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Abstract. We formulate algebraically solutions to the isotropic Heisen-
berg ferromagnet, which is an integrable geometric curve flow. The
derivation is based on correspondences between this Heisenberg ferro-
magnet and the nonlinear Schrödinger equation. The existence of solu-
tions to the Cauchy problems of the isotropic Heisenberg ferromagnet
with periodic boundary conditions follows from the correspondence. We
then obtain a geometric framework of algorithms to solve the periodic
Cauchy problem numerically for the Heisenberg ferromagnet. Analytical
and experimental results will be presented.
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1. Introduction

The isotropic Heisenberg ferromagnet is defined by

γt = γ × γxx, (1.1)

where γ(x, t) is a real-valued vector function of S
2 on (x, t) ∈ R × [0,∞),

and × is the cross product in R
3. It has been attracting mathematicians’

and physicists’ attention for decades. Takhtajan [1] first applied the inverse
scattering method to describe its solution scheme. Tjon and Wright in [2]
studied solitons of (1.1) in one dimension for the isotropic and anisotropic
cases. Most interestingly, it has been possible to solve the arbitrary initial
value problem exactly since the equation of motion is completely integrable
[3].

It is well-known that (1.1) is related to the cubic non-linear Schrödinger
equation (NLS)

qt = i(qxx + 2|q|2q). (1.2)
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The relation between (1.1) and (1.2) has been discussed by Zakharov and
Takhtadzhyan in [4,5], where (1.1) is known as the isotropic Heisenberg fer-
romagnet, and by Terng and Uhlenbeck in [6], where (1.1) is one of the
Schrödinger flows on Grassmannians. For this reason, we also say that γ(x, t)
satisfying (1.1) is a Schrödinger curve.

Another well-known curve flow relevant to (1.2) is the vortex filament
equation (VFE) in R

3 defined by

αt = αx × αxx, (1.3)

which models the movement of a thin vortex in a viscous fluid and preserves
the arc length parameter. Suppose we parametrize α(·, t) by its arc length.
Then Hasimoto transform in [7] relates solutions α(·, t) of (1.3) to that of
(1.2) via

q(x, t) = k(x, t)ei(θ(t)+
∫ x
0 τ(s,t)ds), (1.4)

where k(·, t), τ(·, t) are the curvature and torsion for α(·, t), respectively, and
q(x, t) is a solution of NLS. Numerical solutions of VFE have been studied
for years. Hou et al. generalized the θ − L formulation [8] to compute the
motion of the curve in space numerically by considering the normal principal
curvatures k1, k2 as new variables [9].

Numerical simulation has been an important tool in the study of
dynamic issues in ferromagnetic materials [10–15]. If one differentiates a solu-
tion α(x, t) of (1.3) with respect to x, a Schrödinger curve is given by αx. It is
natural to obtain numerical solutions of (1.1) this way [16]. However, Terng
and Uhlenbeck in [3,6] formulate the correspondences between NLS, VFE,
and the Schrödinger flow on S

2 using geometry. In fact, they systematically
construct solutions of such curve flows by making use of Lax pairs of NLS and
Lie theory. This construction of solutions to a geometric curve flow, if found,
leads to a geometric framework to obtain numerical solutions to a curve flow.
Namely, this approach gives rise to both analytic and numerical solutions of
Schrödinger flow directly.

The geometric framework suggests the following advantages. Firstly,
highly nonlinear curve PDEs are reduced to integrable partial differential
equations and linear ODE systems. As one of the most famous integrable
PDEs, the NLS can be solved and computed numerically using various meth-
ods. In fact, the pseudospectral algorithm is one of the great tools to solve
periodic Cauchy problems. Such a method is shown to converge by fixed point
theorems and exhibits excellent speed and stability [17–19]. In addition, it
is very simple to implement so that one has numerical periodic solutions to
(3.15). With the aid of the fixed point theory, the more precise information
on the right-hand side of (3.16), the fewer errors or deviations occur while
solving (3.16) numerically.

Secondly, there are conservation properties since the NLS has soliton
solutions. For instance, suppose γ is a solution to (1.1). We now consider
the energy structure. Let E(γ(t)) = ||γx(t)||2L2 be the energy function. The
energy is then conserved:

E(γ(t)) = E(γ(0)), (1.5)
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for any t > 0. It is known that there are infinitely many conservation laws
for NLS, and hence, one can observe the corresponding curve motion by
analyzing these conserved quantities. Finally, this geometric framework can
be executed by choosing different numerical methods at each step.

