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Abstract-This article considers the fuzzy problems for the mixture inventory model involving 
variable lead-time with backorders and lost sales. \Ve first use the probabilistic fuzzy set to construct 
a new random variable for lead-time demand, and derive the total expected annual cost in the fuzzy 
sense. Then, the average demand per year is fuzzified as the triangular fuzzy number. For this case, 
two methods of defuzzification, namely signed distance and centroid, are employed to find the value 
of total expected annual cost in the fuzzy sense. Next, the backorder rate of the demand during 
the stock-out period is also fuzzified as the triangular fuzzy number, and the value of total expected 
annual cost in the fuzzy sense is derived using the signed distance. For the proposed models, we 
provide a solution procedure to find the optimal lead-time and the optimal order quantity such that 
the total expected annual cost in the fuzzy sense has a minimum value. @ 2004 Elsevier Ltd. All 
rights reserved. 
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1. INTRODUCTION 

Lead-time plays an important role in production/inventory control systems. As stated in [I], 
lead-time usually consists of the following components: order preparation, order transit, supplier 
lead-time, delivery time, and setup time. The classical inventory models often assume lead- 
time as a given parameter or a random variable, which is not subject to control. However, this 
assumption may not always be true. In some practical situations, the above components of lead- 
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time could be accomplished earlier than the regular time if one is willing to pay extra costs. For 
example, one may adopt the special delivery (by air) instead of ordinary delivery (by water) to 
shorten the delivery time, while the air freight rate is higher than the water freight rate. In 
this sense, lead-time is controllable (reducible). Furthermore, through the Japanese successful 
experiences of using just-in-time (JIT) production, the benefits associated with efforts to reduce 
lead-time, such as lowering the safety stock, reducing the loss caused by stock-out, increasing 
the service level to the customer, and gaining the competitive advantages in business, have been 
evidenced. Inventory models considering lead-time as a decision variable have been developed 
by several researchers. Liao and Shyu [2] first presented a continuous review inventory model in 
which the order quantity is predetermined and lead-time is a unique variable. They formulated 
the crashing cost function for reduced lead-time by a piecewise linear function. Ben-Daya and 
Raouf [3] extended [2] to include both lead-time, and order quantity as decision variables. Later, 
Ouyang et al. [4] provided a more meaningful mathematical model for the decision-maker; they 
extended [3] by allowing shortages with a mixture of backorders and lost sales. 

The above lead-time reduction models are based on the continuous review inventory systems, 
where the uncertain lead-time demand is formulated by a random variable using the approach 
from the traditional probability theory. In addition, the other inputs such as the average demand 
per year and the backorder rate of the demand during the stock-out period in the model proposed 
in [4] are assumed with crisp values. However, in real inventory systems, various types of uncer- 
tainties and imprecision including randomness and fuzziness often exist. In this article, we shall 
consider a possible situation where fuzziness and randomness appear simultaneously in lead-time 
demand, and adopt the probabilistic fuzzy set proposed by Hirota [5] to deal with this situation. 
Furthermore, to assess the annual average demand or the backorder rate by a crisp value is not 
an easy task, since they may have a little fluctuation in unstable environments. For this scenario, 
it is more suitable to describe these factors by linguistic terms such as approximately equal to 
some certain amounts or consider their values to be located in some intervals. This study will 
also apply the fuzzy sets concept initially introduced by Zadeh [6] to formulate those uncertain 
factors. 

In recent years, several researchers have developed various types of inventory problems in 
fuzzy environments. For example, Petrovic and Sweeney [7] fuzzified the demand, lead-time, and 
inventory level into triangular fuzzy numbers in an inventory control model. Vujosevib et al. [8] 
extended the classical EOQ model by introducing the fuzziness of ordering cost and holding cost. 
Chen and Wang [9] f uzzified the demand, ordering cost, inventory cost, and backorder cost into 
trapezoidal fuzzy numbers in the EOQ model with backorder. Roy and Maiti [lo] presented 
a fuzzy EOQ model with demand-dependent unit cost under limited storage capacity. Gen et 
al. [ llf considered the fuzzy input data expressed by fuzzy numbers, where the interval mean value 
concept is used to help solve the problem. Ishii and Konno [12] fuzzified the shortage cost into an 
L-shape fuzzy number in a classical newsboy problem aimed to find an optimal ordering quantity 
in the sense of fuzzy ordering. Chang et al. [13] presented a fuzzy model for inventory with 
backorder, where the backorder quantity was fuzzified as the triangular fuzzy number. Lee and 
Yao [14] and Lin and Yao [15] d iscussed the production inventory problems, where [14] fuzzified 
the demand quantity and production quantity per day, and [15] fuzzified the production quantity 
per cycle, all to be the triangular fuzzy numbers. Yao et al. [16] proposed the EOQ model in 
the fuzzy sense, where both order quantity and total demand were fuzzified as the triangular 
fuzzy numbers. Ouyang and Yao [17] presented a mixture inventory model involving variable 
lead-time, where the annual average demand was fuzzified as the triangular fuzzy number and 
statistic-fuzzy number. Specifically, in [13-171, they used the extension principle and centroid 
method to find the total cost in the fuzzy sense, and showed that it is close to the crisp total cost 
when fuzzy is small. 

From literature review, we note that although several fuzzy inventory models have been pre- 
sented, little has been done on addressing the issue of lead-time reduction in fuzzy environments. 
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The purpose of this article is to recast Ouyan g et a.1.‘~ mixture inventory model [4] involving 
variable lead-time with backorders and lost sales by introducin, r the fuzziness of lead-time dr- 
mand, the average demand per year, and the backorder rate of the demand during the stock-ollt 
period. We aim at providing an alternative approach of modeling uncertainty that may appeal 
in real situations, while we do not attempt to establish the superiority of proposing new models 
t,o reduce more inventory cost than before. Moreover, in addition to t,he centroid method thirt 
is often used for defuzzification, a new ranking method for fuzz>- numhcrs. nanwly tllc signr)tl 
distance, introduced by Yao and Wu [18] will be employed to solve our prohlems. 

