X ; x; �) + d̃(k)(x) ̃(k) j(x)¿0 for all j; j �= (k))

=P

(
Zj√

Vj=(nj − 1)
6

√
nj − 1
V(k)

s(k)
sj

Z(k) +

√
nj − 1
sj

×(
[k] − 
j + d̃(k)(x) ̃(k) j(x)) for all j; j �= (k)
)

=
∫ ∞

0

∫ ∞

−∞
P

(
Zj√

Vj=(nj − 1)
6

√
nj − 1

v
s(k)
sj

z

+

√
nj − 1
sj

(
[k] − 
j + d̃(k)(x) ̃(k) j(x)) for all j; j �= (k)
)

×$(z)p�2n(k)−1
(v) dz dv

=
∫ ∞

0

∫ ∞

−∞

∏
j �=(k)

P

(
tnj−16

√
nj−1
v

s(k)
sj

z+

√
nj−1
sj

(
[k]−
j+ d̃(k)(x) ̃(k) j(x))

)
×$(z)p�2n(k)−1

(v) dz dv:

Hence, the minimum of P(GCS|R̃M) occurs at 
1=· · ·=
k . Therefore, by the deJnition
of d̃(k), P(GCS|R̃M)¿P∗.

For present situation, the generalized P∗-condition in general is not the same as in the
usual frequentist sense, therefore, simulation study is important. To study the empirical
PCS performance of the proposed procedure R̃M, suppose that k = 3 and �3 is the
best population. Fig. 1 is based on 10,000 simulations. For the ‘th simulation, suppose
the observations x are generated. Then the generalized s-values of �i, i = 1; : : : ; 3, are
calculated according to

Ps
‘i(x) =

∫ ∞

0

∫ ∞

−∞

∏
j �=i

P

(
tnj−16

√
nj − 1

v
si
sj
z +

√
nj − 1
sj

d̃‘i(x) ̃ij(x)

)
×$(z)p�2ni−1

(v) dz dv;

where

d̃‘i(x) =−min
j �=i

{( Oxi − Oxj)= ̃ij(x)};
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Fig. 1. Empirical PCS for selecting the largest mean.

and  ̃ij(x) is deJned in (3.6). If the generalized s-value of �3 is less than or equal
to P∗, i.e. Ps

‘3(x)6P∗, it means that �3 is in the selected subset by R̃M and thus the
generalized subset selection procedure selects the population associated with the largest
mean correctly. Therefore, for given value of P∗, the empirical PCS of R̃M is given by∑10;000

‘=1 I(Ps
‘3(x)6P∗)=10; 000, where I(·) is the indicator function. By this way the

empirical PCS can thus be plotted. Here, we consider three situations in the simulations:
Case (i): 
i=�2i = i; ni=10; i=1; : : : ; 3, case (ii): 
i=3; �2i =4− i; ni=10; i=1; : : : ; 3,
and case (iii): 
i=3; �2i =4− i; ni=20; i=1; : : : ; 3. Note that �1; �2 and �3 all have
the same mean for cases (ii) and (iii). Therefore, cases (ii) and (iii) belong to “least
favorable” situations, but case (i) does not. From Fig. 1, it is obvious to see that
the empirical PCS is greatly larger than its associated P∗ under the case (i), but the
empirical PCS is approximately equal to (no less than) its associated P∗ under cases
(ii) and (iii), respectively. Therefore, the generalized selection procedure R̃M behaves
conservative in the frequentist sense for case (i).
A naive procedure selects a single population randomly and its PCS achieves 1=k.

Therefore, we deJne ePciency of the generalized subset selection procedure with re-
spect to the naive procedure by

eD =
empirical PCS

(ES)a

/
1
k
;

where ES denotes empirical average size of subset selected and a is some constant
in (0; 1] which is to be adjusted by experimenter. For its simplicity, here we take
a= 1. For given value of P∗, the size of subset selected for the ‘th simulation is just
the number of those generalized s-values of �i (i = 1; : : : ; 3) which are less than or
equal to P∗, i.e.