The paper is organized as follows. In Sect. 2, we recall the equivalence
relations from the results of Terng, Uhlenbeck, and Thorbergsson. Proofs are
given since they give rise to initial data in implementation. In Sect. 3, we
formulate the solution of the periodic Cauchy problem of (1.1) with a closed
initial curve given. In Sect. 4, we give steps of our geometric framework and
one practical algorithm. Issues coming from implementing, error estimates
for a stationary solution, and numerical examples of periodic solutions with
the Viviani’s curve and spherical sinusoid as initial curves are exhibited to
demonstrate the behaviors of Schrödinger curves. The discussions about error
estimates are also provided, and the concluding remarks follow in Sect. 5.

2. Equivalence of the Schrödinger flow on Hermitian
symmetric spaces and the NLS

Suppose (M,J, g, w) is a compact Kähler manifold with a complex struc-
ture J , the Riemannian metric g, and a symplectic form w on M satisfying
w(X,Y ) = g(JX, Y ). The Schrödinger flow on M (cf. [20]) is the evolution
equation on C∞(R,M):

γt = Jγ(∇γx
γx), (2.1)

where ∇ is the Levi–Civita connection of the metric g. When M = C
n, (2.1)

is the linear Schrödinger equation γt = iγxx. When M = S
2, (2.1) gives us

the Heisenberg ferromagnetic model for γ : R2 → S
2. Indeed, the complex

structure of S2 at γ sends v to γ × v on TS
2
γ , where × is the cross product in

R
3. Then

γ × ∇γx
γx = γ × γT

xx = γ × (γxx − (γxx, γ)γ) = γ × γxx, (2.2)

which obviously is the evolution (1.1) on S
2.

The Schrödinger flow (2.1) is a Hamiltonian equation for the energy
functional on C∞(S1,M) with respect to an induced symplectic form by ω
on C∞(S1,M) (cf. [20]). Note that the critical points of the energy functional
are geodesics of (M, g), so the stationary solutions of the Schrödinger flow
on M are closed geodesics of M . Furthermore if M is a Hermitian symmetric
space, then (2.1) can be written in terms of the Lie bracket.

To be more precise, let G be a simple complex Lie group, and τ the
involution that gives the maximal compact subgroup U . It is known that
there exists a ∈ U such that ad(a)2|P = −IdP and U = K ⊕ P, where K is
the centralizer of a in U and P is the orthogonal complement of K. Then the
Adjoint U -orbit at a in U is diffeomorphic to U and is a compact irreducible
Hermitian U

K symmetric space.
We briefly review some results on the Schrödinger flow proved by Terng

and Uhlenbeck in [6] for U
K = Gr(k,Cn) and by Terng and Thorbergsson in

[20] for the other three classical Hermitian symmetric spaces.
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Proposition 2.1. [6,20] Under the embedding of the Hermitian symmetric
space U

K as the Adjoint orbit U · a in U , the Schrödinger flow on U
K is

γt = [γ, γxx]. (2.3)

A Lax pair for (2.3) is also derived and proved to be gauge equivalent to
a Lax pair of NLS by Terng and Uhlenbeck [6]. Proposition 2.1 implies that
if M is a Hermitian symmetric space, then two evolutions, (2.1) and (2.3),
are equivalent. In particular, we have γt = [γ, γxx] = γ × γxx for M = S

2.
Theorems 2.2 and 2.3 show the construction of NLS solutions from solu-

tions of the Schrödinger flow and vice versa. We give proof since the approach
will be used later in coding.

Theorem 2.2. [20,21] Let γ : R2 → U
K be a solution of the Schrödinger flow on

the Hermitian symmetric space U
K = U ·a ⊂ U . Then there exists g : R2 → U

satisfying
(i) γ = gag−1,
(ii) u = g−1gx : R2 → U⊥

a solves the U
K -NLS equation:

ut = [a, uxx] − 1
2
[u, [u, [a, u]]], (2.4)

(iii) g−1gt = [a, ux] − 1
2 [u, [a, u]].

Moreover, g̃ satisfies (i) and (ii) if and only if there is a constant C ∈ Ua

such that g̃ = gC.

Proof. We recall that K = Ua, P = U⊥
a and U = K ⊕ P. Suppose

γ(x, t) is a solution of (2.3). Then there exists h : R
2 → U such that

γ(x, t) = h(x, t)ah(x, t)−1. Let π0, π1 be orthogonal projections of U onto
K,P, respectively. We choose k : R2 → K such that kxk−1 = −π0(h−1hx).
Set f(x, t) = h(x, t)k(x, t), then γ = faf−1. Moreover,

f−1fx = (hk)−1(hk)x = k−1π1(h−1hx)k ∈ P. (2.5)

A direct computation shows that

γx = f [f−1fx, a]f−1 = f [u, a]f−1 and [γ, γx] = fuf−1.