This article is organized as follows. In Section 2, some definitions and propositions relattltl 
to this study are introduced, and a brief review of Ouynn g et CL’S inodtl [4] is provided. JIM 
Section 3, three fuzzy inventory models involving va.riable lead-time arc presented. JVe first use 
the probabilistic fuzzy set to construct a new random variable for lead-time demand, autl obtain 
the total expected annual cost in the fuzzy sense. Then. the average demand per year is fuzzifittcl 
as the triangular fuzzy number. The signed distance and centroid methods are employed to fintl 
the value of total expected annual cost in the fuzzy sense. Next. the backorder rate is also fuzzifietl 
as the triangular fuzzy number. and t,he value of total expected annual cost in the fuzzy SCIIW is 
derived using the signed distance. These results are summarized in Theorems 1~ 13. In Section -1. 
we derive the optimal order quantity and the optimal lead-time hy minimizing the total expect~~tl 
animal cost in the fuzzy sense. Numerical examples are carried out to illustrate the results. Iii 
Section 5, we discuss some problems for the proposed nlodels. Section (i sunun:arizts the work 
done in this article 

2. PRELIMINARIES 

In order to consider the fuzziness for Ouyan g et al.‘s mixture inventory model [4]- some tlefin- 
tions and propositions relative to this study are introduced first. 

2.1. Formulas 

DEFINITION 1. (See [19].) A f ‘uzz r set 6, defined on R = ( -CG. 30) is called a ,frrzzy point, ii‘ tile J 
membership function of ii is given bj 

/l&(X) = 
i 

1, Cr = a. 

0, x # a. 

DEFINITION 2. (See 151.) Let (a, A, P) be the probability space, and T Ge the total space. Tile 
probabilistic fuzzy set A on T is defined as the following function: 

,uA : T x Q + R, = [0, 11, (6 xl --f PA(k xl. 

For each fixed t E T, p,~(t, .) IS a measurable function on (A, A,)! w 1er.e A, is a Bore1 field of 0, 1 
For each fixed xj /LA (t, x) is the membership function of the fuzzy set A. 

DEFINITION 3. The fuzzy set 2 = (CL b>c), Tlrhere a < b < c and defirled on R, is called the 
triangular fuzzy number, if the membership function ofA is given b‘y 

(x - a) 
(b - a) ’ 

a 5 :L‘ 5 b: 

otherwise. 

Then, the centroid of A can be derived as 

(1) 
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Furthermore, when c = b = a, then /i = (a, a, a) = tL becomes a fuzzy point. 

For any a, b,p, q, k E R, a < b, and p < q, the operations of crisp interval are as follows (see, 
e.g., [20,21]): 

6) 

(ii) 

[a, bl - [p, ql = b - 4, b - PI; 
(iii) 

IcLa’ b1 = 

[ka, kb], k > 0, 

[kb, ka], k < 0. 

Further, if a > 0 and p > 0, then 

(iv) 
[a, 4 . [P, 41 = [UP, bl. 

(2) 

DEFINITION 4. A fuzzy set [a, b; 01, where 0 5 (u 5 1, a < b and defined on R, is called a level cr 
fuzzy interval, if the membership function of [a, b; CY] is given by 

&a,b;a] cx) = 
cr, a 5 x 5 b, 

0, otherwise. 

Let F be the family of all fuzzy sets defined on R that satisfy the following two conditions: 

(i) 8 E F, the a-cut B(o) = [&(a), &(a)] of 8 exists for every (u E [0, 11; 
(ii) BI(CY) and &( ) c~ are continuous functions on 0 5 Q! 5 1. 

Then, for any fi E F, from the decomposition theorem, B can be expressed as 

(3) 

where IB(~J(x) is the characteristic function of B(a), and 

From Definition 4 and equation (3), it is clear for x E R, (uIB(~~(x) = ~[B~(~),B,(~);~I(x), 
Va E [0, 11. Hence, fi can further be expressed as 

Next, as in [18], we introduce the concept of signed distance of fuzzy set on F, which will be 
needed later. We first consider the signed distance for a point defined on R. 

DEFINITION 5. For any a and 0 E R, define the signed distance from a to 0 as do(a, 0) = a. If 
a > 0, the distance from a to 0 is a = do(a, 0); if a < 0; the distance from a to 0 is -a = -do(a, 0). 
Hence, do(a, 0) = a is called the signed distance from a to 0. 

For 8 E F with the or-cut B(o) = [Bl(a),B,(a)], cr E [0, 11, the signed distance of two 
endpoints Bl(a) and B,(a) of this o-cut to the origin 0 is do(Bl(cx), 0) = By and do(B,(a), 0) = 
B,(o), respectively (according to Definition 5). Their average, [Bl(o) + B,(a)]/2 is taken as the 
signed distance of o-cut [Bl(cr), &(a)] to 0, that is, the signed distance of interval [Bl(cr), B,(o)] 
to 0 is defined as: do([Bl(cx), B,(a)],O) = [Bl(cr) + B,(o)]/2. In addition, for every cr E [O,l], 
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there is a one-to-one mapping between the level a fuzzy interval [Bl (a), B, ( CY); a] and real interval 
[Bl(a),B,(a)], i.e., th e o f 11 owing corresponding is one-to-one mapping: 

Also. the fuzzy point 0 is a mapping to the real number 0. Hence, the signed distance of 
[Bl(cr), O,,(a); a] to 0 can be defined as 

d ([B[(cY), B,(cu); a], 0) = do ([&(a), B,(Q)],O) = ‘B1(CY) ; B”(Q)’ (6) 

Furthermore, for fi E F, since the above function is continuous on 0 5 cy < 1, we can use the 
integration to obtain the mean value of the signed distance. That is, 

.i 

1 

d([B[(a),B,(a);cu],q da = ; ol(w +&L(a))dQ. 
.I 

U) 
0 

Thus, from equations (4) and (7), we can define the signed distance of a fuzzy set l? E F to 0 
as follows. 

DEFINITION 6. For B E F, define the signed distance of l? to 0 as 

For the triangular fuzzy number A = (a, b, c)! the a-cut of A is il(cr) = [Al(a), Au(a)], a: E [O, 11, 
where Al(a) = a + (b - n)a and A,(a) = c - (c - b)a. From Definition 6, we get 

d A,6 =;(2b+a+c). 
( > (8) 

Moreover, for A = (a, b, c), the relationship between centroid C(A) (in equation (1)) and 
signed distance d(.&O) (in equation (8)) is as follows. Let M = (a + c)/2. By the results that 
b-d(A,O) = (2b-a-c)/4 = (b-n/1)/2, d(A,G)-C(A) = (b-M)/6, and C(j)-M = (b-M)/3, 
we have the following. 

(i) If b < M, th en b < d(A,e) < C(j) < M. 
(ii) If b > M, then M < C(A) < d(A,G) < b. 

