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In terms of flexibility and product variety in lot-sizing systems of crisp cases, the 

average demand of per unit of time (mj), the relative duration of setup (qj), and the unit 
cost of production (cj) are considered. Instead of using the usual method that the mj, qj, 
and cj in the total cost function are respectively fuzzified by the triangular fuzzy numbers 
to derive fuzzy total cost, in this paper, we construct three different intervals to include 
mj, qj, and cj, respectively, and then consider the fuzzification of the system from these 
three different intervals directly. And finally the fuzzy total cost is obtained. By applying 
respectively the signed distance and centroid method for defuzzification, two different 
total cost functions are obtained, and thus the respective optimal solutions are computed. 
 
Keywords: fuzzy sets, signed distance, fuzzy total cost, lot-sizing, flexibility, centroid, 
product variety 
 
 

1. INTRODUCTION 
 

In early literature addressing flexibility and product variety in lot-sizing problems, 
Hadley and Whitin [2] proposed a useful multi-product capacitated EOQ model and pro-
vided the solution by using a Lagrangian algorithm. Parsons [10] first solved the problem 
in a closed-form in 1966. Recently, several studies have discussed flexibility and product 
variety in lot-sizing problem. Spence and Porteus [12] formulated a model of increased 
effective capacity resulting from reduced setup times, and they also considered overtime 
and lot-sizing, which is normally considered only in aggregate planning models. Xavier 
de Groote [1] performed a sensitivity analysis of the multi-product capacitated lot-sizing 
problems formulated by Hadley and Whitin [2]. The sensitivity is analyzed by many ag-
gregate parameters that can be interpreted as a measure of the variety of the product line 
and the flexibility of the production process in which the definition of flexibility is also 
considered. Wang and Fang [13] proposed a novel fuzzy linear programming method for 
solving the aggregate production planning problem where the market demands and unit 
cost to subcontract are fuzzy in nature. Later, Wang and Fang [14] applied the same 
method to solve the aggregate production planning with multiple objectives, where fac-
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tors such as the product price and unit cost to subcontract are fuzzy in nature. Hsieh [3] 
developed two fuzzy production inventory models and applied an extension of the La-
grangean algorithm to solve the inequality constraint problems to find optimal solutions. 
Hsieh and Chiang [4] established a manufacturing-to-sale planning model by using pos-
sibility linear programming techniques to deal with uncertain manufacturing factors. 
However, while some discussion of the above models is constrained to the crisp cases, 
the others focus on fuzzy linear programming methods. Recently, the defuzzification 
problems of production inventory have been considered [8, 9]. In the total cost function 
of crisp production inventory [8], total demand and production quantity per day are 
fuzzified into triangular fuzzy sets to generate the fuzzy total cost function. After de-
fuzzification using centroid, the estimator of total cost functions can be found, and thus is 
an optimal solution. In the total cost function of crisp production inventory [9], produc-
tion quantity per cycle is fuzzified into trapezoidal fuzzy sets to compute the fuzzy total 
cost. The estimator of total cost function is also discerned employing centroid to de-
fuzzify the fuzzy total cost; furthermore, an optimal solution is found as well. Both the 
works previously mentioned used fuzzification of total cost function of crisp case. 

The average demand of per unit time (mj), relative duration of setup (qj), and unit 
cost of production (cj) are fixed in flexibility and product variety in lot-sizing model [1, 
12]. However, in reality, the average demand of per unit time, relative duration of setup, 
and unit cost of production may have some minor instability due to the uncertain nature 
of future production processes and fluctuations in demand. Therefore, this study applied 
fuzzy set theory as first proposed by Zadeh [16]; if the fuzzy average demand of per unit 
time, fuzzy relative duration of setup and fuzzy unit cost of production are expressed 
respectively as the neighborhood of the fixed average demand of per unit time, fixed 
relative duration of setup, and fixed unit cost of production, then it could better correlate 
with the real situation. This study presents fuzzy approaches to modify the model [1, 12]. 
Instead of usual point fuzzification method, we propose an interval fuzzification ap-
proach for this problem. So far, we have not found any related studies using this pro-
posed method in this area. 

In section 2, we quote some definitions and propositions which are used in section 3. 
In section 3, as mentioned in abstract; instead of the usual method, a new creative 
method is proposed for considering the fuzzification problem of flexibility and product 
variety in lot-sizing system of crisp case. Numerical examples are provided in section 4. 
In section 5, the comparison of using sign distance for defuzzification and that of cen-
troid is discussed. In addition, the situation that the optimal solution of crisp case is the 
special condition of optimal solution of fuzzy case is discussed too. In section 6, the 
usual fuzzification method and the new creative method of this paper are compared. Also, 
the advantages of this new proposed method are addressed. 

2. PRELIMINARIES 

The essential definitions of fuzzy set below are used in section 3.  
 
Definition 1  (Pu and Liu [11]) Let 0�  denote a fuzzy set on R = (− ∞, ∞), then, 0�  is 
called a fuzzy point, if its membership function is defined in the following:  
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( )
0, 0.
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Definition 2  For p < q, 0 ≤ λ ≤ 1, the fuzzy set [p, q; λ] on R is labeled a level λ fuzzy 
interval if its membership function is defined in the following: 

[ , ; ]
, ,

( )
0, otherwise.p q

p x q
xλ

λ
μ

≤ ≤⎧= ⎨
⎩

 

Definition 3  Let Ã be a fuzzy set on R, then, Ã = (a, b, c), a < b < c, denotes a triangu-
lar fuzzy set if its membership function is defined in the following:  

( ) /( ), ,
( ) ( ) /( ), ,

0, otherwise.
A

x a b a a x b
x c x c b b x cμ

− − ≤ ≤⎧
⎪= − − ≤ ≤⎨
⎪⎩

�   

By definition in Klir and Yuan [6], Centroid of Ã is written in the following: 

  

  

1( ) ( ) ( ) ( ).
3A AC A x x dx x dx a b cμ μ

∞ ∞

−∞ −∞
⎡ ⎤ ⎡ ⎤= = + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫� ��                  (1) 

Let FT denote a family of all triangular fuzzy sets on R. Let Ã = (a, b, c) ∈ FT, from 
decomposition theory, Ã can be written as ( )

0 1
,AA I λ

λ
λ

≤ ≤
=� ∪  where A(λ) = {x | μÃ(x) ≥ λ}  

is the λ-level set of Ã and IA(λ) is the characteristic function of A(λ), where A(λ) can also  
be expressed as A(λ) = [ÃL(λ), ÃU(λ)], 0 ≤ λ ≤ 1, ÃL(λ) = a + (b − a)λ, ÃU(λ) = c − (c − 
b)λ.  

