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Abstract

We study empirical Bayes estimation of the guarantee lifetime 6 in a two-parameter exponential distribution having a
probability density p(x|0, ) = (1/f)exp(—(x — 0)/)I(x — 0) with unknown scale parameter . An empirical Bayes
estimator ¢¥ is proposed and its associated asymptotic optimality is studied. It is shown that ¢} is asymptotically optimal
in the sense that its regret converges to zero at a rate n~>"/?+1_ where n is the number of past observations available and r
is a positive integer related to the prior distribution G.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, there is a growing interest in empirical Bayes theory for some family of distributions. For
instance, Nogami (1988) and Huang and Liang (1997a,b) study empirical Bayes procedures for uniform
distributions. Singh and Prasad (1989) and Prasad and Singh (1990) investigate empirical Bayes procedures for
estimating the guarantee lifetime in a two-parameter exponential distribution. Tiwari and Zalkikar (1990) and
Liang (1993) consider empirical Bayes estimation problems for Pareto distributions. Datta (1991, 1994) and Li
and Gupta (2001, 2003) study empirical Bayes procedures for truncation-parameter distributions. Huang
(1995) and Huang and Liang (1997a,b) study empirical Bayes procedures for truncation-parameter
distributions using linex error loss. Balakrishnan and Ma (2002) and Liang (2003) study empirical Bayes
procedures for a location parameter in a shifted gamma distribution.

In this paper, we consider a two-parameter exponential distribution having a probability density function

p(x|9,ﬁ)=%exp(¥>l(x—0), (1.1)
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where 0> 0 is the guarantee lifetime parameter and /(x) = 1 if x>0, and 0 otherwise. Singh and Prasad (1989)
and Prasad and Singh (1990) consider the problem of estimating the guarantee lifetime parameter 0. They
propose some empirical Bayes estimators for 6 under the situation that the scale parameter f is known.
However, it is noted that in many practical applications, the value of the parameter f may not be known.
Therefore, it is useful and important to consider the problem of estimation for the guarantee time parameter 6
when f is unknown.

In the empirical Bayes setup, the parameter 0 is a realization of a positive random variable @ having an
unknown prior distribution G. Throughout the paper, we assume the following :

Assumption A. The prior distribution G has a density g satisfying

(A1) g is decreasing in >0 and g(0) = 0 for 6> b for some known value b, 0 <b < o0.
(A2) g is (r — 1) times differentiable and g"~"(0) is continuous on [0, b].

The paper is organized as follows. The estimation problem is formulated in Section 2 and a Bayes estimator
is derived. Then the empirical Bayes framework of this estimation problem is introduced in Section 3. By
mimicking the form of the Bayes estimator, an empirical Bayes estimator ¢* is constructed. The asymptotic
optimality of ¢ is investigated in Section 4. Under Assumption A, ¢¥ is shown to be asymptotically optimal
that its corresponding regret converges to zero at a rate n=>"/"+D_where n is the number of past observations.

2. Bayes estimation

Let X1,...,X,, be a sample of size m from a two-parameter exponential distribution having a probability
density p(x|0, ) given by (1.1). Let ¥ = min(Xy,...,X,,) and W =>",X;—mY. For a given (0,f), Y
follows a two-parameter exponential distribution with probability density
1610.5) = oo ("9 =0) 16 - 0, @)

i p

and distribution of 2W /g follows x*(2(m — 1)), the chi-square with df 2(m — 1). We denote the probability
density of W by g(w|f). Y and W are then independent, and (Y, W) is sufficient for the parameters (0, f§). It is
assumed that the value of the scale parameter f is fixed but unknown, and the parameter 6 is a realization of a
positive random variable @, which follows an unknown prior distribution G fulfilling Assumption A. Thus,
SeWIB) = [f(0,)dG () is the marginal probability density of Y. Let Fg(y|f) denote the accumulative
distribution associated with f;(»|f). Following Prasad and Singh (1990), the prior distribution G can be
expressed as

60) = Fo(O1p) + 2 roc01p). (.2)

Since we are interested in Bayes and empirical Bayes estimators of the parameter 6, we may consider
estimators based on (Y, W). Using the square error loss, given (Y, W) = (y, w), the Bayes estimator ¢;(y, w) is
the posterior mean of O, i.e.

