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The dimensional accuracy of the workpiece will exceed the tolerance, therefore, to predict how many workpieces
have been cut, the turning tool must be replaced is the important issue in machining field. To deal well with
the normally distributed random error existed in the wear value prediction of CNC turning tools, this paper
introduces the -Support Vector Regression (ν-GSVR) model with the Gaussian loss function to the prediction
field of short-term wear value. A new hybrid evolutionary algorithm (namely CCGA) is established to search
the appropriate parameters of the ν-GSVR, coupling the Chaos Map, Cloud model and Genetic Algorithm.
Consequently, a new forecasting approach for the short-term wear value prediction of CNC turning tools,
combining ν-GSVR model and CCGA algorithm, is proposed. The forecasting process considers the wear value
prediction of CNC turning tools during the first few time intervals, the turning tool wear value for the spindle
revolution, cutting depth and feed rate. It is used to verify the forecasting performance of the proposed model.
The experiment indicates that the model yield more accurate results than the compared models in forecasting
the short-term wear value on the turning tools. In this way, we can figure out how many turning tools to
prepare for similar workpieces, which can reduce the stock of turning tools, and reduce the labor costs on
quality inspection of workpieces during this period.
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1. Introduction

Wear value prediction of CNC turning tools the key index
in reducing the stock of turning tools, and the labor costs
on quality inspection of workpieces [1]. Data-insufficient
wear value is also the key technology for intelligent flexi-
ble manufacturing systems; therefore, the less-data wear
value prediction of CNC turning tools has a great practical
significance. According to different principles, the current
less-data wear value of CNC turning tools prediction meth-
ods can be classified into two types. The first type is the
prediction method based on the determination of math-
ematical models, including the early common regressive
moving average model (ARMA) [2], the later more complex
ARIMA model [3] with higher accuracy and the Kalman
filter model [4]. The second type is the knowledge-based in-

telligent model prediction method, including fuzzy theory
[5], wavelet theory [6], chaos theory [7] and neural net-
works [8–10]. The traditional calculation method is simple
and fast, but it does not reflect the uncertainty and nonlin-
earity of the wear value of CNC turning tools. Therefore,
it is ineffective in handling complex wear value prediction
problems. The neural network algorithm is a typical rep-
resentation of the second type method, because the neural
network algorithm cannot overcome deficiencies in empir-
ical risk minimization. In other words, when the sample
size of study is limited, the accuracy is difficult to guaran-
tee; but when the sample size of study is large, it is easy
to fall into the trap of over-fitting, so the neural network
algorithm is versatile. Imbalanced data is another common
problem, how to solve the problem of misclassification of
minority class samples [11] and predict them accurately
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has become a new challenge.

A SVMs-rebalance methodology [12]. is a graphical
prediction method link with a kernel version of multidi-
mensional scaling in high-dimensional feature space.

IShort-term load forecasts are needed for the efficient
management of power systems like turing tools, so a
new SVD(singular value decomposition)-based exponen-
tial smoothing formulation may be a good choice [13].

Having overcome the inherent defects in the neural net-
work [14], the SVR has the advantages of a global optimum,
a simple structure, strong small sample promotion ability
and it is based on structural risk minimization criterion.
Therefore, it can solve the problems such as small sample,
nonlinearity, high dimension, local minimum, and has been
successfully applied to short-term wear value prediction of
CNC turning tools prediction [14]. But the standard SVR
model cannot effectively deal with the noise arising from
the flow sequence due to random factors. Zhu et al [15] pre-
sented the short-term traffic flow prediction model based
on wavelet analysis and SVR, which had better prediction
capabilities. Wavelet analysis has an unparalleled advan-
tage in the handling of noise, but it is complex process and
very time-consuming. Different from other predictions,
short-term traffic prediction is done online in real time, and
has high real-time prediction requirements. That is to say
the computational time is more "expensive" within the accu-
racy level required of wear value prediction. Based on the
Gaussian function which can effectively handle normally
distributed random errors, Wu [16] proposed a Gaussian
loss function based ν-support vector regression (ν-GSVR),
which achieved good filtering results in the application of
predicting product sales. This paper applies the ν-GSVR
model to forecast short-term wear value of CNC turning
tools.