(iii) If b = M, then b = d(,&G) = C(A) = M. 

The results of (i) and (ii) are shown in Figures 1 and 2, respectively. 

,X x 

Figure 1. The case of b < hf. Figure 2. The case of b > A4 
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NOTE 1. From Figures 1 and 2, it can be found that ~A(C(A)) < p~(d(A,b)) < PA(~) = 1, i.e., 
the membership grade at d(A,d) is greater than that at C(j). Furthermore, from equations (1) 
and (8), C(A) = (u + b + c)/3 and d(A,6) = (u + 2b + c)/4, we note that both of them are 
weighted mean of a set of numbers (a, b, c), whereas d(& 0) is more meaningful than C(A), since 
the maximum membership grade of A = (a, b, c) occurs at point b, which has a larger weight in 
d(i?,e) than in C(A). H ence, when we defuzzify the triangular fuzzy number, it is better to use 
signed distance than centroid. 

In addition, for two fuzzy sets B,G E F, where 8 = Uo<a<l[Bl(~)rB,(cu);cu], and G = - - 
U O<a<l[Gl(~), G,(a); CY], from equations (2) and (5), we have - - 

U [k&(a), k&(a); a], if k > 0, 

U [k&(cr), k&(a); a], if k < 0. 

(9) 

(10) 

Then, from equations (9), (lo), and Definition 6, we obtain the following proposition. 

PROPOSITION 1. For fi, G E F, and k E R, 

(i) d(B(+)G, 0) = d(B: 0) + d(G, 0); 
(ii) d(k(.)B, 6) = kd(B, 0); 
(iii) d(B(+)k, 0) = d(B, 0) + k. 

Finally, for two triangular fuzzy numbers, we have the following proposition. 

PROPOSITION 2. For A = (a, b, c) and 8 = (p, q, T), and k E R, 

(i) C(A(+)B) = C(A) + C(B); 
(ii) C(k(.)A) = kc(A); 
(iii) C(A(+)k) = C(A) + k. 

PROOF. Since A(+)8 = (u + p, b + q, c + T), k(.)j = (ku, kb, kc) if k > 0, k(.)A = (kc, kb, ku) if 
k < 0, i = (k, k, k), and from equation (1)) we can get the above results. 

2.2. Review of Ouyang et al.‘s Model 

To develop the proposed models, we adopt the following notation and assumptions used in [4]. 

Notation 

D = average demand per year, 
Q = order quantity, 
A = fixed ordering cost per order, 
h = inventory holding cost per item per year, 
n = fixed penalty cost per unit short, 

7rc = marginal profit per unit, 
L = length of lead-time, 
T = reorder point, 

X = lead-time demand, which is normally distributed with finite mean pL and standard 
deviation aa, where p and g denote the mean and standard deviation of the demand 
per unit time, 

IC+ = maximum value of 5 and 0, i.e., IC+ = max{2,0}, 
E(.) = mathematical expectation. 
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Assumptions 
. 

(1) The reorder point, T = expected demand during lead-time + safety stock (SS), and SS = 
k (standard deviation of lead-time demand), i.e., T = pL + kafi, where k is the safet! 
factor and satisfies P(X > r) = P(Z > k) = q, 2 represents the standard normal ri\ndoirl 
variable, and q represents the allowable stock-out probability during lead-time L. antI ci 
is given. 

(2) Inventory is cont,inuously reviewed. R,eplenishments arc made whenever the inventor> 
level falls to the reorder point r. 

(3) The lead-time L has II mutually independent components each having a different crashing 
cost for reducing lead-time. The it” component has a minimum duration II, aud normal 
duration b,, and a crashing cost per unit time c,. Furthermore, we assume that cl < (‘2 5. 

. 5 c,, 
(4) The components of lead-time are crashed one at a time starting with the component of 

least c, and so on. 
(5) If we let Lc = Cy=i b,, and L, be the length of lead-time with components 1.2.. I 

crashed to their minimum duration then 1;, can be expressed as L, = I;= I 6, ~ Clll, (h, ~ 
a]), i = 1,2,. : n: and the lead-time crashing cost per cycle U(L) for a giver1 L c~ 
[Lz, L,-I] is given by 

l-l 

U(L) = C,(L,-1 - L) + C cj(b, - ~1) 
/=1 

By the above assumptions and considering that only a fraction ,O (0 < p <: 1) of the demantl 
during the stock-out period can be backordered, Ouyang et al. [4] established the total cxpectecl 

annual cost as follows: 

EAC(Q, L) = setup cost + holding cost + stock-out cost + lead-time crashing cost 

= A; + 11 ; + T - pL + (1 - jqE(X - r)f 
I 

+ ;[n + 7r”(l - Ll)]E(X - r)f + g(L) 

= $ {A + [T + ~~(1 - D)]E(X - r)+ + U(L)} 

+ h + kav% + (1 - ;3)E(X - r)+j : 

(12) 

for Q > 0, L E [L,L,-I], i = 1.2.. .r~. where E(X - r)+ is the expected demand shortage at 
the end of the cycle. 

3. FUZZY MIXTURE INVENTORY MODEL 
INVOLVING VARIABLE LEAD-TIME 

3.1. Fuzzy Mixture Inventory Model Involving Variable Lead-Time 
with Probabilistic Fuzzy Set 

In contrast to Ouyang et al.‘s model [4], 1 rere we consider the fuzzy mixture inventory model 
with the probabilistic fuzzy set as the following. Let (R, a, P) be the probability space: where 
R is the set of real numbers, a is the Bore1 field on R, and P is a probability measure. The 
lead-time demand, X, in Section 2.2 is a crisp random variable on (R, f3, P), which is assumed to 
be normally distributed with mean pL and standard deviation ~a, i.e., X - !V(,uL, a2L). For 
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notational convenience, from now on, we denote PL = pL and 0~ = a&, then the probability 
density function (pdf) of X is given by 

0x1 = Abii exp ~ [p;‘2], -oo<x<co. (13) 

From the definition of Li (Assumption 5), we have minc<i<, Li = L, and maxoci<, Li = Lo, -- -- 
hence, L, 5 L 5 Lo. For any fixed L E [Li, Li-11, i = 1,2,. . . , n, the value PL of lead-time 
demand (LTD) may have a little fluctuation in the uncertain and/or unstable environments. For 
this scenario, it is more suitable to describe the value of LTD by an interval [pL - Ai, PL + A,], 
where Ai, A2 are determined by the decision-maker and should satisfy the conditions 0 < Ai < 
PL,, and 0 < IGIZJL~ < A,. In order to find the corresponding fuzzy set with this interval [PL - 
Ai, ,Q.L + A,], we take a value ,uL from the interval [PL - Ai, PL + A,] and then compare it with 
PL (LTD of crisp case). If ,uLT; = PL, then we define the error ]pLT, - ,uL] = 0. In the fuzzy sense, 
we can use the term confidence level instead of error. When the error is zero, the confidence 
level will be the largest, and we set it to be 1. If PL;; is located in [PL - Ai, PL) or (ILL, /JL + AZ], 
the farther the value p; deviates from pi, the larger the error 1~: - PL], and hence, the smaller 
the confidence level. When p; = pi - Ai and p: = PL + A,, the errors 1~; - PL] will attain to 
the largest, and the confidence level will be the smallest and we set it be zero. 