207 (10, Bg(wlB) dG(0)
w) = E[@(Y, W) = (y,w)] =
Pty w) = ELOIY W) = 0= " 50y w1) dG0)
[ 0rG10,p)AGO)  [3 0e/F dG(0)
T TIO0.pdG (0) [T emPdGO)

Note that ¢g(y, w) is independent of w and hence is denoted by ¢;(»).
Using the identity relationship (2.2), we can obtain

/y 0f (110, ) dG(0) = xf (1) — /y exp (y)
0 0

2.3)

dFg(015).
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Therefore,
_ROre10,pdGO) ag(Ip)
e R A AT R 24)
where
%601B) = /0 yexp(_’”(yﬂ_@)) dF6(01p). 2.5)

It should be noted that under Assumption [Al], for y>b,

fg Gem(?/l}dG(Q) B fé’ Pemi/BdG 0) B

Pc(y) = Jo emBdGO) [P emiindG(o)

@ (D). (2.6)

The minimum Bayes risk of this estimation problem is then given by

R(G,p6) = E(rolpq(Y) — OF. 2.7)

Note that the Bayes estimator ¢4(y) is a functional of the prior distribution G which is unknown. Therefore,
it is impossible to implement ¢, for practical application. However, when a sequence of past data is available,
we can estimate some related quantities by part of past data. In the following, we study the estimation problem
by the empirical Bayes approach.

3. Empirical Bayes estimator

For the empirical Bayes framework, at stage i, we let X;;,..., X;, be a sample of size m arising from a
two-parameter exponential distribution with p.d.f p(x|6;, ), where 6; is a realization of a positive random
variable ©;. Here, it is assumed that ©; are iid and follow the unknown prior distribution G fulfilling
Assumption A. Let Y; = min(X;,..., X;,) and W; = Z;LX,] —mY;. Thus, (Y;, W;,0),),i=1,2,... are iid
copies of (Y,W,0), where (Y;, W;), i=1,2,..., are observable, but ©&; are not observable. Let
Yn)=(Y4,...,Y,), Wn) =W,,..., W,). At the present stage, say stage n+ 1, (¥(n), W(n)) stands for the
n past data and (Y,.1, W,.1) denotes the present random observation. Let 0, be a realized value of the
current random guarantee lifetime parameter @,,;. We attempt to estimate 6,,; by using the current observed
value Y,y = y and the past data (¥(n), W(n)). Thus, an empirical Bayes estimator ¢,(y) = ¢,(y, Y(n), W(n)) is
an estimator of 0,4, based on the current observation Y,,; = y and the past data (¥(n), W(n)). The Bayes risk
of ¢, is

R(G,9,) = E.E(y,. .0, )[0x(Yni1) — Onii]’ (3.1

where the expectation E, is taken with respect to (Y(n), W(n)). Since R(G, ¢;) is the minimum Bayes risk,
R(G,p,) — R(G, 95) =0 for all n. Naturally, this nonnegative regret is thus often used as a measure of
performance of the empirical Bayes estimator ¢,. An empirical Bayes estimator ¢, is said to be asymptotically
optimal, relative to the prior distribution G, at a rate ¢, if R(G,@,)— R(G, ;) = O(e,), where {g,} is a
sequence of positive, decreasing numbers such that it converges to zero.

In the following, we seck a way to construct empirical Bayes estimators possessing the desired
asymptotic optimality. The proposed empirical Bayes estimator will mimic the form of the Bayes estimator
@ given in (2.4)~2.5). Therefore, we need to estimate the parameter f and the two functions og(y|f)
and £ (v1f).