From Definition 2, μλIA(λ)(x) = μ[ÃL(λ),ÃU(λ);λ](x) ∀x ∈ R. Hence,  

0 1
[ ( ), ( ); ].L UA A A

λ
λ λ λ

≤ ≤
=� � �∪                                          (2) 

From Yao and Wu [15], the signed distance of fuzzy set Ã = (a, b, c) on FT is ex-
pressed in the following. 
 
Definition 4  Let a, 0 ∈ R, then d0(a, 0) = a is defined as the signed distance of a meas-
ured from the origin 0. 
 

If a > 0, the distance from a to 0 is d0(a, 0) = a. Similarly, if a < 0, the distance from 
a to 0 is − d0(a, 0) = − a. Hence, d0(a, 0) = a is named the signed distance of a from 0.  

Let Ã = (a, b, c) ∈ FT, for each λ ∈ [0, 1], A(λ) = [ÃL(λ), ÃU(λ)] is the λ-level set of  
Ã. From Definition 4, signed distance of interval [ÃL(λ), ÃU(λ)] to 0 is defined by  
d0([ÃL(λ), ÃU(λ)], 0) = 

1
2 (ÃL(λ) + ÃU(λ)) = 

1
2 [a + c + (2b − a − c)λ]. Since for all λ,  

[ÃL(λ), ÃU(λ)] ↔ [ÃL(λ), ÃU(λ); λ] is a one-to-one mapping relationship, and 0 ↔ 0.�  
Thus, signed distance of [ÃL(λ), ÃU(λ); λ] measured from 0�  can be defined as  
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d([ÃL(λ), ÃU(λ); λ], 0)�  = d0([ÃL(λ), ÃU(λ)], 0) = 
1
2 (a + c + (2b − a − c)λ), 0 ≤ λ ≤ 1.  

(3) 

The mean of Eq. (3) is calculated by applying the integration and from Eq. (2), we 
have the following definition.  

Definition 5  Let Ã = (a, b, c) ∈ FT, the signed distance of Ã measured from 0�  is de-
fined as  

1

0

1 1( ,  0) (2 ) [ ( ) ( )] .
4 2 L Ud A b a c A A dλ λ λ⎛ ⎞= + + = +⎜ ⎟

⎝ ⎠∫� � � �                      (4) 

From Klir and Bo Yuan [6, 7], four basic arithmetic operations on fuzzy numbers 
are used throughout the paper, i.e., +, −, ·, / are denoted as addition, subtraction, multi-
plication, and division, respectively. Kaufmann and Gupta [5] propose the following. 

Proposition 1  Let Ã = (a, b, c), B�  = (p, q, r) ∈ FT, k ∈ R, then we have 
 
(1) A B+ =� �  (a + p, b + q, c + r) ∈ FT, 

(2) 
( , , ) if 0,
( , , ) if 0,  .T

ka kb kc k
kA

kc kb ka k kA F
>⎧

= ⎨ < ∈⎩
�

�  

From Proposition 1 and Definition 5, the following proposition can be obtained. 

Proposition 2  Let Ã, B�  ∈ FT, k ∈ R, then, 
 
(1) ( , 0) ( , 0) ( , 0),d A B d A d B+ = +� � � � �� �  
(2) ( , 0) ( , 0).d kA kd A=� � � �  

The following ranking of fuzzy numbers on FT is defined in [15] in the following.  

Definition 6  Let Ã = (a, b, c), B�  = (p, q, r) both belong to FT, the following ordering 
is defined. 

A B� �≺  if and only if ( , 0) ( , 0),d A d B<� � ��  
A B≈� �  if and only if ( , 0) ( , 0).d A d B=� � ��  

 
Proposition 3  For arbitrary , , ,TA B C F∈� ��  the following properties follow:  
 
(1) Law of trichotomy: Exactly one and only one of the relations ,A B� �≺  B A�� ≺  or Ã ≈ 

B�  holds.  
(2) Law of reflexivity: Ã ≺≈ Ã holds.  
(3) Law of antisymmetry: A B≈� �≺  and B A≈ �� ≺  imply A B≈� � .  
(4) Law of transitivity: ,A B B C≈ ≈� �� �≺ ≺  imply A C≈� �≺ . 
 

From Proposition 3, “≺, ≈” is the linear order of FT. 
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Definition 7  For Ãk = 1, 2, …, n, ∈ FT, define 
1
Min kk n

A
≤ ≤

�
 = Ãj, j ∈ {1, 2, …, n}, if and  

only if Ãj ≺≈ Ãk ∀k ∈ {1, 2, …, n}, or equivalently ( , 0) ( , 0)j kd A d A≤� � � � ∀k ∈ {1, 2, …, 
n}. 

From Kaufmann and Gupta [5], the following interval operations exist. 

a < b, c < d,  
[a, b] + [c, d] = [a + c, b + d],  

[ , ] if 0,
[ , ]

[ , ] if 0.
ka kb k

k a b
kb ka k

>⎧= ⎨ <⎩
 

If 0 ≤ a < b and 0 ≤ c < d, then 

[a, b] × [c, d] = [ac, bd].                                              (5) 

For Ã = (a, b, c) ∈ FT, let the midpoint of interval [a, c] be represented by M = 
1
2 (a 

+ c), then from Eq. (1), Centroid of Ã is C(Ã) = 
1
3 (a + b + c); from Eq. (4), the signed  

distance of Ã is d(Ã, 0)�  = 
1
4 (2b + a + c). This results in the following.  

1( ) ( ),
3

M C A M b− = −� 1( ) ( , 0) ( ),
6

C A d A M b− = −� � � 1( , 0) ( ).
2

d A b M b− = −� �  

Consider the following cases: 
 

Case 1: If b < M, then ( , 0) ( )b d A C A M< < <� � �
 (in Fig. 1). 

Case 2: If M < b, then ( ) ( , 0)M C A d A b< < <� � �
 (in Fig. 2). 

Case 3: If M = b, then ( ) ( , 0)M C A d A b= = =� � � . 
 

Figs. 1 and 2 show that in cases 1 and 2, μÃ(C(Ã)) < μÃ(d(Ã, 0))�  < μÃ(b) = 1. In case  
3, μÃ(C(Ã)) = μÃ(d(Ã, 0))�  = μÃ(b) = 1. Hence, the following proposition is found. 