However, the SVR model does not give a method for op-
timizing the combination of model parameters, and there
is certain cross-error [17] in the commonly used cross vali-
dation. GA [18] in the optimization of model parameters
has global optimization, robustness and self-adaptability
[16, 19]. But standard GA has some deficiencies. While
providing an evolution opportunity for the individuals in
the population, the random operation inevitably causes
degradation in the group, leading to some dependence
on the algorithm and the initial population and is prone
to “precocious" or local convergence. The direction of ge-
netic evolution is random and uncontrollable leading to
slow searches for the optimal solution or a satisfactory so-
lution. To quickly and accurately search for the optimal
parameter combinations of ν-GSVR model, the standard
GA has been improved through the implementation of Cat

Map and Cloud models. This paper proposes Chaos Cloud
genetic algorithm (CCGA), to optimize the parameter com-
binations of ν-GSVR model. Finally, a new approach for
predicting short-term wear value of CNC turning tools
is established, combining ν-GSVR with CCGA (CCGA-ν-
GSVR). The proposed model considers the relationship
between the short-term wear value and the real wear value
during the first few time intervals.

The rest of this paper is organized as follows. Section
2 describes the ν-GSVR model. Section 3 provides CCGA
based on Cat Maps, Cloud model and GA algorithm. Sec-
tion 4 introduces the proposed CCGA-ν-GSVR forecasting
model. Section 5 illustrates a numerical example to reveal
the forecasting performance of the proposed forecasting
model. The conclusions are given in Section 6.

2. ν-support Vector Regression Model with Gaus-
sian Loss Function

2.1. ν-support vector regression based ε-loss function

Suppose training set T = {(x1, y1), . . . , (xl , yl)}, where xi

is a d-dimensional input variable, and yi is the correspond-
ing output value. Through a nonlinear mapping function
Φ(x) = Φ(x1), Φ(x2), . . . Φ(xl), SVR model maps the sam-
ple into a high dimensional feature space Rd f , in which the
optimal decision function is constructed as follows:

f (x) = wT .φ(x) + b, w ∈ Rd f , b ∈ R (1)

Where: w is weight vector, b is bias value, and fitting func-
tion f (x) minimizes the following objective function (struc-
tural risk):

min
[

1
2
‖ω‖2 + C · Remp

]
(2)

Where 1
2 ‖ω‖

2 is the expression for the complexity of the
decision function; the second item, empirical risk Remp,
is for the training errors; C is a regulatory factor used to
adjust the ratio between the model complexity and the
training error Remp. The training error Remp = 1

l ∑l
i=1 |yi −

f (xi)| can be measured with ε, the insensitive loss function
defined by c(xi, yi, f (xi)) = max {0, |yi − f (xi)| − ε}.

In the standard support vector regression (ε-SVR)
model, ε insensitive factor controls the sparsity of the so-
lutions and the generalization of models. However, it is
very difficult to reasonably determine the value of ε in ad-
vance. Therefore, Scholkopf et al [19] presented ν-SVR by
introducing a parameter ν into the ε-SVR model. At this
point, the ν-SVR model with the ε-insensitive loss function
is shown as follows:

min
w,b,ε,ζ∗

τ(w, b, ε, ζ∗) = 1
2 ‖ω‖

2

+C · (ν · ε + 1
l ∑l

i=1(ζi + ζ∗i ))
(3)
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s.t.


(w.xi + b)− yi ≤ ε + ζi

yi − (w.xi + b) ≤ ε + ζ∗l

ζ(∗) ≥ 0, ε ≥ 0

(4)

Where: ζ(∗) = (ζ1, ζ∗1 , . . . , ζl , ζ∗l ) is a slack variable, w is the
d-dimensional row vector, C(C ≤ 0) is a penalty coefficient,
deciding the balance between confidence risk and experi-
ence risk; νε[0, 1] is the upper bound of the proportion of
error samples in the total number of training samples and
the lower bound of the proportion of support vectors in the
total number of training samples; unlike standard SVR, ε

is present as the variable of optimization problem, and its
value will be given as part of the solution.