Estimation of B: Note that Wy,..., W, are mutually independent and 2W,/B follows x*(2(m — 1)). So,
AW+ -+ W,)/B follows y*(2n(m — 1)). Define B, = (W +---+ W,)/n(m — 1). Hence, 2n(m — 1)B,/p
follows 3*(2n(m — 1)). Therefore, E,[B,] = B, Var(B,) = ﬁz/n(m - 1.

nim—1)+2 2

1 17°
En {ﬁ_n - B} = Pl — 1) = nm— 1) —2] = Fn
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172
el Hefef-] <2
B B Bn B Bv/n
Also, note that f8, and Y(n) are independent.
Let K be a kernel function satisfying the following conditions:

and

(K1) Support of K =10,1],

(K2) 1 ; B 1 if £=0,
| YEOA= 0 e,

(K3) |K(x)| <k for all x.

Estimation of ag(y|p) and f ;(y|p):
For its simplicity, taking 4, = h, define

() = Zexp( my ”)1@—1@),

o =y
fn(y)—nh;K<—]h ) (3.2)

where {h = h,} is a positive sequence which decreases to zero. The exact value of /& will be given later. From
Lemma A.1, we have

@) 1Ef, () —fcOIP)|<cih”, where 01 =ko/r! sup{[f(r)01|ﬁ)| y>0} <oo under Assumption [A2].
(b) Var(f,(y)) <cz/nh, where ¢; = mk0 /B (ko is given by [K3] ).

(©) 1Eatn(y) — 0 B)| < pey/+/n where ¢3 = my/2/B.
@ Var(ap)< 22 | 2601H)
n n

(3.3)

where ¢4 = (m—1)(1 —In 2). Then, o,(y) and f,(y) are consistent estimators of ag(y|f) and f;(¥|p),
respectively. By mimicking the form of the Bayes estimator ¢g(y) of (2.4), we propose an empirical Bayes
estimator ¢(y) as follows:

For Yn+1 =y
. - [ ocn(y) ) /\y} for 0<y<b,
?,(») = ) (3.4)
@ (b) for y>b.
The Bayes risk of ¢ is
R(G,¢}) = E,E(y,,,.0,.)[0f(Yni) — Onni]. (3.5

4. Asymptotic optimality
Without loss of generality, we may assume that b = sup{6>0|g(6) >0} > 1. The proposed empirical Bayes
estimator ¢ then possesses the following asymptotic optimality.

Theorem 4.1. Assume the prior distribution G fulfilling Assumptions [A11-[A2]. Then, the empirical Bayes
estimator @} is asymptotically optimal in the sense that R(G, ¢¥) — R(G, ps) = O(n=2/@r+1),
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Proof. From (2.7),(3.5) and by noting that for y=b, ¢g(y) = ¢g(b) and ¢i(y) = ¢i(b), the regret of the
empirical Bayes estimator ¢* can be expressed as follows:

R(G, @:) — R(G,p5) = E,Ey,, [(P:(Ym—l) —¢g( Yn+1)]2

1
_ /0 E0}(0) — 060 601B) dy

b
+ / EJ0*0) — o60)PS 60IB) dy

E[@k(b) — ¢(OP[1 — Fe(b|p)]
= I(n) + 1I(n) + II(n). @.1)

From (2.4), 0<ac(V1B)/f ¢(v|f)<y. For each 0<y<b and for 1<i<2, it follows from Lemma A.2 (see
Appendix) that

2
E[¢f0’)—€0GO/)]2=En[<y— 40, ) y> ( fgm

_ E[ fxn(y)vo) ocG(VIB)r

n(y) fG(y|ﬁ)
- #() ) B ’
=B YY) N T o ]
2 )
(ylﬁ){ n[|an(y) “G@'ﬁn ]

+ QY Edlf () — £ 60IB)IT). (4.2)
Substituting (4.2) into I(n) of (4.1), and by Lemma A.l, we obtain