Therefore, corresponding to the interval [PL - Ai, PL + A,], we set the following triangular 
fuzzy number: 

CIL=(CLL-A,,~L,~L-~A~), (14 

where 0 < A, < PL, and 0 < kgLo < A,. Note that the membership grade of FL is 1 at 
point PL, decreases as the point deviates from PL, and reaches zero at the endpoints PL - Ai 
and PL + AZ. Since the properties of membership grade and confidence level are the same, 
consequently, when the confidence level is treated as the membership grade, corresponding to the 
interval [PL - Ai, PL + As], it is reasonable to set the above triangular fuzzy number FL. 

By Note 1, utilizing the signed distance to defuzzify FL, we obtain 

P;, = d (fid) = I"L + ;(A2 - A,) = & + ;A, + ;(pL - A,) > o. (15) 

p;is regarded as the value of LTD in the fuzzy sense and p: E [PL - A~,,uL + A,]. If Ai < A,, 
then PL < ~2; if A2 < Ai, then pz < PL; and if Ai = AZ, then PL = p;. 

Furthermore, by the assumption that the reorder point r = pL+kaL, and from an observation x 
of the crisp random variable X, we obtain a fuzzy point Z = (x,x,x). Corresponding to the 
crisp random variable X - PL, the observation is x - PL. Then, from equation (14), we get 
p&-pL+- PL - AZ, x - PL, x - PL + Ai), and obtain the following membership function 
of the probabilistic fuzzy set l? 

P&X) = (x - ~ra:Ai) -t ’ (16) AI , a:-PL <tIx-~I,+A,, 0, otherwise. 

Note that from Definition 2, x can be viewed as the random part, and t can be viewed as the 
fuzzy part. 

From the above probabilistic fuzzy set, and by Note 1 using the signed distance to defuzzify, 
the relationship of random part can be derived as follows: 

= x - pL + ;(A1 - A,). (17) 
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Hence, from equation (l’i’), we obtain the corresponding crisp random va,riable 

w = x - PL + ;(A, - A,). (18) 

By the probability theorem, the pdf of W can be derived from the pdf of X, i.e., the pdf of W is 

g(w)=f w+/LL+-A~, ( $ 
[w - (4 - AdPI” 

a($ 1 
(19) 

’ -cQ<w<m. 
Note that instead of using the random vari%e X in [4], h ere we consider a new random vari- 
able W for the problem; therefore, the term E(X -r)+ in equation (12) is replaced by E( W -r)+. 

Now, we derive E(W - r)+. From equation (19), let s = (l/o~)[w - (A, - A2)/4]. Then, 
w - 7’ = cr~s -T + (A, - A2)/4 > 0 M s > (l/a~)[r - (A, - A2)/4]. Therefore, we have 

ca E(W-?-)+ = I crLs 
[~-(AI-&)/~]/~L 

- T + ;(A1 - A,) ] &exp (-%) ds 

= CL4 
( 

T - (Al - &j/4 
CL ) - 1.~;(Al-A2) I[ ( 1 _ + T- - (Al - Ad/4 

OL >1; 
(20) 

where $( .) and (a(.) are the pdf and the cumulative distribution function (cdf) of the standard 
normal distribution, respectively. 

From the above, we obtain the following theorem. 

THEOREM 1. In equation (12), using the probabilistic fuzzy set of equation (16), and equa- 
tion (IS), the term E(X - r)+ is changed to be E(W - T)+ ( as s own in equation (20)). In this h 

case, the total expected annual cost in the fuzzy sense is given by 

EACP(Q, L; A,, A,) = ; {A + [TT + m(1 - P)]E(W - r)+ + U(L)} 

; + kaJZ:+ (1 - P)E(W - r)+ 
I 

(21) 

Note that we will derive the corresponding optimal solution of equation (21) in Section 4, and 
discuss the relationship between E(X - r)+ and E(W - r)+ in Section 5.B later. 

3.2. Fuzzy Mixture Inventory Model Involving Variable Lead-Time 
with Probabilistic Fuzzy Set and Triangular Fuzzy Number 

In the real situation, due to various uncertainties, the annual average demand may have a little 
fluctuation, especially, in a perfect competitive market. Therefore, it is difficult for the decision- 
maker to assess the annual average demand by a crisp value D, but easier to determine it by 
an interval [D - As, D + A,]. Similar to the previous approach, corresponding to the interval 
[D - As, D + A,], we can set the following triangular fuzzy number: 

fi = (D - As, D, D + A,), (22) 

where A3 and A4 are determined by the decision-maker and should satisfy the conditions 0 < 
Az<DandO<Ad. 
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Now, we employ the methods of signed distance and centroid to defuzzify 0. By the signed 
distance method, we get 

D*zd(~,i))=D+~(A4-A3)>0. 

By the centroid method, we get 

(23) 

D(‘)=C i? =D+;(Ad-As)>@ ( > (24 

Both D” and D(O) are regarded as the values of annual demand in the fuzzy sense. 
From equation (21) in Theorem 1, for each Q > 0, and L E [Li, Li-11, i = 1,2,. . . , n, let 

H(Q,L)(D) - EACP(Q, L; Al, AZ) 

= ; {A + [r + no(l - P)]E(W - r)+ + u(L)} 
(25) 

Sh qtkodz+(l-B)E(W-r)+]. 1 
Next, by incorporating the fuzziness of annual demand into equation (25), i.e., replacing D 

by l? as described in equation (22), we obtain the fuzzy total cost as follows: 

H(QJ) ( ti =’ A+[7r+7ro(l-/3)]E(W-r)++U(L)}fi ) Q -t 

fh ;+koG+(l-LI)E(Wr)+]. 
[ 

(26) 

Note that here the operations-of fuzzy sets, (+), (-), (.), f or simplification, are expressed as +, 

-7 ‘1 and the fuzzy point si is expressed as a. 
Then, we get the following theorem. 