2.2. ν-SVR model based on Gaussian loss function (ν-
GSVR)

The standard SVR model with -insensitive loss function
cannot deal with the random error (white noise) in normal
distributed prediction sequences; so the standard SVR the-
oretically does not guarantee the accuracy of time series
prediction problems containing white noise. The Gaussian
function is in accord with the characteristics of normally
distributed noise, thus it can minimize the effects of nor-
mally distributed noise as the loss function of SVR to a
certain extent.

LSSVR (Least Squares Support Vector Regression) uses
the ν-insensitive function as the loss function, uses the sum
of the squares of the slack variables and changes the in-
equality constraints into equality constraints, which aims
to simplify the solution of SVR. The ν-GSVR is the estab-
lishment of the relationship between slack variables and
the loss function and normally distributed noise under the
condition that the inequality constraints are not changed,
and slack variable is also squared [20]. At this point, the
ν-GSVR optimization problem is:

min
w,b,ε,ζ∗

τ(w, ε, ζ∗) = 1
2 ‖ω‖

2

+C · (ν · ε + 1
l ∑l

i=1
1
2 (ζ

2
i + ζ∗2i ))

(5)

s.t.


(w.xi + b)− yi ≤ ε + ζi

yi − (w.xi + b) ≤ ε + ζ∗l

ζ(∗) ≥ 0, ε ≥ 0

(6)

Where: ζ(∗) = (ζ1, ζ∗1 , . . . , ζl , ζ∗l ) is the slack variable; w is d-
dimensional row vector; C(C > 0) is the penalty coefficient;
ν value range is [0,1]; ε is present as optimization variable;
its value will be given as part of the solution. Literature [20]
makes a detailed proof on the existence and uniqueness of
ν-GSVR model solution.

The calculation steps for -GSVR model are:

Step 1: Suppose the known training set T =

{(x1, y1), . . . , (xl , yl)}, where xiεRd, yiεR, i = 1, ..., l;
Step 2: Select the appropriate positive ν and C, and the

kernel function K(xi, yi);
Step 3: Construct and solve the optimization problem,

and the basic structure is shown in Figure 1;

min
a,a∗

w(α, α∗) = 1
2 ∑l

i,j=1(α
∗
i − αi)(α

∗
j − αj)K(xi, xj)

−∑l
i=l(α

∗
i − αi)yi +

l
2C ∑l

i=l(α
∗2
i − α2

i )
(7)

s.t.


∑l

i=l(α
∗
i − αi) = 0

∑l
i=l(α

∗
i − αi) ≤ Cυ

0 ≤ αi, α∗i ≤ C/l, i = 1, ..., l

(8)

Get the optimal solution α(∗) = (α, .., αl , α∗1 , . . . , α∗l )

Step 4: Construct decision function

f (x) =
l

∑
i=1

(α∗i − αi)K(xi, x) + b (9)

Where b is calculated as follows; select the two components
aj or ak in the open interval (0, C/l), then:

ε = ∑l
i=1(a∗i − ai)K(xi · xj) + b− yj

or ε = yk −∑l
i=1(a∗i − ai)K(xi · xj)− b

(10)

Fig. 1. The architecture of ν-GSVR

3. A new hybrid optimization algorithm

The parameter selection in SVR prediction model deter-
mines the generalization performance of the model, but
there is no effective way to determine the optimal parame-
ter combination, and there is cross error in traditional cross
validation [17]. In view of this, through the improvement
on the standard genetic algorithm (SGA) based on Cat Map
and Cloud models, this paper presents CCGA to determine
the parameter combinations of ν-GSVR model.
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3.1. Standard Genetic Algorithm

By the joint action of reproduction, crossover, mutation and
other genetic operators, GA makes the population continu-
ously evolve and eventually arrive at the optimal solution.
Due to the self-organization, self-adaptation, self-learning
and essential parallel characteristics of GA, it has been
widely used in parameter estimation, pattern recognition,
machine learning, neural networks, industrial control and
many other areas; however the shortcomings of the GA
including the slow search for optimal solution or satisfac-
tory solution and the easiness to fall in "pre-maturation"
prevent its use in a wide range of applications. Based on
this, the scholars from various countries have conducted
in-depth studies on the encoding of GA, the determination
of control parameters, the mechanism of action operators
and have presented numerous improved methods [21–23],
but in the process of application in large-scale complex pa-
rameter optimization, there are still defects in search speed
and optimization accuracy. Based on the advantages of Cat
Map such as good ergodicity and uniformity, resistance to
fall into small cycles and fixed points, as well as the char-
acteristics of cloud droplets of the Cloud models such as
randomness and stable orientation, this paper carries out
the following improvements on the SGA.