1
1) = /0 EJ0*0) — 060 6O1B) dy

b2 exp(—iney/2) ‘ Loyt APl

— X y yh X dy
G l(ylﬁ) n/? G l(ym) 2
Loy ik
0 15 0IB) Wz / e (ylﬁ) (nh)’/2 @
8y2h”c]
(ylﬂ)
5
B Zli(n)‘ 4.3)
i=1
Note that for each 0 <y <1, under Assumption [Al]
¥ 5
fG(y|ﬁ) = / Tefm(yfo)//}g(e) d9>g(1)/ ﬂefm(ny)/[} do
o B o B
my m
=g()[1 —e ™= —9(3)5 Y _ sy, 4.4)

where ¢s = mg(1)/38.
Substituting (4.4) into I;(n), we have

exp(—inc4/2)/1 2)>* d _exp(—/ln04/2)
0oy

Li(n)< 2 s Y T lAI2 =)

4.5)
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Also, since 0<ac(¥|p)/f c(vIP)<y, we have,

2 b 218\ 2 (S i
k() = nm/ f““(ym)(/gcym)) dygm/o IR 0hy

1-2/2 2
<2 [ 15 emars 2

26')' 1 y2 20).
Ii(n)< / dy<————,
S o (cop)y! Y W2l

82 32 8¢/
L)< —= / — dy< ’
(k2 Jo (esyy'™ 7 by e

) 1 2 8hﬂ.r ﬂ
I5(n)<8hhcf/ yi—l dy<—- 1 .
0 (¢sy) s

Combining (4.4)—(4.9), it follows that

_ exp(—Ancy/2)
1n) = O( W22 = )

Under Assumption [A.1], for each 1<y <b,

SeWlp) = / 7 e "0=0/b g(0) de—E e—m/b /0 > mop dG(0)

) + O((nh)™*"*) + O("™).

1
> Ee*mb/ﬁ / ¢"/P dG(0) = ¢4>0.
0

Taking / = 2, and substituting (4.2) into II(n), again it follows from Lemma A.1 that

b exp(—ncs) ocG(yIﬁ) 63J/
H(”K/l 70l > / 7B n / 7o0i® < n
"8 o el
2y
L Teolp YT Te01B)

5
=Y ).
i=1

By (4.11),
()< 2b exp(—ncy) ’
nce
b2aGw|ﬁ) 1 b’
II - 2 d X
=, [ T =a) <]

262 b C2b3
11 <73 2d <37’
3(n) ncé/1 ydyss

b 3
II4(n)<—8C2 / yzdy 3czb
nhce J,

nhecg

21,2r b 2r 21.3
s < I [Tg2aye A
¢ J1 Ce

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

@.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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Combining (4.12)—(4.17) it yields that

I(n) = O((nh)~") + Oh™). (4.18)

Let ¢; =1 — Fg(b|f). Thus,

WI(n) = E0*(b) — ogb)Per = Ey Kfﬂ“’) o) N “G@'ﬁ)]

(b) S 6(bIp)
2
< ———A{E[on(b) — ag(b 4b*E,[f (b) — f (b
fé(blﬁ){ [0 (b) — aG(bIB))” + Uu(b) — £ G(bIPT)

<32 eXP(—nC4)+“G(b|ﬁ)_’_ﬁ+bzcz+b2 2h2;}
e n n n nh

= O((nh)~") + O(™). (4.19)

Taking (4.1), (4.10), (4.18) and (4.19) together it leads to R(G,¢})— R(G, ¢g) = O(exp(—4ncs/2)/
n2(2 = 7)) + O((nh)~*/?) + O(h™"). Tf we choose h = n~'/@+D and ) = 4, = 2(1 — 1/1n n), then, R(G, ¢*)—
R(G,pg) = O(n~>/rtD) [