∑3
i=1 I(P

s
‘i(x)6P∗). Hence, for any given value P∗, based on 10,000

simulations, the ePciency of R̃M can be obtained and Fig. 2 shows the ePciency for
selecting the largest mean under case (i). On the other hand, the ePciencies are very
close to 1 for cases (ii) and (iii). The reason is that �1; �2, and �3 are all the best
populations in these situations.
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Fig. 2. EPciency for selecting the largest mean under case (i).

4. Selection criterion is the pth quantile

Let the pth quantile corresponding to �i be denoted by 
pi , then 
pi =
i+�i!−1(p)
where !−1(·) is the inverse of the standard normal distribution function. Let the ordered
values of the unknown 
pi be denoted by 
p[1]6
p[2]6 · · ·6
p[k]. Consider the identity


pi = OX i − Si√
Vi
(Zi −√

ni!−1(p));

where Zi and Vi are deJned, respectively, in (3.4) and (3.5). For observed x and esti-
mated si, we deJne the generalized selection variable Yi(X ; x; �) based on the suPcient
statistics OX i and S2i as

Yi(X ; x; �) =
si√
Vi
(Zi −√

ni!−1(p)) + si!−1(p) + 
pi :

Clearly, the distribution of Yi(X ; x; �) depends on (
pi ; �
2
i ) only through 
pi , also,

Yi(x; x; �) = si(nis2i =�
2
i )

−1=2{√ni( OX i − 
i)=�i −√
ni!−1(p)}+ si!−1(p) + 
pi

= Oxi + si!−1(p)

which is a naive estimate of 
pi , and for Jxed x; P(Yi(X ; x; �)¿t) is an increasing
function of 
pi for any given t. Therefore, Yi(X ; x; �) is thus a generalized selection
variable of 
pi according to DeJnition 2.1. Also, it can be obtained that

 Qij (x)≡ Sd(Yi(X ; x; �)− Yj(X ; x; �))

=

s2i

 1
ni − 3 + ni(!−1(p))2

 1
ni − 3 − 1

2

(
)( ni−22 )
)( ni−12 )

)2


+ s2j

 1
nj − 3 + nj(!−1(p))2

 1
nj − 3 − 1

2

(
)( nj−22 )

)( nj−12 )

)2
1=2 :
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For observed x, given constant P∗, and for each i, deJne dQ
i (x) to be the constant

such that∫ ∞

0

∫ ∞

−∞

∏
j �=i

P

tnj−1(*
Q
j )6

√
nj − 1
sj

{
(si − sj)!−1(p) +

si√
v
(z −√

ni!−1(p))

+dQ
i (x) 

Q
ij (x)

}$(z)p�2ni−1
(v) dz dv

=P∗; (4.1)

where tnj−1(*
Q
j ) denotes the random variable of non-central t-distribution with nj − 1

degrees of freedom and noncentrality parameter *Qj = −√nj!−1(p). Now, deJne the
generalized selection procedure RQ as follows:
RQ: For observed x and some given constant d

Q
i (x), retain �i in the selected subset

if and only if

min
j �=i

{ Oxi + si!−1(p)− ( Oxj + sj!−1(p)) + dQ
i (x) 

Q
ij (x)}¿0:

Theorem 4.1. The P(GCS|RQ) satis9es the generalized P∗-condition if dQ
i (x) satis9es

(4:1).