THEOREM 2. The values of total expected annual cost in the fuzzy sense H~Q,L,(D) are as 
follows. 

(i) Using the signed distance method to defuzzify equation (26) results in 

EACPS(Q, L; A,, j = 1,2,3,4) = EACP(Q, L; Al, A,) 

+ (A44;A3’ {A + [r + rrc(l - /3)]E(W - T)+ + U(L)}. 

(ii) Using the centroid method to defuzzify equation (26) results in 

EACPC(Q, L; A,,j = 1,2,3,4) = EACP(Q, L; Al, A,) 

+ (A43;A3) {A + [r + ~~(1 - P)]E(W -r)+ + U(L)}. 

(27) 

(28) 

PROOF. 
(i) From Proposition 1 with equations (23) and (26), we have 

~(H(Q,L) (D) 8) = $ {A+ b+no(l -P)]E(W-r)+ +U(L)} [,+ :(A4 -A,)] 

+h ;+kaG+(l-P)E(W-r)+ 
1 1 

= EACP(Q, L; Al, A,) 

+ (A44;A3) {A + [r + 7rc(l - p)]E(W - r)+ + U(L)}. 

(ii) Similar to Proof (i), from Proposition 2 with equations (24) and (26), we can get the 
result. 

The corresponding optimal solutions of equations (27) and (28) will be derived later in Section 4. 
Also, we will discuss which value, obtained by equations (27) or (28), is better in Section 5.C. 



t

3.3. Fuzzy Mixture Inventory Model Involving Variable Lead-Time 
with Probabilistic Fuzzy Set and Two Triangular Fuzzy Numbers 

In the real market, it is difficult for the decision-maker to know explicitly how many customers 
will accept backorders when the stock-out occurs. Therefore, in this section, we further incorpo- 
rate the fuzziness of backorder rate into the model. Following the approach in Section 3.2. frown 
Theorem 1 (equation (21)). f or each Q > 0. and L E [L,; L,-11, i m= 1.2,. 1 II. let 

GcQ,,)(D,/?) f EACP(Q,L; A,, A,) = ; {A + (7r + nO)E(W’ ~ t.)+ + U(L)) 
Li: 

TODP 

! 
; + kc& + E(W - ?.)+ 1 

(29) 

- -E(W - T)+ + h 
Q 

- hBE(W'- r)-. 

Similar to equation (22), we fuzzify the backorder rate B of the demand during the stock-out 
period as the following triangular fuzzy number: 

B = (.R - A,, 8, B + A,), (30) 

where A, and A, are determined by the decision-maker and should satisfy the conditions 0 < 
A, < ,1!3 and 0 < A,. 

Then, by Note 1 using the signed distance method to defuzzify ,a. we get 

,/3* - d (:?. 6) = /3 + ;(A6 - A,) > 0, (31) 

which is the value of backorder rate of the demand during the stock-out period in the fuzzy sense. 
When D and p in equation (29) are fuzzified to be D and a as described in equations (22) 

and (30), respectively, we obtain the following fuzzy total expected annual cost: 

G(Q~C ( - -) l { D>/3 = G A + (x + q,)E(W - ?.)+ + U(L)} l? - $E(W’ - r)+fi. /!j , 

+ 11 ; + kc& + E(W - ,r)+ 1 
(32) - hE(I~V - r,+j. 

From equations (22) and (30), and for every LL E [O. 11. we obtain the left endpoint and right 

endpoint of cu-cut of D and p, respectively, as follows: 

D[(cE) = D - (1 - CX)A, > 0, Dll(~) = D + (1 - (r)Ad > 0. 

/3,(a) = /3 - (1 - o)A, > 0, pu(ce) = /3 + (1 - CX)A, > 0. 
(33) 

Also, the a-cut of D. /? is (D/~)(Q) = [(D/?)l(cy), (D/~),(O)], where 

(Dioh (0) = Dr(~)P~ (~1 and (D&(Q) = D,~(Q)/%,(N). (34) 

THEOREM 3. The value of total expected annual cost in the fuzzy sense G(Q,L)(D), 0) obtained 
by the signed distance method is as follows: 

EACP*(Q,L;Aj?j=l,2!...,G) 

= EACP(Q, L; A,, A,) + FTER(Q. L; A,, j = 3,4,5,6), 
(35) 

where 

FTER(Q, L; A,,j = 3,4,5,6) = (A4*;A3J {A + (7r + xo)E(W - ?g+ + U(L)} 

- $E(W - 1.)+ 
I 

- ;E(W - T)+(A~ - A,). 
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PROOF. From equations (32)-(34), the signed distance of D . p to G is 

d (” * ,& 6) = f ~Li(QW,) + (Q%&)] da 

=- ; J o1 { 10 - (I- @3I[P - 0 - ~)A51 

+ [D + (1 - o)A,][P + (I- +s]} da 

= DP + +A6 - A,) + $(n, - A,) i- ;(A& + Ads). 

Thus, from Proposition 1 and equations (23), (31), (32), and (36), we obtain 

d (GcQ,~) (b,d) ,6) = $ {A + (n + m)E(W - r)+ + U(L)} k + $4 - As)] 

- $E(W - r)+ 
1 
op + ~D(A~ - A,) + $(A, - A,) 

+;(AsAs + AdAs) 1 [ -t h ; + Ico& -I- E(W - r)+ I 
- hE(W -T)+ 

[ 
p + ;(As - As) 

I 
= EACP(Q, L; A,, A,) + FTER(Q, L; A,,j = 3,4,5,6). 

(36) 

REMARK 1. For the fuzzy total expected annual cost GcQ,-,t) (D, ,@ of equation (32), if we want to 
defuzzify it using the centroid method, we need to find the membership function of G~Q,LJ(D),&, 
which can be expressed as pLGco L,(~,pj (z) = s~p(,,,)e~-~(~) pi A pp(y), using the extension 
principIe, and from equation (29) we have 

f(z, y) = ; {A + (T + ro)E(W - r)+ + U(L)} - yE(W - r)+ 

+h ;+k&+E(W-r)+ 
[ 1 - hyE(W - r)+. 