( )C A�  

1 

0  b M c 

( , 0)d A� �    ( )C A�

1

0 a b M

( , 0)d A� �  

c 

 
Fig. 1. Case 1.                             Fig. 2. Case 2.  

 
Proposition 4  For triangular fuzzy sets Ã = (a, b, c) ∈ FT, according to the principle of 
maximum membership grade, the method based on signed distance to defuzzy Ã triangu-
lar fuzzy number is better than that of the centroid method. 

a 
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Let p, q, r ∈ R and p < q < r, q is an any fixed point in [p, r], corresponding to the 
interval [p, r], q can consider for fuzzification as the triangular fuzzy number q�  in the 
following. Decision maker takes a point from the interval [p, r], if the point is q, the error 
between the point and fixed point q is zero. Based on the confidence level concept; if the 
error is zero, then the confidence level is the maximum value and set to 1. If the point is 
taken from the interval [p, q), when the point moves away from q, then the error between 
the point and q becomes larger, i.e., the confidence level becomes smaller. Additionally, 
if the point is equal to p, the confidence level attains the minimum value and thus set to 0. 
Similarly, If the point is taken from the interval (q, r], when the point moves away from 
q, the confidence level becomes smaller. Additionally, if the point is equal to r, the con-
fidence level attains to 0. Hence, corresponding to the interval [p, r], the following trian-
gular fuzzy number q�  is set. 

In Fig. 3, it shows that the membership grade is 1 when triangular fuzzy number q�  
locates at q. However, in the interval of [p, q) or (q, r], the membership grade decreases 
when q�  moves away from q. The membership grade is 0 when q�  takes exactly either 
one points of p or r. Therefore, the membership grade shares the same properties of con-
fidence level. If we view confidence level as the membership grade, corresponding to the 
interval [p, r], it is reasonable to set triangular fuzzy number .q�  Hence, we have the fol-
lowing proposition 

1 

0   p          q            r

( , , )q p q r=�

x
 

Fig. 3. Triangular fuzzy number .q�  

 
Proposition 5  Let p, q, r ∈ R and p < q < r, q is an any fixed point in [p, r], then cor-
responding to the interval [p, r], q can be fuzzified into the triangular fuzzy number q�  = 
(p, q, r). 

3. FUZZY FLEXIBILITY AND PRODUCT VARIETY IN LOT-SIZING 

3.1 Crisp Case 
 

To formulate the flexibility and product variety in lot-sizing from Groote [1], the 
following notations are applied for each product j, j ∈ {1, 2, …, n}. 
 
n: number of product types in manufacturing,  
Qj: product lot-size (Qj > 0), 
mj: average demand (per unit of time), 
rj: finite production rate, 
p: fraction of time in which the facility is available for processing (0 ≤ p ≤ 1), 
S: nominal setup time, 
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cS: direct setup cost (per unit of setup time), 
f: fixed cost (per unit of time), 
qj: relative duration of setup, 
cj: unit cost of production (labor and material), 
i: opportunity cost of capital per unit of time, 

1
( ).

n

m j
j

m rα
=

= ∑  

The cost of the jth product is written in the following: 

1 1( ; , , ) ,
2j j j j S j j j j j j

j
F Q m q c c Sm q ic Q c m

Q
= + +  j = 1, 2, …, n.          (6) 

The total cost of flexibility and product variety in lot-sizing model can be expressed as: 

1
( ; , , ) .

n

j j j j
j

F Q m q c f
=

+∑                                             (7) 

Note 1. The detail of the fixed cost f is considered in section 5.3. 
 

Groote [1] formulated the problem in the following. 

1
Min ( ; , , ),

n

j j j jQ j
F Q m q c

=
∑                                            (8) 

subject to 
1

,
n

j j

jj

m q p
Q S

α

=

−
≤∑  where Q  = {Qj > 0, j = 1, 2, …, n}.               (9) 

The solution to problems (in Eqs. (8) and (9)) has been derived by Parsons [10]. It simply 
applies the Kuhn-Tucker theorem. The optimal cost (per unit time) is given by Spence 
and Porteus [12] in the following. 

1 1
2 ,

n n

S j j j j j
j j

c Sic m q c m f
= =

+ +∑ ∑  when 
1

;
2

n
j j j

Sj

ic m q p
c S S

α

=

−
≤∑  

2

1

2

1
( ) ,4( )

n

j j j
j

Sic m q n

S j j
j

c p c m fp αα
=

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

=
+ − + +−

∑
∑  otherwise.                   (10) 

3.2 Fuzzy Problem and Optimal Solution without Fuzzification of Crisp Total Cost 
Function F(Qj; mj, qj, cj) 

 
This section derives the fuzzy problem without fuzzification of parameters in crisp 

total cost function F(Qj; mj, qj, cj), which differs from the fuzzification of F(Qj; mj, qj, cj)  
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by ( ; , , ),j j j jF Q m q c� � �  where , ,j j jm q c� � �  are triangular fuzzy numbers. The following  
problems are considered for each product j, j ∈ {1, 2, …, n}. In perfectly competitive 
markets, the estimate of average demand mj per unit time that is achieved from the past 
data may fluctuate most of time when present or future data are applied. Hence, the esti-
mate can be written as “average demand per unit of time in the neighborhood of mj” 
(fuzzy language). Therefore, the average demand per unit of time which located in the 
interval [mj − Δj11, mj + Δj12] should be considered. Similarly, deciding on a value qj rela-
tive duration of setup is usually more difficult than that considering the relative duration 
of setup locating in the interval [qj − Δj21, qj + Δj22]. Therefore, this study considers the 
relative duration of setup locating in the interval [qj − Δj21, qj + Δj22] and unit cost of pro-
duction locating in the interval of [cj − Δj31, cj + Δj32]. The decision maker takes reason-
able Δjtk, t = 1, 2, 3, k = 1, 2 which satisfy the following conditions. 