Since τλ = γλdx + (γλ2 + [γ, γx]λ)dt is flat for all λ ∈ C, f ∗ τλ is flat, i.e.
the following connection is flat for all λ ∈ C:

f−1τλf + f−1df = (aλ + u)dx + (aλ2 + uλ + f−1ft)dt. (2.6)

Therefore, (aλ2 + uλ + f−1ft)x − (aλ + u)t + [aλ + u, f−1ft] = 0.

ux + [a, f−1ft] = 0 (2.7)

(f−1ft)x − ut + [u, f−1ft] = 0. (2.8)

Write

f−1ft = P + T,

where P ∈ P and T ∈ K, respectively. From (2.7), we have

P = [a, ux], Tx = −1
2
[u, [a, u]]x. (2.9)
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So, T = − 1
2 [u, [a, u]] + c(t) for some function c(t).

Define g = fy(t), where y(t) ∈ K such that yty
−1 = −c(t).

Next, we will show that g defined above satisfies the conditions (i)−(iii).
Since y(t) and a commute, it is easy to see that gag−1 = γ. In particular,

g−1gx = y−1f−1fxy = y−1uy ∈ P, (2.10)

g−1gt = y−1(f−1ft + yty
−1)y = −1

2
[y−1uy, [a, y−1uy]], (2.11)

which means y−1uy is a solution of (2.4).
For the uniqueness, suppose g̃ satisfies (1) − (2), and set C = g−1g̃.

Then

g̃−1g̃x = C−1g−1gxC + C−1Cx. (2.12)

Since g̃−1g̃x and C−1g−1gxC are in P while C−1Cx ∈ K,

C−1Cx = 0. (2.13)

Similarly, C−1Ct = 0. So C is constant.
�

The converse is also true.

Theorem 2.3. [20,21] Let u : R2 → U⊥
a be a smooth solution of (2.4). Then

given any c0 ∈ U , the following linear system for g : R2 → U ,
⎧
⎪⎨

⎪⎩

g−1gx = u,

g−1gt = [a, ux] − 1
2 [u, [a, u]],

g(0, 0) = c0

(2.14)

has a unique smooth solution g : R2→U . Moreover, γ(x, t) = g(x, t)ag(x, t)−1

is a solution of the Schrödinger flow (2.3) on U
K .

In fact, when λ = λ0 is any arbitrary real number, a shift of γ = gag−1

by 2λ0 is also a solution of (2.3).

Proposition 2.4. Let u : R2 → U⊥
a be a solution of (2.4) and E satisfy

{
E−1Ex = aλ + u,

E−1Et = aλ2 + uλ + [a, ux] − 1
2 [u, [a, u]].

(2.15)

If λ0 ∈ R and g(x, t) = E(x, t, λ0), then γ = gag−1(x − 2λ0t, t) is a solution
of (2.3).

Proof. Let η(x, t) = gag−1(x, t) and denote Q−1 = [a, ux]− 1
2 [u, [a, u]]. It can

be checked that
ηx = g[u, a]g−1,
ηt = g[uλ0 + Q−1, a]g−1.

(2.16)

Direct computations show that

γxx = g[aλ0 + u, [u, a]]g−1 + g[ux, a]g−1, (2.17)

and therefore we obtain

γ × γxx = g[a, uλ0]g−1 + guxg−1. (2.18)
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We see that γt = −2λ0ηx + ηt, which gives

g[−uλ0, a]g−1 + g[Q−1, a]g−1. (2.19)

Here, since [Q−1, a] = ux, γt = [γ, γxx]. �

We say E is a frame of solution u if E is a solution of the ODE system
(2.15).

Remark 2.5. Consider γ(x, t) to be a great circle on the unit sphere, i.e.,
γ(x, t) = (cos x, sin x, 0). It is obviously a solution to (2.3). Following from
the proof of Theorem 2.2, one local invariant q(x, t) is given by

q(x, t) =
i

2
e

i
2 t, (2.20)

that of course can be checked to solve the NLS.

Soliton solutions of the Schrödinger equation have been widely stud-
ied in mathematics and physics. One can compute soliton solutions using
explicit formulations that are known. In fact, Bäcklund transformation gives
N -soliton solutions for integrable systems, especially for the NLS.