3.2. Initialization of parent population with Cat Map

Chaos optimization approach is a global optimization tech-
nique [24–26], using the nature of chaos such as ergodicity
and initial value sensitivity. The current existing chaos opti-
mization approaches have mostly used the Logistic Map as
a chaotic sequence generator. The probability density of the
chaotic sequence generated by the Logistic Map obeys the
Chebyshev distribution similar to the ‘bath tub’ curve, and
such a distribution hinders the global search capability and
efficiency of the algorithm. To overcome the shortcomings
of the Logistic Map, the Cat Map with the advantages of
good ergodicity and uniformity, its resistance to fall into
small cycles and fixed points, is used in the initialization of
the parent population of GA.

3.2.1. Cat Map

The two-dimensional Cat Map equation is:xn+1 = (xn + yn)mod1

yn+1 = (xn + 2yn)mod1
(11)

Where: x mod 1 = x − [x]; now, the two Lyapunov in-
dices of Cat Map are L1 = ln((3 +

√
5)/2) > 0 and

L1 = ln((3 +
√

5)/2) < 0, indicating that Cat Map has
chaotic characteristics.

3.2.2. Analysis of chaotic characteristics of Cat Map and Logis-
tic Map

xn+1 = u · xn · (1− xn) (12)

Where xn is the nth iteration value of variable x and u is a
control parameter. When u = 4, the system completely is in
a chaotic state [27, 28]. Furthermore x0 can take any initial
values except for 0.25, 0.5 and 0.75 within the interval of
(0,1).

To analyze the chaotic characteristics of Cat Map and
Logistic Map, suppose the initial values of Logistic Map are
0.2, 0.4, 0.6 and 0.8 whilst the initial values of Cat Map are
0, 0.2, 0.4, 0.6, 0.8 and 1. After 50,000 iterations the distribu-
tion graph for the two maps within the range of [0,1] was
obtained. The statistics for the values with the maximum
and minimum number of occurrences were carried out and
the results obtained are shown in Table 1:

The statistics in Table 1 show the maximum frequency of
the Logistic Map within (0;0.01] and [0.99;1) exceeds 3,000
times, while the average value frequency within (0.01,0.99)
interval is only about 500 times. So, when the optimal solu-
tion is in the midrange, the application of the Logistic Map
in the generation of the parent population makes it difficult
to ensure an efficient search for the optimal solution. Mean-
while the maximum frequency of occurrence for the Cat
Map is ≈560 times and the minimum frequency is ≈440
times, this indicates that the Cat Map is more evenly dis-
tributed. Secondly the initial values of Cat Map can range
between 0 and 1, which is not permissible for the Logistic
Map. Therefore the Cat Map has better chaotic distribution
characteristics, and its application in the initialization of
parent population for GA is able to better able to maintain
the population diversity for an ergodic search theoretically.

3.3. Crossover and Mutation based on Cloud model

Cloud models have the characteristics of random and bias
stability [27]. The random property avoids a local mini-
mum solution, and the bias stability aids the positioning of
the global optimum. Thus, introduction of Cloud models
into the GA can reduce optimization time-consuming and
improve the ability to avoid falling into local minimums
when used with both the basic cloud generated algorithm
and the Y-condition cloud generated algorithm which per-
form the mutation operation and the crossover operation
respectively.

Suppose T is the language value in the domain u, map
CT(x) : u → [0, 1], ∀x ∈ u, x → CT(x), then the distribu-
tion of CT(x) on u is called the membership cloud under
T. In the case of obeying the normal distribution, CT(x)
is known as the normal Cloud models [28]. The overall
characteristics of the Cloud models can be represented by
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Table 1. Comparison on chaotic distribution of Logistic Map and Cat Map

Logistic map Cat map
initial value 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

max frequency 3222 3241 3239 3284 559 563 547 556 546 559
min frequency 283 290 289 291 450 440 452 437 458 450

the three digital features including desired E, entropy S
and hyper entropy H.