0 < Δj11 < mj, 0 < Δj21 < qj, 0 < Δj31 < cj, 0 < Δjt2 , t = 1, 2, 3.               (11) 

Henceforth, we always take j ∈ {1, 2, …, n}, t = 1, 2, 3, k = 1, 2. For each product j, Qj 
represent unknown decision variables, mj, qj, cj, rj and cS, S, i, p, f are known parameters. 
For any average demand 

*
jm  in the interval of [mj − Δj11, mj + Δj12], any relative duration 

of setup 
*
jq  in [qj − Δj21, qj + Δj22] and any unit cost of production of setup 

*
jc  in [cj − 

Δj31, cj + Δj32], Eq. (6) implies that for each product j and Qj, the following equation of 
cost for product j is given by 

* * * * * * * *1 1( ; , , ) .
2j j j j S j j j j j j

j
F Q m q c c Sm q ic Q c m

Q
= + +                       (12) 

For product j, because  

mj − Δj11 ≤ 
*
jm  ≤ mj + Δj12, qj − Δj21 ≤ 

*
jq  ≤ qj + Δj22, cj − Δj31 ≤ 

*
jc  ≤ cj + Δj32,  

and cS > 0, S > 0, Qj > 0, i > 0.                                        (13) 

So, for each Qj, * * *( ; , , )j j j jF Q m q c  is thus in the following interval. 

[F(Qj; mj − Δj11, qj − Δj21, cj − Δj31), F(Qj; mj + Δj12, qj + Δj22, cj + Δj32)].       (14) 

Since mj ∈ [mj − Δj11, mj + Δj12], qj ∈ [qj − Δj21, qj + Δj22], cj ∈ [cj − Δj31, cj + Δj32], thus the 
crisp case’s Eq. (6) F(Qj; mj, qj, cj) ∈ interval Eq. (14). If we put q = F(Qj; mj, qj, cj) in 
Proposition 5, then from Proposition 5, corresponding to the interval Eq. (14), the trian-
gular fuzzy number ( )jF Q�  is given by 

( )jF Q�  = (F(Qj; mj − Δj11, qj − Δj21, cj − Δj31), F(Qj; mj, qj, cj), F(Qj; mj + Δj12,  
qj + Δj22, cj + Δj32)) ∈ FT,                                   (15) 

where ( )jF Q�  is called fuzzy total cost. 
 
3.2.1 Defuzzification of fuzzy total cost � jF Q( )  based on signed distance 
 

Using the principle of maximum membership grade and by Proposition 4, signed 
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distance is clearly better than centroid for defuzzfication the triangular fuzzy set Eq. (15). 
Therefore, from Definition 5, if we let a = F(Qj; mj − Δj11, qj − Δj21, cj − Δj31), b = F(Qj; mj, 
qj, cj), and c = F(Qj; mj + Δj12, qj + Δj22, cj + Δj32) (in Eq. (4)), then for each product j, we 
have  

*( ; ) ( ( ), 0) ( ; , , )j jtk j j j j jF Q d F Q F Q m q cΔ ≡ =��
2 2

1 [ ( , )
4 j jtR Q+ Δ − 1 1( ; )],j jtR Q Δ   

 (16) 
where 

1 1( ; )j jtR Q Δ = 21 11 11 21
1 ( )s j j j j j j

j
c S m q

Q
Δ + Δ − Δ Δ 31 11

1 (
2 j j j ji Q c+ Δ + Δ +  

31 11 31),j j j jm Δ − Δ Δ                                    (17) 

2 2( ; )j jtR Q Δ = 22 12 12 22
1 ( )s j j j j j j

j
c S m q

Q
Δ + Δ + Δ Δ 32 12

1 (
2 j j j ji Q c+ Δ + Δ +  

32 12 32 ).j j j jm Δ + Δ Δ                                    (18) 

Since cS > 0, S > 0, s > 0, and i > 0, it follows from Eqs. (11) and (16) that F*(Qj; Δjtk) 
is positive for all j, t, k and therefore it is an estimate of cost for product j in the fuzzy 
sense derived by signed distance.  

From Proposition 2 and Eq. (16), we see that *

1 1
( ), 0 ( ; )

n n

j j jtk
j j

d F Q F Q
= =

⎛ ⎞
= Δ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑��   

2 2 1 1
1 1

1( ; , , ) [ ( ; ) ( ; )].
4

n n

j j j j j jt j jt
j j

F Q m q c R Q R Q
= =

= + Δ − Δ∑ ∑  Hence, the total cost of  

flexibility and product variety in lot-sizing of fuzzy case are given in the following (simi-
lar as Eq. (7)). 

*

1
( ; ) .

n

j jtk
j

F Q f
=

Δ +∑                                                (19) 

The value mjqj (in Eq. (9)) is replaced by [mj − Δj11, mj + Δj12] × [qj − Δj21, qj + Δj22] = 
[(mj − Δj11)(qj − Δj21), (mj + Δj12)(qj + Δj22)] (in Eqs. (5) and (11)), for each j, 0 < 

1
jQ (mj −  

Δj11)(qj − Δj21) < 
1

jQ (mj + Δj12)(qj + Δj22). Hence, Eq. (9) can be rewritten as 
1

1 (
n

j
jj

Q m
=
∑   

+ 12 22)( ) .j j j
p

Sq α−Δ + Δ ≤  Finally, the following theorem can be concluded. 

Theorem 1  The flexibility and product variety in lot-sizing of fuzzy case based on 
signed distance can be written in the following. 

*

1
Min ( ; ),

n

j jtkQ j
F Q

=
Δ∑                                              (20) 

subject to 12 22
1

1 ( )( ) .
n

j j j j
jj

pm q
Q S

α

=

−
+ Δ + Δ ≤∑                           (21) 
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Remark 1: By Definition 6, Definition 7, Proposition 3 and Eq. (15), Eq. (16), Eq. (20),  

thereby we obtain 
*

1
Min ( ; )

n

j jtkQ j
F Q

=
Δ∑

1
Min ( ( ), 0)

n

jQ j
d F Q

=
= ∑ ��  which is equivalent to  

1
Min ( ),

n

jQ j
F Q

=
∑ �  where 

1
( )

n

j
j

F Q
=
∑ �  represents 1 2( ) ( )     ( ).nF Q F Q F Q+ + +� � �…  

The optimal solution of Theorem 1 is considered below: 
Applying Eq. (6), Eqs. (17) and (18), for each product j, F*(Qj; Δjtk) (in Eq. (16)) can 

be recast in the following 

* 1( ; ) ,j jtk j j j j
j

F Q A B Q C
Q

Δ = + +                                   (22) 

where  

22 21 12 11 12 22 11 21
1 1 1[ ( ) ( ) ( )]
4 4 4

    ,
j S j j j j j j j j j j j j

S j

A c S m q m q

c Sa

≡ + Δ − Δ + Δ − Δ + Δ Δ + Δ Δ

=
 

32 31
1 1 1[ ( )] ,
2 4 2j j j j jB i c ib≡ + Δ − Δ =  

12 11 32 31 12 32 11 31
1 1 1( ) ( ) ( )],
4 4 4j j j j j j j j j j j j jC c m c m≡ + Δ − Δ + Δ − Δ + Δ Δ + Δ Δ  (23) 

22 21 12 11 12 22 11 21
1 1 1( ) ( ) ( ),
4 4 4j j j j j j j j j j j j ja m q m q≡ + Δ − Δ + Δ − Δ + Δ Δ + Δ Δ  

32 31
1 ( ).
4j j j jb c= + Δ − Δ  

From Eq. (11), for each product j,  

Aj > 0, Bj > 0, Cj > 0, aj > 0, bj > 0.                                    (24) 

In Theorem 1, Eqs. (20) and (21) can be written in the following via Eqs. (22) and (23). 