Theorem 2.6. (Bäcklund transformation [25]) Let E(x, t, λ) be a frame of a
solution u of the NLS (1.2), α ∈ C \ R, and π a Hermitian projection of C2

onto V . Define

kα,π(λ) = In +
α − ᾱ

λ − α
π⊥. (2.21)

Let π̃(x, t) be the Hermitian projection of C2 onto Ṽ (x, t) = E(x, t, α)−1V .
Then we have

ũ = u + (α − ᾱ)[a, π̃] (2.22)

is a solution of the NLS and

Ẽ(x, t, λ) = kα,π(λ)E(x, t, λ)k−1
α,π̃(x,t) (2.23)

is a frame of ũ.

3. Main results

The correspondence discussed in Theorems 2.2 and 2.3 gives a systematic
way to construct solutions of the Schrödinger flow, and hence the initial
value problem of the Schrödinger flow can be solved. In this section, we focus
on the sphere case, in particular, we consider the periodic Cauchy problem.
Namely, given a closed curve γ0(x) on a unit sphere, we show the existence
of a L-periodic curve that evolves according to the Heisenberg ferromagnet
(1.1) and write down the algebraic solution formula explicitly. Without loss
of generality, we assume that the period L is 2π for the rest of the article.
The main theorem is the following.
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Theorem 3.1. For any smooth closed curve γ0(x) : [0, 2π] → S
2 with period

2π, there exists a unique x-periodic γ(x, t) with period 2π satisfying
{

γt = γ × γxx

γ(x, 0) = γ0(x) . (3.1)

We first note that Theorem 3.1 is a special case of Theorems 2.2 and 2.3.
Theorem 2.2 shows that, for any arbitrary γ0(x) : [0, 2π] → S

2 given, there
is a frame f : R → SU(2) such that γ0 = faf−1, where a = diag( i

2 ,− i
2 ),

satisfying f(0) = I2 and f−1fx = u0, where u0 is of the form

u0 =
(

0 q0
−q̄0 0

)

. (3.2)

We notice that f(x) found may not be periodic, so the essential idea is to
find a periodic one. Below we show how to construct a periodic frame of γ0.

Since γ0 is periodic, γ0(2π) = γ0(0). It yields that f(2π)a = af(2π).
That is, f(2π) lies in the centralizer SU(2)a = {diag(eiθ, e−iθ)|θ ∈ [0, 2π)}
and hence we may write

f(2π) = e2πc0a, (3.3)

for some constant c0. A direct computation gives the following proposition.

Proposition 3.2. Define

f̃(x) = f(x)e−c0ax. (3.4)

Then f̃(x) has the following properties:

1. γ0 = f̃af̃−1

2. f̃(x) is periodic in x

3. f̃−1f̃x =
(− i

2c0 q̃0
− ¯̃q0 i

2c0

)

, where q̃0(x) = q0(x)eic0x.

4. q̃0 is periodic.

Proposition 3.2 gives us a way to decompose the periodic curve γ0 in
terms of a periodic frame f̃(x) and a local invariant q̃0(x). Here, we call c0
the normal holonomy. Next, we evolve the curve according to the partial
differential equation

γt = γ × γxx. (3.5)

Proposition 3.3. Suppose γ(x, t) : [0, 2π] → S
2 solves (3.5) and is periodic in

x with period 2π. By Theorem 2.2, there exists f : R2 → SU(2) such that
γ = faf−1, f−1fx = u, and f−1ft = Q−1, where

a = diag
(

i
2
,− i

2

)

, u =
(

0 q
−q̄ 0

)

, Q−1 =
i
2

(−|q|2 qx

q̄x |q|2
)

. (3.6)

Define c0(t) to be a function of t satisfying

f−1(0, t)f(2π, t) = e2πc0(t)a. (3.7)

Then c0(t) is independent of t.
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Proof. Taking t-derivative of (3.7) gives

e2πc0(t)a2πc′
0(t)a = −f−1(0, t)ft(0, t)f(2π, t) + f−1(0, t)ft(2π, t)

= e2πc0(t)aQ−1(2π, t) − Q−1(0, t)e2πc0(t)a.

It is easy to see that

2πc′
0(t)a = Q−1(2π, t) − e−2πc0(t)aQ−1(0, t)e2πc0(t)a. (3.8)

A direct computation shows

e−2πc0(t)aQ−1(0, t)e2πc0(t)a =
i

2

( −|q|2 qxe−4πic0(t)

q̄xe4πic0(t) |q|2
)

. (3.9)

Note that Q−1(0, t) = Q−1(2π, t). So, c′
0(t) = 0, as desired. �

Next, we consider the periodic Cauchy problem for NLS. Suppose that
q : R2 → C is a solution 1 of

{
qt = i(qxx + 2|q|2q)
q(x, 0) = q̃0(x). , (3.10)

Let E satisfy
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E−1Ex =

(
i
2λ q

−q̄ − i
2λ

)

,

E−1Et =

(
i
2λ2 − i|q|2 qλ + iqx

−q̄λ + iq̄x − i
2λ2 + i|q|2

)

,

E(0, 0, λ̄)∗ = E(0, 0, λ)−1.