Proof. Let (i) denote some association such that the population �(i) is associated with
parameter 
p[i]. The probability of GCS applying the generalized selection procedure RQ

is given by

P(GCS|RQ)

=P
(
min
j �=(k)

{Y(k)(X ; x; �)− Yj(X ; x; �) + dQ
(k)(x) 

Q
(k) j(x)}¿0

)
=P(Y(k)(X ; x; �)− Yj(X ; x; �) + dQ

(k)(x) 
Q
(k) j(x)¿0 for all j; j �= (k))

=P

(
Zj −√nj!−1(p)√

Vj=(nj − 1)
6

√
nj − 1
sj

{
(s(k) − sj)!−1(p) + 
p[k] − 
pj

+
s(k)√
V(k)

(Z(k) −√
n(k)!−1(p)) + dQ

(k)(x) 
Q
(k) j(x)

}
for all j; j �= (k)

)

=
∫ ∞

0

∫ ∞

−∞
P

(
Zj −√nj!−1(p)√

Vj=(nj − 1)
6

√
nj − 1
sj

{
(s(k) − sj)!−1(p) + 
p[k] − 
pj

+
s(k)√
v
(z −√

n(k)!−1(p)) + dQ
(k)(x) 

Q
(k) j(x)

}
for all j; j �= (k)

)
×$(z)p�2n(k)−1

(v) dz dv
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Fig. 3. Empirical PCS for selecting the largest 0.9th quantile.

=
∫ ∞

0

∫ ∞

−∞

∏
j �=(k)

P

(
tnj−1(*

Q
j )6

√
nj − 1
sj

{
(s(k) − sj)!−1(p) + 
p[k] − 
pj

+
s(k)√
v
(z −√

n(k)!−1(p)) + dQ
(k)(x) 

Q
(k) j(x)

})
$(z)p�2n(k)−1

(v) dz dv;

where *Qj =−√nj!−1(p). Hence, the minimum of P(GCS|RQ) occurs at 

p
1 = · · ·=
pk .

Therefore, by the deJnition of dQ
(k)(x); P(GCS|RQ)¿P∗.

Remark 4.1. If p= 1=2, then the generalized selection procedure RQ is equivalent to
the generalized selection procedure R̃M.

Remark 4.2. In general, if the selection criterion is the quantity 
i = a
i + b�i, where
a and b are given constants, the generalized selection procedure can be obtained by
the same argument.

To study the empirical PCS performance of the proposed generalized subset selection
procedure for the largest pth quantile, suppose that p= 0:9; k = 3 and �3 is the best
population. For given value of P∗, the empirical PCS and the ePciency of RQ can
be obtained by a similar argument in Section 4. Figs. 3 and 4 are based on 10,000
simulations, and the following three cases are considered, case (i): 
i = �2i = i; ni =
10; i=1; : : : ; 3, case (ii): 
i =3−!−1(p)�i; �2i =4− i; ni =10; i=1; : : : ; 3, and case
(iii): 
i = 3− !−1(p)�i; �2i = 4− i; ni = 20; i = 1; : : : ; 3. Note that �1; �2 and �3 all
have the same 0.9th quantile for cases (ii) and (iii). Therefore, cases (ii) and (iii)
belong to the “least favorable” situations, however, case (i) does not. From Fig. 3, it
is obvious to see that the empirical PCS is greatly larger than its associated P∗ under
case (i), but it is approximately equal to (but not less than) its associated P∗ under
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Fig. 4. EPciency for selecting the largest 0.9th quantile under case (i).

cases (ii) and (iii), respectively. Therefore, the generalized selection procedure RQ is
conservative in the frequentist sense for case (i).
Fig. 4 shows the ePciency for selecting the largest 0.9th quantile under case (i).

However, the ePciencies are very close to 1 for cases (ii) and (iii). The reason is that
�1; �2, and �3 are all the best populations in these cases.