*

1 1

1Min ( ; ) Min ( )
n n

j jtk j j j jQ Q jj j
F Q A B Q C

Q= =
Δ = + +∑ ∑  

 
1

1 1Min [ ]
2

n

S j j j jQ jj
c Sa ib Q C

Q=
= + +∑                (25) 

subject to 12 22
1

1 ( )( ) .
n

j j j j
jj

pm q
Q S

α

=

−
+ Δ + Δ ≤∑                           (26) 

Theorem 2  The optimal solution of flexibility and product variety in lot-sizing of 
fuzzy case of Theorem 1 (Eqs. (20) and (21)) or (Eqs. (25) and (26)) is given in the fol-
lowing respective conditions. 
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(1) 
2

2( )
,S

iSD
P

c
α−

<  where 

1 2

12 22
1

2 ( )( ).
n

j
j j j jj

j

b
aD m q

=

⎛ ⎞= + Δ + Δ⎜ ⎟
⎝ ⎠∑  

For each product j, the optimal lot-size is given by 

1 2
(0) 2

,jS
j

j

c Sa
ibQ ⎡ ⎤= ⎢ ⎥⎣ ⎦

 and its 

minimum total cost is F(0) = 
(0)

(0)
1

1[ ] .
n

j j j j
jj

Q
A B Q C f

=

+ + +∑  

(2) 
2

2( ) S
iSD
P

c
α−

≥  

For each product j, the optimal lot-size is given by 

1 2
(1) 2

,j
j

j

aSD
p bQ α−

⎡ ⎤= ⎢ ⎥⎣ ⎦
 its min- 

imum total cost is given by F(1) = 
(1)

(1)
1

1[ ] ,
n

j j j j
jj

Q
A B Q C f

=

+ + +∑  where Aj, Bj, Cj, aj, bj 
are defined in Eq. (23). 

 
Proof:  
(1)  For each product j, without condition (26), the optimal solution of Eq. (25) is the  

unique optimal solution which satisfying 
1

1 1
2[ ]

n

S j j j j
jj j

Qc Sa ib Q C
Q =

∂
+ + =

∂ ∑   

2
1 S j

jQ
c Sa− 1

2 0.jib+ =  Therefore, the optimal production lot-size for product j is  

1 2
(0) 2

,jS
j

j

c Sa
ibQ ⎡ ⎤= ⎢ ⎥⎣ ⎦

 and if 
2

2( )
,S

iSD
P

c
α−

<  then condition (26) is satisfied by (0) .jQ   

In addition, from Eq. (19), the minimum total cost is 
(0)

(0)
1

1[
n

j j j
jj

Q
A B Q

=

+ +∑  Cj] +  
f. This completes the proof.                                                

(2) Two situations are considered. 

(i) Consider 
2

2( )
,S

iSD
P

c
α−

=  Eq. (25) is recast as 

2 2

2
1

1 1
2( )

Min .
n

j
j j jQ j

j

iS D a
Qp

ib Q C
α

=
−

⎡ ⎤
+ +⎢ ⎥

⎣ ⎦∑  

Without condition (26), the optimal production lot-size of product j is 
(1)
jQ =   

1 22
.j

j

aSD
p bα−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 Taking 
(1) ,j jQ Q=  the left-hand side of condition (26) is given by  

12 22(1)
1

1 ( )( ) (*).
n

j j j j
jj

p
SQ

m q α

=

−+ Δ + Δ =∑  Hence condition (26) is satisfied and the  

equality holds. Therefore, if 
2

2( )
,S

iSD
P

c
α−

=  then the optimal production lot-size of prod-  

uct j is 

1 2
(1) 2

.j
j

j

aSD
p bQ α−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

(ii) Consider 
2

2( ) S
iSD
P

c
α−

>  

From Eq. (25), for each j, let L(Qj) ≡ cSSaj
1

jQ  + 1
2 ibjQj + Cj and we have 

jQ
∂

∂  

1

1 1
2[ ]

n

S j j j jj
j

Qc Sa ib Q C
=

+ +∑ ( )j
j

d
dQ L Q= 2

2
1 1

2 .j j S j
jQ

ib Q c Sa⎡ ⎤= −⎣ ⎦  Hence, if Qj <  

1 2
(0)2

( ),jS
j

j

c Sa
ib Q⎡ ⎤ =⎢ ⎥⎣ ⎦

 then L(Qj) monotonically decreases with respect to Qj; and if Qj > 

1 22
,jS

j

c Sa
ib

⎡ ⎤
⎢ ⎥⎣ ⎦

 then L(Qj) monotonically increases with respect to Qj. Since 
2 2(1) (0)  j jQ Q−  
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2
2

2
( )

0,j
S

j

Sa iSD
ib p

c
α−

⎛ ⎞= − >⎜ ⎟
⎝ ⎠

 thus, (0) (1)
j jQ Q<  (see Fig. 4). 

)0(
jQ )1(

jQ Value of Qj 

 Sign of 
j

j

dQ
QdL )(

 

Change of L(Qj)  

0－ + 

 
Fig. 4. Change of L(Qj). 