(3.11)

Then it turns out that there is a periodic frame for a solution q of NLS
periodic in x in the following proof.

Proof of Theorem 3.1. Without loss of generality, we assume γ0(0) = a. We
know that there is f ∈ SU(2) such that γ0 = faf−1 and

f−1fx =
(

0 q0
−q̄0 0

)

. (3.12)

Since γ0 is periodic, f(2π) commutes with a. So f(2π) = e2πc0a for some
c0 ∈ R. Define

f̃(x) = f(x)e−c0ax. (3.13)

By Proposition 3.2, f̃ is periodic and γ0 = f̃af̃−1. In particular,

f̃−1f̃x =
( − i

2c0 q0(x)eic0x

−q̄0(x)e−ic0x i
2c0

)

. (3.14)

Let q(x, t) be the solution of
{

qt = i(qxx + 2|q|2q)
q(x, 0) = q0(x)eic0x , (3.15)

1The global smooth solution to this periodic Cauchy problem has been investigated in
[22–24].
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periodic in x, and E(x, t, λ) the extended frame for q satisfying
⎧
⎪⎨

⎪⎩

E−1Ex = a(−c0) + u,

E−1Et = ac20 + u(−c0) + Q−1(u),
E(0, 0,−c0) = f̃(0).

(3.16)

We claim that g(x, t) = E(x, t,−c0) is periodic in x with period 2π. Let
y(t) = g(2π, t) − g(0, t). We know g−1gt = c20a − c0u + Q−1(u) and u =(

0 q
−q̄ 0

)

is periodic. Then

y′(t) = g(2π, t)(c20a − c0u + Q−1(u))|x=2π − g(0, t)(c20a − c0u + Q−1(u))|x=0

= (g(2π, t) − g(0, t))(c20a − c0u + Q−1(u))|x=0

= y(t)A(t),

where A(t) = (c20a − c0u + Q−1(u))|x=0.
Since y(0) = 0 solves the ODE y′(t) = y(t)A(t), the uniqueness theorem

of ODE shows that y(t) ≡ 0. The claim follows. Let η = gag−1. Then γ(x, t) =
η(x + 2c0t, t) is a solution of γt = γ × γxx by Proposition 2.4.

It remains to verify the initial condition. Note that Proposition 3.2
implies

γ(x, 0) = η(x, 0) = f̃(x)af̃−1(x) = γ0(x). (3.17)

In particular, that γ is periodic in x follows from the periodicity of
E(x, t,−c0). Finally, the uniqueness of γ follows from the uniqueness of
E(x, t,−c0). �

4. Algorithm and experimental results

4.1. Geometric framework and methods of implementation

Our analysis leads to the following framework to solve numerically the peri-
odic Cauchy problem (3.1) with initial data γ0(x) : [0, 2π] → S

2 being a
closed curve on S

2. In the process, we apply the fixed point techniques to
solve the periodic Cauchy problem of NLS so that numerical outcomes of
local invariants are more accurate. The programming steps are decomposed
as follows.

Step 1. We first write γ0 as an element in su(2) and diagonalize γ0 to find
f ∈ SU(2) such that γ0 = faf−1 and

f−1fx =
(

0 q0
−q̄0 0

)

.

Step 2. Compute the normal holonomy c0 defined by (3.3), i.e., solving

f−1(0)f(2π) = e2πc0a.

This gives the initial periodic data q0(x)eic0x for the periodic Cauchy
problem of NLS.
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Step 3. We use the WGMS method in [17] (implicit spectral method) to
solve the periodic Cauchy problem of NLS (3.10) with the initial
data q0(x)eic0x obtained in Step 2.