E is the expectation of spatial distribution of cloud
droplet in the domain as well as the point that is the most
able to represent the qualitative concept. S represents the
measurable granularity of the qualitative concept, and the
greater the entropy S the larger the concept. H is the uncer-
tain measurement of entropy and is jointly determined by
the randomness and fuzziness of the entropy.

The Cloud models have the characteristics of the uncer-
tainty with certainty and stability with change, and thus
reflect the basic principle of the evolution of a species in
nature. The Cloud models parameter E represents the par-
ent’s good individual genetic characteristics and the off-
spring’s inheritance from the parent. The entropy S and
hyper-entropy H indicate the uncertainty and fuzziness of
the inheritance process, giving the mutation characteristics
of the species during the evolutionary process.

The algorithm or hardware for the generation of cloud
droplets is called the cloud generator [28]. The basic cloud
generator and Y-condition cloud generator are calculated
as follows:

Normal cloud generator: Input the three digital features
including E, S and H, as well as n, the number of cloud
droplets; output the quantitative values of n cloud droplets
and the certainty of the representative concept.

1. To generate S1, a normal random number with the
expectations of S and the standard deviation of H;

2. To generate xi, the normal random number with the
expectations of E and the standard deviation of S1;

3. Suppose xi should be a specific quantitative value of
qualitative concept, called cloud droplets, the calculation
µi = e−(xi−E)/2∗(S1)2

is conducted:
4. Suppose µi should be the certainty for the qualitative

concept of xi;
5. {xi, µi} completely reflect the conversion process

from qualitative to quantitative;
6. Repeat steps 1 to 5, till the n cloud droplets (xi, µi)

are all generated.
Y-condition cloud generator: input the three digital

features including E, S, H, and n, the number of cloud
droplets; output the quantitative values of n cloud droplets
and the certainty of the representative concept.

1. To generate S∗, a normal random number with the
expectations of S and the standard deviation of H;

2. Calculate cloud droplet xi, xi = E± S
√
−2ln(µ0)

3. Repeat steps 1 to 2, till the n cloud droplets (xi, µ0)
are all generated.

3.4. CCGA

The shortcomings of standard GA are overcome by adopt-
ing real-coding, using Cat Map for the generation of initial
population, using the Y-condition cloud of normal Cloud
models to achieve crossover operation and using the ba-
sic cloud to achieve mutation operation. The computing
process of CCGA is as follows:

Step 1: Generation of initial population by Cat Map: use
equation (11) to produce the initial population, in order
to make it be as uniformly distributed as possible in the
solution space, overcome the heterogeneity of the initial
population generated by random sequence and improve
the diversity of the population.

Step 2: Select each individual genes as the ν-GSVR
model parameters to calculate the individual fitness.

Step 3: Selection, copying and migration.
1 Copy the best individual to the next generation;
2 Select an elite population, and copy it;
3 Replace the worst individual by a randomly generated

individual.
Step 4: Y-condition cloud crossover.
1 Randomly generate membership µ0 according to the

uniform distribution;
2 If µ0 is less than crossover probability pc, E is be calcu-

lated by:

E =
f itness(i)

f itness(i)+ f itness(j) · xi

+
f itness(j)

f itness(i)+ f itness(j) · xj
(13)

Where: xi and xj respectively are the parent individuals
of the crossover operation; f itness(i) and f itness(j) are the
fitnesses of the two parent individuals;

3 S = variable search range/ c1;
4 H=S/c2;
5 Use the Y-condition cloud generator to produce two

offspring individuals.
Step 5: Mutation of normal cloud.
1 take the original individual as E;
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2 S = variable search range/c3;

3 H=S/c4;

4 Activate normal cloud generator to produce cloud
droplets (xi, µi);

5 If µi is less than the mutation probability pm, xi will
be regarded as the post-mutation individual.

Step 6: Go to Step 2, till it meets the optimal stopping
conditions, where c1− c4 is the control parameter.