In this sense, it is difficult to derive CL,-+ L,(~,~j(t). Therefore, in this case, we adopt the signed 
distance to defuzzify the fuzzy total cost rather than centroid. 

4. THE OPTIMAL SOLUTION 

This section provides the solution procedure for the models proposed in Section 3. In order to 
consider the optimal solutions of Theorems l-3 at the same time, we define the following terms. 

Let 

M(L) = D {A + [T + no(1 - P)]E(W - r)+ + U(L)}, 

M2(L) = Ml(L) + (” 4 “) {A + [n + no(l - /3)]E(W - T)+ + U(L)}, 

M3(L) = Ml(L) + (” ; “) {A -t- [n + q,(l - P)]E(W - T)+ -t- U(L)}, 

J44(L) = Ml(L) + (” ; “) {A + (n + m)E(W - r)+ t U(L)} 

- 7r~E(W - ?q+ 
[ 

+(A, - A,) + ;@(a, - A,> + ;(&A5 + Ad&) 1 , 

N,(L) = N2(L) = N3(L) = h [kc&+ (1 - P)E(W - r)‘] , 

N4(L) = N(L) - (” ; A5)hE(W -T)+. 
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Then, equation (21) in Theorem 1, equations (27) and (28) in Theorem 2, and equation (35) 
in Theorem 3 can be expressed as 

Kl(Q; L) s EACP(Q, L; A,, A,) = y +y+lqq: (37) 

hf2’2(L) hQ Kz(Q, L) = EACPS(Q, L; fI,,j = 1,2,3,4) = - & + -y + Nz(L), (38) 

A&(L) hQ 
K:s(Q, L) E EACPC(Q, L; Aj,j = 1,2,3,4) = 7 + 2 + Ns(L), (39) 

and 

J&(L) hQ K4(Q,L)~EACP*(Q,L;AJ.j=1,2 ,..., 6)=- & + -y + N4(L)? 

respectively. 
The problem is to determine the optimal order quantity and the optimal lead-time such that 

the total expected ammal cost in the fuzv sense has a minimum value. That is, for each j E 
{1,2,3,4}, minimize 

for Q > 0 and L E [Li, Lx-l]. 

To this end, for fixed L E [L,, L,-11, we take the first and second partial derivatives of K3 (Q, L), 
j = 1,2,3,4, with respect to Q! which lead to 

+ $ and j = 1,2,3,4. 

It is clear if Ml (L) > 0, then a2%$?‘Li > 0, and the minimum value of Kj(Q, L) will occur at 

the point Q that satisfies aK, (Q,L) = 0, j = 1,2,3,4. Solving this equation for Q, we obtain 

Q = dw ZE Q;(L), J’: 1,2,3,4. H ence, for fixed L E [Li, Li-11, the minimum total 
expected annual cost in the fuzzy sense is K,(Q,*(L), L), j = 1,2,3,4. 

Next, let S = {L 1 L E [L,, L,-,I, i = 1,2, , n}. And from equation (ll), let 

2-l 

U,(L) = U(L) = C,(Li-I - L) + Cc& - a3), i = 1,2, ,I%, 
j=l 

and. 
c&(L) f U(L0) = 0. 

Thus, the mathematical expression of the problem is given by 

,>FfEs Kj(Q, L) = yj;~%h;(Q, L) = LES minKj(Q,‘(L), L) E K,(Q,‘(L*), L*). (41) 

In this case, for each j E { 1,2,3,4}, the optimal lead-time L’, the optimal order quantity Q; (L* j, 
and the minimum total expected annual cost in the fuzzy sense Kj (Q,+ (L*), L*) can be determined 
easily by any numerical analysis methods. 

Numerical Examples 

To illustrate the results of proposed models, we consider an inventory system with the data 
used in [4]: D = 600 units/year, A = $200 per order, h = $20 per unit per year, 7r = $50 per unit 
short, ~0 = $150 per unit, and 0 = 7 units/week. But instead of taking q = 0.2 (the allowable 
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Table 1. Lead-time data. 

Lead-Time Normal Duration 
Component i bi (days) 

1 20 

2 20 

3 16 

Minimum Duration 
ai (days) 

6 

6 

9 

Unit Crashing Cost 
ci ($/day) 

0.4 

1.2 

5.0 

Table 2. Lead-time crashing cost. 

i u,(L) 1 

1 0.4(56 - L) = 22.4 - 0.4L, for 42 5 L < 56 (L in days) 

2 1.2(42 - L) + 0.4 x 14 = 56 - 1.2L, for 28 5 L 5 42 (L in days) 

3 5(28 - L) + 0.4 x 14 + 1.2 x 14 = 162.4 - 5L, for 21 5 L 5 28 (L in days) 

stock-out probability during lead-time), here we take a more reasonable value 4 = 0.05. Hence, 
when the lead-time demand follows normal distribution, we have the safety factor Ic = 1.645. 
Besides, the lead-time has three gomponents with data shown in Table 1. 

In this case, we have Lo = 56 days, L 1 = 56 - 14 = 42 days, Lz = 42 - 14 = 28 days, 
L3 = 28 - 7 = 21 days, hence, L3 = min Li = 21 days (= 3 weeks), Lo = max Li = 56 days 
(= 8 weeks), 0 < Ai < pLs = 34.62, A2 > IcaG = 32.57, 0 < As < D = 600, 0 < AJ. And 
the lead-time crashing cost is as shown in Table 2. 

EXAMPLE 1. In this example, we determine the optimal solutions for Theorem 2 (i.e., Kz(Q, L) 
and Ks(Q, L) in equations (38) and (39), respectively). For ,0 = 0.5 and various sets of (Ai, Az, 
As, A,), using the numerical analysis method, we obtain the computed results as shown in 
Table 3. 

The above results show that when Aa < A4, Kz(Qz(L*), L’) < Ks(Q;(L*), L’), i.e., the 
minimum total expected annual cost in the fuzzy sense obtained by SDM is less than that obtained 
by CM; for these cases, we prefer choosing SDM. Conversely, when A4 < As, K3(Qs(L*), L*) < 
KP(Q~(L*), L*); for th ese cases, we prefer choosing CM. Section 5.C will discuss this problem. 

Table 3. The optimal solutions of Theorem 2 (L’ in weeks). 