Step 4. Solve for E in the ODE system (3.16) with the right-hand side given
by solutions qnum of (3.10) and the initial data fe−c0ax.
With such numerical local invariant qnum fitting in the right-hand
side of (3.16), the Runge–Kutta fourth-order method suggests the
following algorithm. We first integrate Ex = EA numerically from
the initial point E(0, 0,−c0), that is,

g1 = hE(xn, 0)A(xn, 0), (4.1)

g2 = h

(

E(xn, 0) +
1
2
g1

)
(A(xn, 0) + A(xn+1, 0))

2
, (4.2)

g3 = h

(

E(xn, 0) +
1
2
g2

)
(A(xn, 0) + A(xn+1, 0))

2
, (4.3)

g4 = h(E(xn, 0) + g3)A(xn+1, 0), (4.4)

E(xn+1, 0) = E(xn, 0) +
1
6
(g1 + 2g2 + 2g3 + g4), (4.5)

where A = a(−c0)+u calculated in terms of numerical solution qnum
in Step 3. Now, there are grid values E(xn, 0) at t = 0, and hence we
can iterate Et = EB from each point (xn, tm) to have E evaluated
at (xn, tm+1):

k1 = 
tE(xn, tm)B(xn, tm), (4.6)

k2 = 
t

(

E(xn, tm) +
1
2
k1

)
(B(xn, tm) + B(xn, tm+1))

2
, (4.7)

k3 = 
t

(

E(xn, tm) +
1
2
k2

)
(B(xn, tm) + B(xn, tm+1))

2
, (4.8)

k4 = 
t(E(xn, tm) + g3)B(xn, tm+1), (4.9)

E(xn, tm+1) = E(xn, tm) +
1
6
(k1 + 2k2 + 2k3 + k4), (4.10)

where B = ac20 + u(−c0) + Q−1(u) calculated in terms of numerical
solution qnum in Step 3.

Step 5. Once E is obtained, we calculate γ = EaE−1 in terms of elements
in su(2) and then we map them back to R

3. By Proposition 2.4 and
the interpolation, the numerical solution to (3.1) is derived.

4.2. Experimental issues

The following implementation was done in Matlab. The first step can be car-
ried out by simply diagonalizing γ0. One can easily check that the diagonal
entries are 0.5i and −0.5i, however, the function eig(·) in Matlab does not
work well here. On one hand, the f in Step 1 is a function that satisfies
γ0(x) = f(x)af(x)−1 at each point x. On the other hand, we plug grid points
xi’s into γ0(x) before applying the eig in Matlab. This makes the eig function
treat γ0(xi)’s as individual scalar matrices, and then return eigenvectors of
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γ0(xi) that do not obey the same function since matrices formed by eigen-
vectors are not unique. For this reason, we need another way to figure out
the f .

Identifying R
3 with the skew-Hermitian matrices su(2), we see that su(2)

has a standard basis consisting of the three elements

a =
(

i
2 0
0 − i

2

)

, b =
(

0 1
2− 1

2 0

)

, and c =
(

0 i
2

i
2 0

)

, (4.11)

and the map between elements in su(2) and vectors γ0 = (r1, r2, r3) on the
sphere is

γ0 = (r1, r2, r3) �→ r1a + r2b + r3c =
(

i
2r1

1
2r2 + i

2r3
− 1

2r2 + i
2r3 − i

2r1

)

, (4.12)

denoted by Γ0. A standard calculation of eigenvectors for Γ0 shows

F =

⎛

⎝

√
1+r1
2

i√
2

r2+ir3√
1+r1

i√
2

r2−ir3√
1+r1

√
1+r1
2

⎞

⎠ . (4.13)

It can be checked that F ∈ SU(2) and such F is not unique. We make such
a choice of F for the following reasons. When r1 = 1, r2 and r3 are obviously
zero, i.e., Γ0(1) = a. This immediately implies the matrix of eigenvectors is
the 2 × 2 identity matrix, which agrees with our formulation of F . However,
when r1 = −1, Γ0(−1) = −a. The eigenvectors are

(
0 i
i 0

)

. (4.14)

Besides, let r1 → −1, we have

r2 + ir3√
1 + r1

→
√

2eIθ, θ = tan
r3
r2

. (4.15)

The limit of F does not exist as r1 → −1, and hence, this formulation is not
continuous at r1 = −1. Without loss of generality, let γ0 not pass through
the point (−1, 0, 0).

We also notice that F−1Fx might not be an off-diagonal matrix. In
order to make this happen, we follow Theorem 2.2 to rotate F by a matrix
K where −KxK−1 is equal to the diagonal terms of F−1Fx. For instance,
consider γ0(x) = (0, cos x, sin x), then

F (x) =

(
1√
2
e

i
2x i√

2
e

i
2x

i√
2
e− i

2x 1√
2
e− i

2x

)

, F−1Fx =
(

0 − 1
2

1
2 0

)

. (4.16)

4.3. Experimental errors

A fixed point γ = a is the trivial solution of (1.1) with the local invariant
q = 0. Our implementation immediately shows a fixed point on the sphere if
we start with γ0(x) = (1, 0, 0). Given the initial curve to be a circle, then the
exact solution is stationary, i.e.,