3.5. Analysis of effects of control parameter value

According to "3δ" rule [29], S value determines the horizon-
tal width of cloud cover, that is, it determines the search
range of individual during crossover and mutation opera-
tion. The values of c1 and c3 generally are recommended
to be within the interval [6,6P] where P is size of the popu-
lation. To a certain extent too great a value for H may lead
to the loss of "bias stability" in the Cloud models. However
too small a value for H may lead to the loss of "random-
ness". Therefore, the values of c2 and c4 are recommended
to be within [1, 10]. Although S and H are the important
parameters for the Cloud models, after several generations,
the randomness of E and µ conceals the difference in the
evolution result due to the difference between the values.
That is the difference in value among the control param-
eters c1− c4 within a certain range do not have a major
effect on the final evolution performance. Comprehensively
considering the optimization, speed and accuracy of an al-
gorithm, this experiment takes c1 = c3 = 3P, c1 = c4 = 6.
Of course, in the process of practical application the values
of parameters c1− c4 can be properly determined accord-
ing to a variable search range, population size and search
accuracy.

4. CCGA in Selecting Parameters of ν-GSVR
Model

The procedure of the CCGA-ν-GSVR model is as follows:
first step, Normalize the training data set and the value
range of parameters; second step, use the evolution indi-
viduals generated by CCGA as ν-GSVR parameters; third
step, according to the normalized training data, conduct
training to calculate the regression values; forth step, de-
termine whether the current parameter combinations meet
the parameter optimization accuracy requirements, if the
requirement is met, stop the parameter optimization. The
optimal parameter combination obtained will be used as
the parameter of ν-GSVR for traffic flow prediction. Oth-
erwise, repeat steps 2 to 4 until the accuracy of parameter
optimization is met. The specific calculation process is
shown in Figure 2.

Fig. 2. The process of CCGA-ν-GSVR

To ensure the CCGA optimization efficiency, this pa-
per uses the reciprocal of the root mean square error as
fitness function, and then the fitness function is calculated
as follows.

f itness =
1√

RMSE
=

1√
1
n ∑n

t=1(Y∗(t)−Y(t))2
(14)

Where n is the number of input samples, Y ∗ (t) is the
regressed value for the sample data, Y(t) is the actual value
for the sample data.

In view of the radial basis function’s good ability to
learn in the application process of SVR [14–16, 30], this
paper selects radial basis function as the kernel function of
ν-GSVR model. The radial basis function is expressed as
the following equation.

K(xixj) = exp

−
∥∥∥xi − xj

∥∥∥2

2δ2

 (15)

5. The numerical test

Wear value is characteristic of cutting tools, and the distri-
bution in time is continuous, that is, the wear value at the
next time of CNC turning tools is intrinsically linked with
the wear value in the first few intervals of CNC turning
tools. Meanwhile, the wear value is a part of the larger wear
value network, and the wear value will be Wear value is
characteristic of cutting tools, and the distribution in time is
continuous, that is, the wear value at the next time of CNC
turning tools is intrinsically linked with the wear value in
the first few intervals of CNC turning tools. Meanwhile,
the wear value is a part of the larger wear value network,
and the wear value will be influenced by the wear value
in the previous time CNC turning tools. In addition, the
spindle revolution, cutting depth and feed rate affect the
turning tool wear value to a large extent. Therefore, we can
select wear value for the first few intervals of the section,
the previous time wear value and turning tool conditions
at the time to predict the wear value of the turning tool
for the next time step. influenced by the wear value in the
previous time CNC turning tools. In addition, the spindle
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revolution, cutting depth and feed rate affect the turning
tool wear value to a large extent. Therefore, we can select
wear value for the first few intervals of the section, the
previous time wear value and turning tool conditions at
the time to predict the wear value of the turning tool for
the next time step.