 
For each product j, take any 

*
jQ  such that 

* (1)0 j jQ Q< <  in Fig. 4. Substituting 
*
jQ   

into the left-hand side of Eq. (26) with mj + Δj12 > 0, qj + Δj22 > 0 reveals that *
1

1 (
n

j
jj Q

m
=
∑   

+ Δj12)(qj + Δj22) > 12 22(1)
1

1 ( )( )
n

j j j j
jj

p
SQ

m q α

=

−+ Δ + Δ =∑  (by (*) in (i) of (2)). Hence,  

condition (26) is again violated and 
*
jQ  is not a solution. So, the optimal solution is in  

interval 
(1) .j jQ Q≥  Therefore, from Fig. 4, if 

2
2( )

,S
iSD
p

c
α−

>  the optimal production lot-  

size for product j can be shown to be 
(1)
jQ  and the minimum total cost can be obtained 

by Eq. (19). This completes the proof.                                        
 
3.2.2 Defuzzification of fuzzy total cost � jF Q( )  by the centroid 
 

From Eq. (1), we have 

( ( ); ) ( ; , , )j jtk j j j jC F Q F Q m q cΔ =�
2 2

1 [ ( , )
3 j jtR Q+ Δ − 1 1( ; )],j jtR Q Δ        (27) 

where ( ( ); )j jtkC F Q Δ�  is an estimate of cost for product j in the fuzzy sense by the cen-
troid method. From Eqs. (16), (27), (17) and (18), we have  

( ( ); Δ )j jtkC F Q� * ( ; )j jtkF Q− Δ  

22 21 12 11 11 21 12 22

32 31 12 11 32 31 11 31 12 32

1 1 [ ( ) ( ) ( )]
12

1 ( ) ( ) ( ) ( ) .
2

s j j j j j j j j j j
j

j j j j j j j j j j j j j

c S m q
Q

iQ c m

⎧= Δ − Δ + Δ − Δ + Δ Δ + Δ Δ⎨
⎩

⎫+ Δ − Δ + Δ − Δ + Δ − Δ + Δ Δ + Δ Δ ⎬
⎭

(28) 

Similarly, the analogous methods are applied to Eqs. (22)-(24) of section 3.2.1. For con-
venience, the following notations are defined. 

(0)
22 21 12 11 12 22 11 21

1 1 1( ) ( ) ( ),
3 3 3j j j j j j j j j j j j ja m q m q≡ + Δ −Δ + Δ −Δ + Δ Δ + Δ Δ  

(0) (0) ,j S jA c Sa≡ (0) (0) (0)
32 31

1 1( ), ,
3 2j j j j j jb c B ib= + Δ −Δ ≡  
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(0)
12 11 32 31 12 32 11 31

1 1 1( ) ( ) ( )],
3 3 3j j j j j j j j j j j j jC c m c m≡ + Δ −Δ + Δ − Δ + Δ Δ + Δ Δ (29) 

1 2(0)
(0)

12 22(0)
1

( )( ).
2

n
j

j j j j
j j

b
D m q

a=

⎛ ⎞
⎜ ⎟= + Δ + Δ
⎜ ⎟
⎝ ⎠

∑                            (30) 

Similarly to Eq. (22), Eq. (27) can be rewritten in the following. 

(0) (0) (0)1( ( ); ) .j jtk j j j j
j

C F Q A B Q C
Q

Δ = + +�                              (31) 

Applying the same method, Theorems 1 and 2 lead to the following conclusions. 

Theorem 3  The flexibility and product variety in lot-sizing of fuzzy case based on cen-
troid is expressed in the following. 

1
Min ( ( ); ),

n

j jtkQ j
C F Q

=
Δ∑ �                                             (32) 

subject to 12 22
1

1 ( )( ) .
n

j j j j
jj

pm q
Q S

α

=

−
+ Δ + Δ ≤∑                            (33) 

Theorem 4  The optimal solution of flexibility and product variety in lot-sizing of 
fuzzy case of Theorem 3 (Eqs. (32) and (33))) is given in the following respective condi-
tions. 

(1) 

2(0)
2( ) S

iSD
p

c
α−

<  

For each product j, optimal lot-size is given by 

1 2(0)
(2)

(0)

2
,S j

j
j

c Sa

ib
Q

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 and its  

minimum total cost is F(2) = 
(0) (0) (2) (0)

(2)
1

1[ ] .
n

j j j j
jj Q

A B Q C f
=

+ + +∑  

(2) 

2(0)
2( ) S

iSD
p

c
α−

≥  

For each product j, optimal lot-size is given by 

1 2(0)
(0)(3)

(0)

2
,j

j
j

aSD
p b

Q α−
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 and the  

minimum total cost is F(3) = 
(0) (0) (3) (0)

(3)
1

1[ ] .
n

j j j j
jj Q

A B Q C f
=

+ + +∑  

4. NUMERICAL EXAMPLES 

Some optimal solutions of fuzzy cases were computed by respectively applying 
Theorems 2 and 4, The results are tabulated in Tables 1 to 3. Respective notations are 
depicted in each case. 

(a) Optimal solutions in Theorems 2 and 4 
In Theorem 2, F(0) is represented by F2 with k = 0; F(1) is represented by F2 with k = 

1. In Theorem 4, F(2) is represented by F4 with h = 2; F(3) is denoted by F4 with h = 3.  
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Table 1. (a) Optimal solutions of theorems 2, 4 for example 1. 

Δj11 Δj21 Δj31 Fuzzy case (Theorem 2) Fuzzy case (Theorem 4) case j 
Δj12 Δj22 Δj32 Qj

(k) k = 0, 1 F2 Qj
(h) h = 2, 3 F4 

0.0000  0.0000  0.0000       1 
0.0000  0.0000  0.0000 3.286 0   3.286 2   
0.0000  0.0000  0.0000       2 
0.0000  0.0000  0.0000 3.633   3.633   
0.0000  0.0000  0.0000       

0 

3 
0.0000  0.0000  0.0000 6.928  2126.0435 6.928  2126.0435  
0.0003  0.0004  0.0003       1 
0.0004  0.0005  0.0006 3.286 0   3.286 2   
0.0007  0.0005  0.0005       2 
0.0004  0.0009  0.0008 3.633   3.633   
0.0006  0.0007  0.0005       

1 

3 
0.0005  0.0012  0.0007 6.929  2126.0448 6.929  2126.0452  

0.10  0.30  1.20       1 
0.20  0.60  0.80 3.433 0   3.481 2   
0.15  0.90  0.30       2 
0.23  0.80  0.50 3.598   3.586   
0.40  0.30  0.60       

2 

3 
0.50  0.10  0.90 6.774  2129.6291 6.722  2130.8241  
0.03  0.05  0.11       1 
0.01  0.03  0.08 3.277 0   3.274 2   
0.12  0.10  0.09       2 
0.07  0.09  0.04 3.629   3.627   
0.06  0.02  0.05       

3 

3 
0.06  0.02  0.05 6.928  2125.0354 6.928  2124.6993  
1.40  0.88  2.60       1 
1.35  0.60  2.50 3.220 1   3.354 3   
1.50  1.09  3.00       2 
1.30  1.00  2.90 3.653   3.839   
2.16  1.15  1.70       