γ(x, t) = (0, cos x, sin x). (4.17)
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Figure 1. This picture shows the global error Gsup
N at each

time step 
t = 10−3

2m−1 with number of space steps N = 210

The corresponding invariant is q(x, t) = − 1
2e

i
2 t, a solution of NLS. The fol-

lowing errors are estimated between the numerical solution γnum(x, t) and
γ(x, t) by the L2-norm error at each time t:

EN (t) =
(

1
N

∫ 2π

0

|γnum(x, t) − γ(x, t)|2 dx

) 1
2

, (4.18)

where N indicates the number of x partitions. The global error for different
sizes of time steps is given by

Gsup
N = max

0≤tn≤T
(Esup

N (tn)) , (4.19)

where T is the total time and

Esup
N (t) = max

x∈I
(‖γnum(x, t) − γ(x, t)‖)

with I = {j 2π
N |j = 0, 1, 2, . . . , N − 1}.

It is obvious that at a fixed time, the errors EN (t) are decreasing when N
becomes bigger. Similarly, it is natural for us to consider how EN (t) behaves
in time when N is fixed.

Figure 1 presents the global errors become around 1
2 when halving the

time step 
t.
As we can see in Fig. 2, the numerical energy at each time is approx-

imately equal to the initial energy. The difference of energy at each time is
less than 10−5 according to the left panel of Fig. 2. However, the real energy,
in this case, is 2π, which is differed from the numerical energy within 0.00308
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Figure 2. The left shows the numerical energy E(γnum(t))
at each time t versus the initial energy 6.28010874 at t = 0
with 
t = 10−4, N = 212 and total time 0.5. The right is a
zoom-in figure of the left

after 5000 time steps. The error occurs due to accumulation error of trape-
zoidal integration of numerical solutions γnum(x, t) and machine error. The
right panel shows the errors which are controlled within 8×10−6. The exper-
imental results demonstrate this numerical energy preserving if 
t and 
x
become smaller.

Besides the energy, the NLS has infinitely many conserved quantities.
The first four conserved quantities for NLS are:

H1 =
∮

|q|2 dx, H2 =
∮

q̄qx dx, (4.20)

H3 =
∮

|qx|2 − |q|4 dx, H4 =
∮

qq̄x − q̄qx dx. (4.21)

Although one can compute the errors for these conserved quantities, it is
expected that the inaccuracy will rise while calculating the integral using the
trapezoidal method and the derivatives of q. Below we give some examples
of numerical Heisenberg ferromagnet.

Viviani’s curve

If we start with

γ0(x) = (sin x cos x, sin x, cos2 x),

which has the figure-eight shape. It is also considered to be the intersection
of a sphere centered at the origin with a cylinder tangent to the sphere and
passing through the origin. If one projects such curve stereographically from
the point diametrically opposite the double point, then the lemniscate of
Bernoulli is obtained. Figure 3 gives the motion of Schrödinger curve from
t = 0 to t = 3 with time step 0.001 and N = 211. The bottom row in Fig. 3
consists of the behavior of corresponding local invariant q.
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Figure 3. Numerical solution γnum versus the real part of
the corresponding local invariant q at t = 0, 1, 2, 3, respec-
tively with 
t = 0.001 and N = 211

Figure 4. Numerical solution γnum (top) versus the projec-
tion of γnum onto xy plane (bottom) at t = 0, 1, 2, 3, respec-
tively with 
t = 0.001

Seam line of a tennis ball

The next example is, to begin with a seam line of a tennis ball, which is an
intersection of the unit sphere and the half-spherical cone. In fact, it is a case
of spherical sine waves with 2 arches and the parametrized equations are

γ0(x) =
(

cos x√
1 + cos2 2x

,
sin x√

1 + cos2 2x
,

cos 2x√
1 + cos2 2x

)

.

Figure 4 shows the numerical results. The top spheres consist of
Schrödinger curves obtained from the initial curve γ0(x) with N = 211 and
the time step 0.001 at different times, paired with those curves from an over-
head viewpoint. At t = 2 and t = 4, the curves seem to have cusps only
because of different perspectives. They are actually smooth.
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Figure 5. Numerical solution γnum (top) for the spherical
sinusoid with four arches versus the projection of γnum onto
xy plane (bottom) at t = 0, 1, 2, 3, respectively with 
t =
0.001

Spherical sinusoid with 4 arches

For simplicity and clear presentation of pictures, we consider a spherical sine
wave with four arches, i.e.,

γ0(x) =

(
cos x√

1 + 2 cos2 4x
,

sin x√
1 + 2 cos2 4x

,

√
2 cos 4x√

1 + 2 cos2 4x

)

.