Taking the data detected from CNC turning tools of Tais-
han Vocational Training Site for the numerical test. Assum-
ing that t represents the current time, Y(t + 1) represent
the wear value for the next time step, while X1(t), X2(t)
and X3(t) represent the wear value for the three upstream
sections. The turning tool condition is set as the sixth influ-
encing factor, in this case X4(t), which is quantified as 1 for
low spindle revolution, 0.75 for medium low spindle rev-
olution, 0.5 medium spindle revolution, 0.25 for medium
high spindle revolution, and 0 for high spindle revolution.
The result of tentative calculation indicates that the forecast-
ing performance is best, when the first two times intervals
of the wear value are select as the input vector. At this point,
we obtained the six influencing factors of the wear value
Y(t + 1), X = {Y(t− 1), Y(t), X1(t), X2(t), X3(t), X4(t)}.

Turning data was detected by Mr. Chen of Taishan
Vocational Training Site . The sample window of 10 minutes
gave 90 sets of data. The first 72 data from the first four
times were used as training samples for the model. The
remaining 18 data from the machining were used to test
the prediction accuracy of the model.

The proposed CCGA-ν-GSVR model has been imple-
mented in Matlab7.1 programming language. The experi-
ments are made on a 1.81 GHz Core(TM) 2 CPU personal
computer with 2.0GB memory under Microsoft Windows
XP professional. Model initialization: C value ranges [0.01,
1000], ν value ranges [0.01,1], δ value ranges [0.01,1], ge-
netic population size popsize=60, maximum evolution gen-
eration Gmax = 50, crossover probability Pc=0.3, mutation
probability Pm=0.8, relative error of adjacent-generation
optimal individual fitness E=0.00001. The combination of
optimal parameters of ν-GSVR are obtained by the CCGA,
C=584.5, ν=0.87 and δ=0.21. The developed model was
used to forecast the wear value. The chart for the compari-
son between actual wear value and model fitness value is
described in Figure 3. The actual wear value and model
prediction results are shown in Table 2. The results show
that the fitness results are basically consistent with the
actual wear value variation curve, where the root mean
square error of regressed value is less than 3, the root mean
square error of prediction is less than 13, and the prediction
accuracy satisfies the actual application requirements.

To compare the parameter optimization efficiency of
CCGA, this paper also used SGA to optimize the parame-

Fig. 3. Fitting chart of CCGA-ν-GSVR

ters of ν-GSVR model. Using the same computer, the same
population size, crossover probability and mutation proba-
bility, the statistical results for the fitness values and genetic
algebra of the two algorithms are plotted against time in
Figure 4.

Fig. 4. Comparison of training.

The analyses as shown in Figure 4 illustrate that, within
the running time of 2000s, the use of Cat Map for the initial-
ization of parent population and the introduction of cloud
crossover and mutation operations, the running time of
CCGA for each iteration is more time consuming than SGA.
This extra computational time results in the CCGA solving
fewer generations than the SGA model for a given period of
time. However, based on the ergodic characteristics of Cat
Map, the maximum fitness value of the CCGA search for
optimal solution is double that of the SGA algorithm. The
introduction of cloud theory-based genetic manipulation
reduced the range of maximum fitness value and minimum
fitness value so that more individuals from CCGA search
can be concentrated in the range of the optimal solution.
The overall efficiency to find the optimal solution using
CCGA is significantly higher than that of SGA algorithm,
indicating that CCGA is more suitable for the optimization
of ν-GSVR model parameters.

To compare the performance of the CCGA-ν-GSVR
model in wear value forecasting, this paper selects the
ARIMA model, the PSO-BP neural network model pro-
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Table 2. Forecasting result of CCGA-ν-GSVR model.*

Peak Y(t+1)
period X1(t) X2(t) X3(t) X4(t) Y(t-1) Y(t) Actual Forecasting Error
17:30 111 228 124 0 176 182 195 202 7
17:40 107 238 119 0.25 182 195 259 250 -9
17:50 135 251 119 0 195 259 188 196 8
18:00 126 241 148 0 259 188 233 219 -14
18:10 128 246 148 0.25 188 233 221 213 -8
18:20 148 264 138 0.5 233 221 267 258 -9
18:30 152 263 162 0.5 221 267 291 284 -7
18:40 146 294 142 0 267 291 310 297 -13
18:50 139 263 161 0.25 291 310 295 286 -9
19:00 141 270 145 0.25 310 295 228 220 -8
19:10 147 267 132 0 295 228 266 254 -12
19:20 123 246 142 0 228 266 282 271 -11
19:30 116 255 123 0 266 282 233 240 7
19:40 130 238 137 0 282 233 237 231 -6
19:50 101 233 132 0 233 237 235 221 -14
20:00 102 231 98 0.25 237 235 180 196 16