5. Concluding remark

Both Singh and Prasad (1989) and Prasad and Singh (1990) have investigated empirical Bayes estimators for
the guarantee lifetime parameter 6 in the two-parameter exponential distributions when f is known. Prasad
and Singh (1990) have proved that their proposed empirical Bayes estimator ¢S possesses the asymptotic
optimality; however, the corresponding rate of convergence has not been studied. Singh and Prasad (1989)
have studied an empirical Bayes estimator ¢3F. Under the assumption that f ;(y|f) is r-times differentiable and
|0] <a for some known finite a ( see Singh and Prasad, 1989; Prasad and Singh, 1990), they have shown that
o3P is asymptotically optimal with a rate

R(G, o) — R(G, pg) = O((n™"/" D 1n In n)'/>7%) (5.1)

for e>0. From (5.1), it can be seen that the best possible rate for qo,SlP isO((n'In In n)l/z) when r is sufficiently
large. In this paper, we extend this empirical Bayes estimation problem to the case that § is unknown. The
achievable rate of convergence of our proposed empirical Bayes estimator ¢ is O(n~>/+D) which is faster
than that of ¢5F.
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Appendix A. Appendix A

Lemma A.1. Suppose Assumptions [A1]1-{A2] hold. Then,

(@) |Eof2(0) —f OIBI<crh’, where ¢ = (ko/r) sup{[f D (Bl y> 0} < 0o.

(b) Var(f,(v))<cz2/nh, where c; = mkﬁ/ﬁ.

(©) |Enon(y) — ac(VIB < yey//n where 3 = m\/z/ﬂ

(d) Var(o,(y)) < exp(—ncq)/n + ag(¥|p)/n, where ¢4 = (m — 1)(1 —1n 2).
For 0<1<2.

©) Edlf20) — f OB < (ca/nhy* + (i)Y .

() Enllon(y) — 2B 1< (exp(—ncq) /n)? + (I B)/n)? + (ves //n )
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Proof. (¢) and (f) can be obtained from (a), (b), (¢) and (d) and an application of C,-inequality. (a) and (b) can
be obtained through a straightforward computation. It remains to show only parts (c) and (d).
(c) Note that 5, and Y(n) are independent. Also, [e™ —e™|<|x — y| for x>0, y>0. Thus,

|En05n(y) - O‘G(y|ﬁ)|
Y y
Eje " dEgli) ~ [ e aFo(1p)
0

/’"‘y ”E[n B‘

/ m(y—z) ch;(rm)

Vomy _ &
Y NN
(d) Note that o, (y) = (l/n)zj’f=1 exp(—m(y — Y;)/B,)I(y — Y;). Recall that Y,..., Y, and f, are mutually
independent. Thus, given f,, exp(—m(y — Y;)/p,)I(y — Y;),j = 1,...,n, are iid. So, the conditional variance
of o,(y) given f3, is

varo) = Var (e (Z5 ) 10 - v, )

<!, [exp (%‘Y’)) 16— Y_f)wn} |

] dF (1)

Hence,
Var(o,(y)) = E,[Var(e,(y)|5,)]
< rE, [exp <M) Iy - Yj)lﬂn}

By
_ g [exp (M) =1 )]
" B |
h
- | Bkt ar

where

B o (5]
. 2m(y — 1) 7_3 2m(y — t) 7_1
= {e"p( B, > (/3 ﬁﬂ i {e"p< B, > </3n ﬁﬂ
= A(y,n) + B(y,n).
For 0<t<y,

Ay, n)<P{B an 0} _P{%— 1>1}
< exp(—n(m — [l — In 2]) = exp(—ncy),

where the inequality is obtained by an application of Lemma 4.1 of Liang (1997) and the fact that
2n(m — 1)B,/B follows z>(2n(m — 1));

oo 0) 3o (0)
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Therefore,

—m(y —t)
p

O

e
Var(on ()< - / [exp(—ncn 4 exp(
nJjo

< exp(—ncy) n OCGO/W)_
n n

)] dF (1)

The following Lemma is from Singh (1977).

Lemma A.2. For a pair of random variables (Y ,Z) and real values y, z#0, 0<c<oo and 0<i<2,

Y y ) p y ; A
E[?‘E ”} <W{E“Y‘y”+(‘2‘+"’) E['Z‘Z']}'
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