5. Selection criterion is signal-to-noise ratio

Signal-to-noise ratio is an important quantity to be measured, particularly in industrial
statistics. Let 
i=
i=�i denote the signal-to-noise ratio of �i and the ordered values of
the unknown 
i be denoted by 
[1]6
[2]6 · · ·6
[k]. Consider the identity


i =
OX i

Si

√
Vi

ni
− Zi√

ni
;

where Zi and Vi are deJned in (3.4) and (3.5), respectively. For observed x and
estimated Oxi and si, we deJne the generalized selection variable Yi(X ; x; �) based on
the suPcient statistics OX i and S2i by

Yi(X ; x; �) =
Oxi
si

−
(
Oxi
si

√
Vi

ni
− Zi√

ni

)
+ 
i:

Clearly, the distribution of Yi(X ; x; �) depends on (
i; �2i ) only through 
i, and

Yi(x; x; �) =
Oxi
si

−
 Oxi

si

√
nis2i =�

2
i

ni
−

√
ni( Oxi − 
i)=�i√

ni

+ 
i = Oxi=si;

which is a naive estimate of 
i, and for Jxed x, P(Yi(X ; x; �)¿t) is an increasing
function of 
i for any given t. Therefore, Yi(X ; x; �) is a generalized selection variable
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of 
i. Again,

 SNij (x)≡ Sd(Yi(X ; x; �)− Yj(X ; x; �))

=

(
1
ni

[(
Oxi
si

)2{
ni − 1− 2

(
)(ni=2)

)((ni − 1)=2)
)2}

+ 1

]

+
1
nj

[(
Oxj
sj

)2{
nj − 1− 2

(
)(nj=2)

)((nj − 1)=2)
)2}

+ 1

])1=2
:

For observed x, given constant P∗, and for each i, deJne dSNi (x) to be the constant
such that∫ ∞

0

∫ ∞

−∞

∏
j �=i

P
(
tnj−1(*

SN
j (x))6

√
nj − 1

(
Oxj
sj

))
$(z)p�2ni−1

(v) dz dv= P∗;

(5.1)

where

*SNj (x) =−
√

nj
ni
z −√

nj

(
Oxi
si

− Oxj
sj

)
+
Oxi
si

√
nj
ni
v−√

njdSNi (x) 
SN
ij (x):

We can deJne the generalized selection procedure RSNR as follows:
RSNR: For observed x and some given constant dSNi (x), retain �i in the selected

subset if and only if

min
j �=i

{
Oxi
si

− Oxj
sj
+ dSNi (x) 

SN
ij (x)

}
¿0:

Theorem 5.1. The P(GCS|RSNR) satis9es the generalized P∗-condition if dSNi (x) sat-
is9es (5:1).

Proof. As before, let (i) denote some association such that the population �(i) is asso-
ciated with parameter 
[i]. The probability of GCS applying the generalized selection
procedure RSNR is then given by

P(GCS|RSNR)

=P
(
min
j �=(k)

{Y(k)(X ; x; �)− Yj(X ; x; �) + dSN(k)(x) 
SN
(k) j(x)}¿0

)
=P(Y(k)(X ; x; �)− Yj(X ; x; �) + dSN(k)(x) 

SN
(k) j(x)¿0 for all j; j �= (k))

=P

({
Zj −

√
nj
n(k)

Z(k) −√
nj

(
Ox(k)
s(k)

− Oxj
sj

)
+
Ox(k)
s(k)

√
nj
n(k)

V(k)

−√
nj(
[k] − 
j + dSN(k)(x) 

SN
(k) j(x))

}/√
Vj=(nj − 1)6

√
nj − 1

(
Oxj
sj

)



Y.-P. Chang, W.-T. Huang / J. Statistical Planning and Inference 98 (2001) 239–258 255

for all j; j �= (k)
)

=
∫ ∞

0

∫ ∞

−∞
P
({

Zj −
√

nj
n(k)

z −√
nj

(
Ox(k)
s(k)

− Oxj
sj

)
+
Ox(k)
s(k)

√
nj
n(k)

v

−√
nj(
[k] − 
j + dSN(k)(x) 

SN
(k) j(x))

}/√
Vj=(nj − 1)6

√
nj − 1

(
Oxj
sj

)
for all j; j �= (k)

)
$(z)p�2n(k)−1

(v) dz dv

=
∫ ∞

0

∫ ∞

−∞

∏
j �=(k)