Figure 5 presents the motion of the Schrödinger curve with the initial γ0(x)
above and it gives a better demonstration that these curves are smooth.

Schrödinger curve with 1-soliton q

Based on our geometric scheme, we are able to obtain the first periodic solu-
tion q of the NLS. Applying Bäcklund transformation to q will give us one-
soliton q̃. Proposition 2.4 and Theorem 2.6 imply that the new Ẽ(x, t, λ) will
give rise to a new solution of (1.1). As an example, we apply BT on the sta-
tionary solution, i.e., a great circle. Figure 6 shows a numerical result with
α = 1 − i, V = C(1, i)t. The first picture in Fig. 6 indicates that the solu-
tion we get by applying the Bäcklund transformation is not closed. In other
words, periodicity is not invariant under Bäcklund transformations. At t = 3,
two endpoints are approaching each other. From the experimental outcomes,
such a curve remains the same circle as that on the last picture in Fig. 6 until
t = 10.

4.4. Discussion of error estimates

At a fixed time, Table 1 shows that the L2-error EN (t) decreases when the
number of grid points N is increased. Indeed, from the experimental results,
we see that EN (t)

E2N (t) is approximately 4.
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Figure 6. γ̃num constructed from applying BT on the circle
versus the real part of the corresponding local invariant q at
t = 0, 1, 2, 3, 4, respectively with 
t = 0.01

Table 1. 
t = 0.001

time steps E210(t) E211(t) E212(t) E213(t)

10 3.504E−05 8.787E−06 2.170E−06 5.347E−07
20 3.5023E−05 8.6525E−06 2.1327E−06 5.0281E−07
30 3.4701E−05 8.6484E−06 2.0757E−06 4.5323E−07
40 3.4388E−05 8.4782E−06 1.9997E−06 3.9132E−07
50 3.4400E−05 8.4270E−06 1.9061E−06 3.3050E−07
60 3.4265E−05 8.2258E−06 1.7969E−06 3.0134E−07

Table 2. The error Gsup
N computed for different 
t with

T = 1

N 
t = 1
1000 
t = 1

2000 
t = 1
4000 
t = 1

8000 
t = 1
16000

210 1.1882E−04 5.6378E−05 2.5053E−05 9.4568E−06 1.7024E−06

As for the data demonstrated in Table 2, the error Gsup
N becomes half

of itself when we reduce time step by half with N = 210. The error occurs
because we use the WGMS method to approximate the solution q to the NLS.
Several types of numerical errors come from the WGMS algorithm, including
the obvious error in approximating the integral and a truncation error when
the fixed point iteration was stopped after a finite number of steps.

Another reason is that we use the Runge–Kutta fourth-order method to
obtain numerical results for the frame E in (3.16) with the right-hand side
filled out with the estimated q and qx obtained by the finite difference method.
This of course produces errors. It also indicates the numerical scheme can be
improved by choosing other numerical methods for each step described in
subsection 4.1.
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Figure 7. The logarithmic of L2-error for N = 2m at t =
0.03, where the dashed line represents the integrating order
(x, t) and the solid line represents the order (t, x)

We also note that in Step 4, the order of integrating for x and t variables
does not matter theoretically when one solves for E(x, t) in the ODE system.
The errors presented in Table 1 come from integrating the x-direction first
and then the t-direction. Below in Fig. 7, we show the comparison of L2-errors
at t = 0.03 according to different integrating orders of two variables x and t
by the Runge–Kutta fourth-order method.

5. Concluding remarks

The geometry helps us formulate solutions to the Schrödinger flow explic-
itly, and our geometric framework shows that using corresponding numerical
methods for each stage in the implementation can help to get numerical solu-
tions to the nonlinear curve PDE (1.1). The advantage of this method is to
transform the nonlinearity of curve motion to solve the ODE system (3.16),
which makes it easier to find solutions to curve evolutions both analytically
and numerically.

In addition to the Heisenberg ferromagnet, the idea of such a framework
also works for the VFE despite that its formulations for curve solutions are
different. As mentioned, the VFE is related to the NLS [3,7,25] and the con-
struction of the curve is based on Sym’s formula, i.e., EλE−1|λ=λ0 , provided
that the principal curvature functions are given. The essential idea that we
work on the ODE system instead of the nonlinear PDE has been revealed.
Even though it is generally expected that this algebraic correspondence leads
to a geometric framework of numerical solutions for curve motions, there are
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often various technical issues while coding, such as the troublesome point
(−1, 0, 0) in Sect. 4.2. We will leave the discussions on technical issues in
different cases to future work.
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