4 

3 
2.15  0.80  1.60 6.801  2127.7199 7.090  2128.2799  

2  0.7  3        1 
1.5 0.6  1.7 3.315 0   3.325 2   
2.6 0.8  2        2 
1.9 0.3  1  3.472   3.417   
1.9 0.6  1.2       

5 

3 
1.3 1.8  2.3 7.746  2115.2942 7.994  2111.7100  
0.9 0.85  0.4       1 
0.8 0.7  1.4 3.359 1   3.353 3   
0.8 1  1.7       2 
0.7 0.9  1.5 3.753   3.758   
1.6 1.18  2.1       

6 

3 
1.1 1  2  7.122  2126.9001 7.121  2127.1855  
7.5 0.8  15       1 
1  0.3  2 3.513 1   3.424 3   

10  1.099  20       2 
6  1.08  4 4.435   4.519   

12.5  1.1  7.5       

7 

3 
9  0.7  7 7.713  2016.0865 7.625  1979.4302  

Table 1. (b) The relative percentages for table 1 (a). 

case RF24
(%) RF2

(%) RF4
(%) 

0 0.0000 0.0000 0.0000 
1 0.0000 0.0001 0.0001 
2 − 0.0561 0.1687 0.2249 
3 0.0158 − 0.0474 − 0.0632 
4 − 0.0263 0.0789 0.1052 
5 0.1697 − 0.5056 − 0.6742 
6 − 0.0134 0.0403 0.0537 
7 1.8519 − 5.1719 − 6.8961 
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Table 2. (a) Optimal solutions of theorems 2, 4 for example 2. 

Δj11 Δj21 Δj31 Fuzzy case (Theorem 2) Fuzzy case (Theorem 4) case j 
Δj12 Δj22 Δj32 Qj

(k) k = 0, 1 F2 Qj
(h) h = 2, 3 F4 

0.0000 0.0000 0.0000       1 
0.0000 0.0000 0.0000 60.000 1  60.000 3  
0.0000 0.0000 0.0000       2 
0.0000 0.0000 0.0000 66.332   66.332   
0.0000 0.0000 0.0000       

0 

3 
0.0000 0.0000 0.0000 126.491  2144.0520 126.491  2144.0520 
0.0003 0.0004 0.0003       1 
0.0004 0.0005 0.0006 60.001 1  60.001 3  
0.0007 0.0005 0.0005       2 
0.0004 0.0009 0.0008 66.335   66.336   
0.0006 0.0007 0.0005       

1 

3 
0.0005 0.0012 0.0007 126.497  2144.0540 126.500  2144.0547 

0.10 0.30 1.20       1 
0.20 0.60 0.80 62.683 1  63.555 3  
0.15 0.90 0.30       2 
0.23 0.80 0.50 65.688   65.473   
0.40 0.30 0.60       

2 

3 
0.50 0.10 0.90 123.675  2147.6908 122.728  2148.9006 
0.03 0.05 0.11       1 
0.01 0.03 0.08 59.832 1  59.775 3  
0.12 0.10 0.09       2 
0.07 0.09 0.04 66.254   66.227   
0.06 0.02 0.05       

3 

3 
0.06 0.02 0.05 126.492  2143.0170 126.493  2142.6720 
1.40 0.88 2.60       1 
1.35 0.60 2.50 561.343 1  559.071 3  
1.50 1.09 3.00       2 
1.30 1.00 2.90 636.867   639.906   
2.16 1.15 1.70       

4 

3 
2.15 0.80 1.60 1185.643  2217.7345 1181.617  2218.2505 

2 0.7 3       1 
1.5 0.6 1.7 549.612 1  547.177 3  
2.6 0.8 2       2 
1.9 0.3 1 575.708   562.321   
1.9 0.6 1.2       

5 

3 
1.3 1.8 2.3 1284.299  2203.5174 1315.745  2199.7769 
0.9 0.85 0.4       1 
0.8 0.7 1.4 559.882 1  558.759 3  
0.8 1 1.7       2 
0.7 0.9 1.5 625.434   626.360   
1.6 1.18 2.1       

6 

3 
1.1 1 2 1186.956  2216.4090 1186.782  2216.7318 
7.5 0.8 15       1 
1 0.3 2 585.535 1  570.735 3  

10 1.099 20       2 
6 1.08 4 739.161   753.226   

12.5 1.1 7.5       

7 

3 
9 0.7 7 1285.568  2108.0989 1270.861  2068.7884 

Table 2. (b) The relative percentages for table 2 (a). 

case RF24
(%) RF2

(%) RF4
(%) 

0 0.0000  0.0000  0.0000 
1 0.0000  0.0001  0.0001  
2 − 0.0563  0.1697  0.2261  
3 0.0161  − 0.0483  − 0.0644  
4 − 0.0233  3.4366  3.4607  
5 0.1700  2.7735  2.5990  
6 − 0.0146  3.3748  3.3898  
7 1.9002  − 1.6769  − 3.5103  
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Table 3. (a) Optimal solutions of theorems 2, 4 for example 3. 

Δj11 Δj21 Δj31 Fuzzy case (Theorem 2) Fuzzy case (Theorem 4) case j 
Δj12 Δj22 Δj32 Qj

(k) k = 0, 1 F2 Qj
(h) h = 2, 3 F4 

0.0000 0.0000 0.0000       1 
0.0000 0.0000 0.0000 3270.434 1   3270.434 3   
0.0000 0.0000 0.0000       2 
0.0000 0.0000 0.0000 4820.801   4820.801   
0.0000 0.0000 0.0000       

0 

3 
0.0000 0.0000 0.0000 4136.808  43165.1814 4136.808  43165.1814 
0.0003 0.0004 0.0003       1 
0.0004 0.0005 0.0006 3273.052 1   3273.023 3   
0.0007 0.0005 0.0005       2 
0.0004 0.0009 0.0008 4824.811   4824.819   
0.0006 0.0007 0.0005       

1 

3 
0.0005 0.0012 0.0007 4140.278  43166.5802 4140.294  43166.5883 

0.10 0.30  1.20        1 
0.20 0.60  0.80  5030.842 1   5099.441 3   
0.15 0.90  0.30        2 
0.23 0.80  0.50  7036.526   7013.214   
0.40 0.30  0.60        

2 

3 
0.50 0.10  0.90  5978.623  43969.6497 5938.306  43974.7561 
0.03 0.05  0.11        1 
0.01 0.03  0.08  3416.469 1   3414.551 3   
0.12 0.10  0.09        2 
0.07 0.09  0.04  5044.493   5044.487   
0.06 0.02  0.05        