Given 
Parameters 

Theorem 2 

Signed Distance Method (SDM) Centroid Method (CM) 

AI A2 A3 A4 L* Q;(L*) I&(Q;(L*),i*) L’ Q:(L*) K3(Q:(L*),L*) 

5 50 25 50 4 116.l 2782.9 4 116.3 2786.9 

5 50 30 100 4 117.2 2804.4 4 117.7 2815.4 

5 50 35 150 4 118.3 2825.6 4 119.1 2843.6 

10 35 25 50 4 116.1 2782.9 4 116.3 2786.9 

10 35 30 100 4 117.2 2804.4 4 117.7 2815.4 

10 35 35 150 4 118.3 2825.6 4 119.1 2843.6 

5 50 50 25 4 114.9 2758.9 4 114.7 2754.8 

5 50 100 30 4 113.8 2737.0 4 113.2 2725.6 

5 50 150 35 4 112.7 2714.9 4 111.8 2695.9 

10 35 50 25 4 114.9 2758.9 4 114.7 2754.8 

10 35 100 30 4 113.8 2737.0 4 113.2 2725.6 

10 35 150 35 4 112.7 2714.9 4 111.8 2695.9 

Choose 

SDM ’ 

SDM 

SDM 

SDM 

SDM 

SDM 

CM 

CM 

CM 

CM 

CM 

CM 
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Furthermore, in order to compare the results with those obtained from the crisp model [4], WC 
denote the chosen optimal solutions by L**, Q”, and MK**. Also, for 4 = 0.5 aud q = 0.05, 
using the procedure proposed in [4], we find that the optimal lead-time L, = 4, the optimal order 
quantity Qs = 124.7, and the minimum total expected annual cost EAC, = 2956.5. Thus, the 
result of Theorem 2 with that of crisp case can be compared as follows: Rel L = [(L** - L,)/L,sj x 
lOO%, RelQ = [(Q** - QS)/QS] x 10070, and RelTC = [(MK** - EAC,)/EAC,] x 100%. lisitl!: 
the values in Table 3 and these formulas, we obtain the results listed in Table 4. 

It can be observed for each case of (A,, AZ, As, A*), the solution L ** is the same as L,<, mhilc 

Q ** and MK** are different from Qs and EAC,, respectively (Q** < Qs and Ml{** < E4&). 
We note that the numerical results depend on the given values of problem pkararneters, which 
therefore, for other cases, it may get different results. In Sections 5.B and 5.D, we will discuss 
this problem. 

Table 4. Compare the results of Theorem 2 with that obtained front the crisp 
model [4]. 

Given 
Parameters Theorem 2 Related Errors (‘S) 

AI A2 A3 A4 L” Q ** MK”* Rel L Rel Q Rel TC 

5 50 25 50 4 116.1 2782.9 0 -6.90 4.87 

5 50 30 100 4 117.2 2804.4 0 -G.Ol --5.1-l 

5 50 35 150 4 118.3 2825.6 0 -5.13 -4.,13 

10 35 25 50 4 116.1 2782.9 0 -6.90 -5.87 

10 35 30 100 4 117.2 2804.4 0 -6.01 - 3 .I 4 

10 35 35 150 4 118.3 2825.6 0 -5.13 -4.43 

5 50 50 25 4 114.7 2754.8 0 -8.02 -6.82 

5 50 100 30 4 113.2 2725.6 0 -9.22 -7.81 

5 50 150 35 4 111.8 2695.9 0 -10.34 -8.81 

10 35 50 25 4 114.7 2754.8 0 -8.02 -6.82 

10 35 100 30 4 113.2 2725.6 0 -9.22 -7.8 1 

10 35 150 35 4 lla1.8 2695.9 0 -10.34 -8.81 

Table 5. The optimal solutions of Theorems 1 and 3 (L’ in weeks). 

Given 
Theorem 1 

Given 
Parameters Parameters T heorclll 3 

Al a2 L’ Qi(L*) Kl(Qi(L”),L*) A3 A4 As As L’ Q;(L*) K~(Q~(L*),L*J 

10 35 4 115.5 2770.9 25 50 0 0 -1 11G.l ‘782.9 

10 35 4 115.5 2770.9 30 100 0 0 ‘1 117.2 2804.4 

10 35 4 115.5 2770.9 35 150 0 0 4 118.3 2825.6 

5 50 4 115.5 2770.9 25 25 0 0 4 115.Y, 1770.9 

15 45 4 115.5 2770.0 50 50 0 0 4 1 15.5 ‘770.9 

20 40 4 1155 2770.9 100 100 0 0 4 115.5 2770.0 

10 35 4 115.-, 2770.9 25 50 0.1 0.3 4 llG.1 2782.9 

10 35 4 115.5 2770.9 25 50 0.2 0.2 4 116.1 27x2 9 

10 35 4 115.5 2770.9 25 50 0.3 0.1 4 11G.l 2782.9 

10 35 4 115.5 2770.9 50 100 0.1 0.3 ‘1 116.7 ‘794.9 

10 35 4 115.5 2770.9 50 100 0.2 0.2 4 115.5 2794.9 

10 35 4 115.5 2770.9 50 100 0.3 0.1 4 115.5 2794.9 
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EXAMPLE 2. In this example, we determine the optimal solution for Theorem 1 (i.e., Ki(Q, L) in 
equation (37)) and Theorem 3 (i.e., Kd(Q, L) in equation (40)). For j3 = 0.5, we first calculate the 
results of Theorem 1 for given (Ai, A,), and then Theorem 3 by further given (As, Ad, As, As). 
Using the numerical analysis method, we obtain the computed results as shown in Table 5. 

From these results, the following can be observed. 

(i) The solutions of Theorem 1 are insensitive to the parameters (Ai, A,). The reason is 
that in this example for the various given sets of (Ai, A,), the values of E(W - Y-)+ (in 
equation (20)) are all close to zero, hence, the solutions obtained from equation (21) in 
Theorem 1 are identical. 

(ii) When Aa = A4 and As = As = 0, the results of Theorem 3 are the same as Theorem 1. 

Furthermore, by comparing the results with that shown in Table 3, it can be found when As = 
As = 0, the results of Theorem 3 are identical to those obtained in Theorem 2 using SDM. 

5. DISCUSSIONS 

5.A. The Relationships Between Theorems 1, 2, and 3 

(A.l) In Theorem 3 (i.e., equation (40)), letting As = As = 0, we obtain 

&(Q, L) = y + 7 + &(L) = y + y + &t(L) = Kz(Q, L), 

which means Theorem 3 is reduced to Theorem 2(i) (i.e., equation (38)). Hence, it can be 
concluded that Theorem 2(i) is a special case of Theorem 3. 