*: “17:30” denotes the 17:30 on 4 April 2014, and so on.

posed by Ye [9], the WD-SVM prediction model proposed
by Zhu [15], and the improved CCGA-ν-SVR prediction
model based on the GSVMR model proposed by Ren [30]
as comparison models. The four models were calculated in
the same computer using Matlab 7.1. Taking into account
the fact that the increase in optimization time improves
the optimization effect, the model parameters should be
selected for each model to ensure the same maximum opti-
mization time is achieved. In order to ensure the selection
accuracy of SVR parameters the root mean square error
was used to compare the performance of each method.

The comparison of the real wear value and the fore-
casted results of the various modeling methods are given
in Table 3.

It can be seen from Table 3 that the SVR model is su-
perior to ARIMA and PSO-BP in the capacity of the wear
value forecasting. In terms of noise handling during in
the prediction process the WA-SVM model firstly carried
out noise reduction on the traffic flow sequence through
wavelet analysis; eliminating the effects of random errors
in the sequence of traffic flow in the SVM model. This has
proven beneficial as the prediction accuracy was signifi-
cantly superior to that of unfiltered CCGA-ν-SVR model.
From the comparison of prediction results between CCGA-
ν-SVR model and CCGA-ν-GSVR model, it can be seen that
the proposed CCGA-ν-GSVR model also played a role in
weakening these random errors, and the prediction accu-
racy showed a better correlation with the measured results

than that of the CCGA-ν-SVR model. Although the noise
reduction effect is inferior to wavelet analysis, the compu-
tational complexity of wavelet analysis is not conducive to
the actual operation. For real-time wear value prediction,
the real-time performance of algorithms is the determining
factor for a given accuracy condition. In this sense, the
proposed CCGA-ν-GSVR model is more suitable for the
short-term wear value prediction of CNC turning tools.

6. Conclusions

Cost and wear of turning tools are important keys to the
prediction process. The real-time accurate prediction for
the wear value of CNC turning tools can effectively reduce
the stock of turning tools, and the labor costs on quality
inspection of workpieces. In this paper, a new approach
for predicting short-term wear value based on the CCGA-
ν-GSVR method is proposed. based on the CCGA-ν-GSVR
method is proposed. The numerical test based on detected
data is used for elucidating the forecasting accuracy of
proposed method. The prediction results of the proposed
CCGA-ν-GSVR forecasting scheme are compared to those
of the CCGA-ν-GSVR, CCGA-ν-SVR, WA-SVR, PSO-BP
and ARIMA. The numerical test indicates that the proposed
scheme obtain better prediction result and outperforms the
five competing models. In short, the proposed forecast-
ing scheme is a valid approach for short-term wear value
predication.

In future researches, more influence factors should be
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Table 3. Forecasting result of CCGA-ν-GSVR model.*

Peak period Actual CCGA-ν-GSVR CCGA -ν- SVR WA-SVR PSO-BP ARIMA
17:30 195 202 204 189 221 216
17:40 259 250 246 266 237 236
17:50 188 196 176 195 161 208
18:00 233 219 251 220 201 249
18:10 221 213 211 215 193 245
18:20 267 258 279 274 296 243
18:30 291 284 276 285 264 322
18:40 310 297 321 300 345 332
18:50 295 286 312 301 266 328
19:00 228 220 210 235 258 208
19:10 266 254 279 255 298 294
19:20 282 271 299 290 249 302
19:30 233 240 224 239 258 256
1940 237 231 225 248 209 203
19:50 235 221 218 222 267 261
20:00 180 196 189 168 226 194

RMSE 10.31 17.39 8.89 30.51 37.04

considered, and other hybrid optimization methods should
study for more appropriate parameters of ν-GSVR model,
for improving the performance of short-term wear value
forecasting.
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