P
(
tnj−1(*

SN
j (x))6

√
nj − 1

(
Oxj
sj

))
$(z)p�2n(k)−1

(v) dz dv;

where

*SNj (x) =−
√

nj
n(k)

z −√
nj

(
Ox(k)
s(k)

− Oxj
sj

)
+
Ox(k)
s(k)

√
nj
n(k)

v

−√
nj(
[k] − 
j + dSN(k)(x) 

SN
(k) j(x)):

It is readily seen that the minimum of P(GCS|RSNR) occurs at 
1 = · · ·=
k . Therefore,
according to the requirement of dSN(k)(x); P(GCS|RSNR)¿P∗.

To study the empirical PCS performance of the proposed generalized subset selection
procedure for present case, suppose that k = 3 and �3 is the best population. Figs. 5
and 6 are based on 10,000 simulations, and the following cases are considered, case
(i): 
i=�2i = i; ni=10; i=1; : : : ; 3, case (ii): 
i=3�i; �2i =4− i; ni=10; i=1; : : : ; 3,
and case (iii): 
i = 3�i; �2i = 4 − i; ni = 20; i = 1; : : : ; 3. Note that �1; �2 and �3 all
have the same signal-to-noise ratio for cases (ii) and (iii). Therefore, both cases (ii)
and (iii) belong to the “least favorable” situations, but case (i) does not. From Fig. 5,
it is seen that RSNR behaves rather conservative for case (i) in the same sense as noted
previously. Under cases (ii) and (iii), although, for some values of P∗, the empirical
PCS is smaller than its associated P∗, but it is quite close to its associated P∗.
Fig. 6 shows the ePciency for selecting the largest signal-to-noise ratio under case

(i). It is to be noted that the ePciency is less than that in Sections 3 and 4. For other
cases, the ePciencies are very close to 1, due to �1; �2 and �3 all being the best
populations.

6. Illustration of a set of real data

The data in Table 1 originated from the study by Ott (1993, p. 840) of the nitrogen
contents (Xij) of red cover plants inoculated with k = 3 strains of Rhizobium (3dok1,
3dok5, 3dok7). It is seen that the sample standard deviation is rather large when the
sample mean is large. Applying the Bartlett’s test for homogeneity of variances, the
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Fig. 5. Empirical PCS for selecting the largest signal-to-noise ratio.

Fig. 6. EPciency for selecting the largest signal-to-noise ratio under case (i).

Table 1
Rhizobium data

Term 3dok1 3dok5 3dok7

19.4 18.2 20.7
32.6 24.6 21.0
27.0 25.5 20.5

xij 32.1 19.4 18.8
33.0 21.7 18.6

20.8 20.1
21.3

ni 5 6 7
Oxi 28.820 21.700 20.143
si 5.188 2.620 0.978
Oxi + si!−1(0:9) 35.468 25.058 21.396
Oxi=si 5.555 8.281 20.593
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Table 2
Generalized s-value of each population for respective generalized subset selection procedure R̃M ; RQ , and
RSNR

Subset selection 3dok1 3dok5 3dok7
procedure

R̃M 0.02392 0.94295 0.98086
RQ 0.00006 0.91675 0.99924
RSNR 0.98176 0.95955 0.00001

p-value is equal to 0.0037 and thus it shows that there are statistically signiJcant
diDerences in variances at 0.05 signiJcance level. This fact is also supported by other
tests.
Applying the proposed generalized subset selection procedure R̃M; RQ, and RSNR,

Table 2 tabulates the generalized s-value of each population. For given value of P∗, a
population is selected if its generalized s-value is less than or equal to P∗. For example,
if P∗ is 0.95, then the selected subset is {3dok1; 3dok5} for selecting the largest mean,
the selected subset is {3dok1; 3dok5} for selecting the largest 0.9th quantile and the
selected subset is {3dok7} for the largest signal-to-noise ratio.
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