(A.2) In Theorem 2(i) (i.e., equation (38)) and (ii) (i.e., equation (39)), letting As = Ad, we 
obtain Kz(Q,L) = &(Q,L) = Ki(Q,L), w ic means Theorem 2(i) and (ii) are reduced h h 
to Theorem 1. That is, Theorem 1 is a special case of Theorem 2. 

(A.3) In Theorem 3 (i.e., equation (40)), letting A s = A4 with As = As = 0, or letting 
As = A4 = 0 with As = As, we get Ka(Q, L) = Ki(Q, L), which means Theorem 3 is 
reduced to Theorem 1. That is, Theorem 1 is a special case of Theorem 3. 

5.B. Comparing E(W -r)+ with E(X -r)+ 

Equations (12) and (21) can be rewritten as 

EAC(Q,L)=$[A+U(L)]+h(;+kod) 

$[r+~g(l-P)]+$(l-a,jE(X-r)+ 

and 

EACP(Q, L; A,, A,) = $ [A + U(L)] + h 

$[*+lro(l-B)]+h(l-/i)}E(W-7)+, 

respectively. Thus, the difference of them is 

DCP = EAC(Q, L) - EACP(Q, L; A,, A,) 

$[-+ro(l-p)]+h(l-P))[E(X-r)+-E(h)+]. 

(42) 

(43) 

Because (D/Q)[r+rc(l-P)]+h(l-P) > 0, and from equation (17) that w = s-p~+(Ai-A2)/4, 
we can obtain the following results. 
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CASE 1. If PL > (Al-Az)/4, then w < 2, or equivalently w-r < Z--T, and hence, E(W--T)+ < 
E(X - ?q+, which implies DCP > 0, i.e., EACP(Q, L; A,, A,) < EAC(Q, L), ‘dQ > 0, L E 5’. 
Therefore, millQ>O,&S EACP(Q, L; A,, A,) < minQBO,LcS EAC(Q, L). 

CASE 2. If pLL < (A, - A2)/4, f 11 o owing the same approach as in Case 1, we obtain E(W .- 
r)+ > E(X - r)+, and hence, EACP(Q, L; Ai, A,) > EAC(Q, L), ‘P’Q > 0, L E S, therefore. 

minQ>O.LES EACP(Q, L; Al, A,) > minQ>O,&S EAC(Q, L). 
CASE 3. If ILL = (Ai -A2)/4, then E(B’-r)+ = E(X-r)+. and hence, EACP(Q> L; A,, A,) .= 
EAC(Q, L)? ‘dQ > 0, L E S, therefore, 

Q$~csEACP(Q, L; Al, A2) = L2r&;eSEAC(Q, L). 

That is, in this case, the fuzzy mixture inventory model with probabilistic fuzzy set (proposed ill 
Theorem 1) is equivalent to Ouyang et u1.‘s model [4]. 

5.C. Signed Distance and Centroid Methods 

In Theorem 2, we employed the methods of signed distance and centroid to defuzzify the fuzzy 
total cost. Now, we further discuss which method is better. From equations (27) and (28), we 

get 

DCS = EACPC(Q, L; A,, j = 1,2: 3,4) - EACPS(Q, L; A,, j = 1,2,3,4) 

= (a;;QA3) {A + [ 7r + 7ro(l - P)]E(W - ?-)+ + U(L)} 

Because A + [T + rra(l - ,0)]E(W -r)+ + U(L) > 0 and Q > 0, we have the following results. 

CASE 1. IfAs < Ad, thenDCS > 0, i.e.! EACPS(Q,L;A,,j = 1,2:3;4) < EACPC(Q,L;Aj,j = 
1,2,3,4). This means the total expected annual cost in the fuzzy sense obtained using the signed 
distance is less than that of using centroid. In this situation, it is better for the decision-maker 
to adopt the total cost EACPS(Q, L: A,, j = 1,2,3: 4) obtained by signed distance to determine 
the optimal solution. 

CASE 2. If As > Ad, then DCS < 0, i.e., EACPC(Q, L; A,,j = 1,2,3,4) < EACPS(Q, L; A,,j = 
1,2,3,4). In this situation, it is better to adopt the total cost EACPC(Q, L; a,.j = 1,2,3,4) 
obtained by centroid to determine the optimal solution. 

CASE 3. If As = A4, then DCS = 0, i.e., EACPS(Q, L; A,,j = 1,2! 3,4) = EACPC(Q, L; A,,j = 
1,2,3,4). In this situation, either the total cost obtained by signed distance or centroid could be 
adopted to determine the optimal solution. 

5.D. The Relationship Between Theorem 2 and Crisp Case 

In Section 5.B, Case 3, we know that when PL = (Al - A2)/4, Theorem 1 is equivalent to 
the crisp case, and from Section 5.A, (A.2), we know that when As = A4, Theorem 2 reduces to 
Theorem 1. Thus, it can be concluded that when PL = (Ai - A2)/4 and Aa = A4, Theorem 2 
reduces to the crisp case. 

6. CONCLUSIONS 

In this article, we apply the fuzzy sets theory to reformulate the mixture inventory model 
involving variable lead-time with partial backorders. Three fuzzy models are proposed. First, 
we use the probabilistic fuzzy set to construct a new random variable for lead-time demand and 
obtain the total expected annual cost in the fuzzy sense. Second, we use the triangular fuzzy 
number to represent the imprecise annual demand and obtain the model with fuzzy total cost. 
For this fuzzy model, we employ two methods of defuzzification, the signed distance and centroid, 
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to derive the value of total cost in the fuzzy sense. Third, we further fuzzify the backorder rate 
of the demand during the stock-out period as the triangular fuzzy number, and derive the value 
of total cost in the fuzzy sense by signed distance. The main results of the above cases are 
summarized in Theorems 1-3. Furthermore, through the mathematical analysis, we show the 
relationship between these theorems, and illustrate in what situation adopting the total cost 
obtained by signed distance or centroid is better. 

Finally, we would like to point out that the advantage of fuzzy models themselves are they keep 
the uncertainties, which can capture the real situations better than the crisp model does. In this 
paper, since we do not attempt to establish the superiority of proposing new models to reduce 
more inventory cost than before, but providing an alternative approach of modeling uncertainties 
for the decision-maker, therefore, the results of numerical examples did not show a significant 
reduction in inventory cost comparing with that obtained from the crisp model [4]. 
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