3 

3 
0.06 0.02  0.05  4333.486  43237.4384 4335.060  43235.8087 
1.40 0.88  2.60        1 
1.35 0.60  2.50  5748.035 1   5721.765 3   
1.50 1.09  3.00        2 
1.30 1.00  2.90  8719.686   8768.702   
2.16 1.15  1.70        

4 

3 
2.15 0.80  1.60  7290.623  44449.0469 7264.592  44444.5220 

2  0.7  3        1 
1.5 0.6  1.7  5754.816 1   5690.885 3   
2.6 0.8  2        2 
1.9 0.3  1  8082.887   7852.815   
1.9 0.6  1.2        

5 

3 
1.3 1.8  2.3  8216.815  44435.8759 8418.242  44401.2307 
0.9 0.85  0.4        1 
0.8 0.7  1.4  5935.933 1   5924.600 3   
0.8 1  1.7        2 
0.7 0.9  1.5  8843.164   8858.593   
1.6 1.18  2.1        

6 

3 
1.1 1  2  7536.920  44535.5635 7532.294  44534.9589 
7.5 0.8  15        1 
1  0.3  2  5448.354 1   5358.944 3   

10 1.099  20        2 
6  1.08  4  8711.166   8827.158   

12.5 1.1  7.5        

7 

3 
9  0.7  7  7047.019  42980.0411 6997.031  42507.9291 

Table 3. (b) The relative percentages for table 3 (a). 

case RF24
(%) RF2

(%) RF4
(%) 

0 0.0000  0.0000  0.0000 
1 0.0000  0.0032  0.0033  
2 − 0.0116  1.8637  1.8755  
3 0.0038  0.1674  0.1636  
4 0.0102  2.9743  2.9638  
5 0.0780  2.9438  2.8635  
6 0.0014  3.1747  3.1733  
7 1.1106  − 0.4289  − 1.5226  
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(b) Three relative percentages are assumed in the following 

24

2 4

4
100(%),F

F F
R

F
−

= ×
2

2 100(%),F
F F

R
F
−

= ×
4

4 100(%),F
F F

R
F
−

= ×   

where F is minimum total cost of optimal solution of crisp case.   

Example 1: To illustrate the optimal solution procedure, we consider the flexibility and 
product variety in lot-sizing problem with the following data: n = 3, S = 0.036, cs = 1, f = 
500, (mj, qj, cj) = (15, 0.9, 30), (20, 1.1, 40), (25, 1.2, 15), j = 1, 2, 3, respectively. By 
using Theorem 2 and 4, the results are shown in Tables 1 (a) and (b). 

Example 2: Let n = 3, S = 6, cs = 2, f = 500, with mj, qj and cj (j = 1, 2, 3) having the 
same values as in Example 1. By using Theorems 2 and 4, the results are shown in Ta-
bles 2 (a) and (b). 

Example 3: Let n = 3, S = 6, cs = 2, f = 500, (mj, qj, cj) = (100, 0.9, 80), (200, 1.1, 90), 
(150, 1.2, 100), j = 1, 2, 3, respectively, then by using Theorems 2 and 4, the results are 
as shown in Tables 3 (a) and (b). 

From Tables 1 to 3, we find the following results. 

(a)  In case 0 and 1 of Tables 1 to 3, Δjtk are very small values, it shows that the optimal 
products 

( ) ( ), ,k h
j j jQ Q Q  of product j are very close and the minimum total costs F2, 

F4, F are very close too (see section 5.2). 
(b)  In Tables 1 to 3, for the same cases have the same Δjtk so, if we change S, cs, mj, qj, cj 

(j = 1, 2, 3) in Examples 1 to 3, then the quantities of 
( ) ( )

2 4, , ,k h
j jQ F Q F  also change. 

5. DISCUSSION 

5.1 The Comparisons between Optimal Solutions by Signed Distance Defuzzification 
with that of Defuzzification by Centroid 

 
(a)  According to the principle of maximum membership grade in Proposition 4, Theo-

rem 2 is better than Theorem 4. 
(b)  According to the approach which considers smaller values of minimum total cost to 

be better.  
 

Following Eqs. (16) and (28), we have 

*

1
[ ( ( ); ) ( ; )]

n

j jtk j jtk
j

C F Q F Q
=

Δ − Δ∑ �  

22 21 12 11 11 21 12 22
1

32 31 12 11 32 31 11 31 12 32

1 1 [ ( ) ( ) ( )]
12

1 ( ) ( ) ( ) ( ) .
2

n

s j j j j j j j j j j
jj

j j j j j j j j j j j j j

c S m q
Q

iQ c m

=

⎧⎪= Δ −Δ + Δ −Δ + Δ Δ + Δ Δ⎨
⎪⎩

⎫+ Δ −Δ + Δ −Δ + Δ −Δ + Δ Δ + Δ Δ ⎬
⎭

∑
(34) 
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Both in Theorems 2 and 4, the constraints are 12 22
1

1 ( )( ) .
n

j j j j
jj

p
Q Sm q α

=

−+ Δ + Δ ≤∑  

For each j, Qj, mj, qj, cj are revealed to be positive values and cS > 0, S > 0, hence,  

when Δjt1 < Δjt2, for all j, t, the following inequality is derived by Eq. (34) 
*

1
( ;

n

j
j

F Q
=
∑   

1
) ( ( ); ).

n

jtk j jtk
j

C F Q
=

Δ < Δ∑ �  It shows that the Theorem 2 is better since it considers that  

the smaller values of minimum total cost are better. For the other conditions of Δjtk, the 
minimum total costs of optimal solution must be computed by Theorems 2 and 4 sepa-
rately. Then by taking the point of view of smaller value, if the minimum total cost of 
optimal solution in Theorem 2 is less than that of Theorem 4, Theorem 2 is considered to 
be better than Theorem 4. Under the opposite conditions, Theorem 4 is better. 
 
5.2 The Problem (in Eqs. (8) and (9)) of Crisp Case is Respective a Special Condition 

of Theorems 1, 2 and Theorems 3, 4 
 

In the crisp case, for each product j, if Δjtk = 0, then from section 6.2, we see that the 
problem (in Eqs. (8), (9)) of crisp case is shown to be the special condition of problem 
(in Eqs. (20), (21)) of Theorem 1. In Theorem 2, for each j, let Δjtk = 0, then (1) of Theorem  

2 shows that 
2

2( ) S
iSD
P

c
α−

<  becomes to 
1

2

n
j j j

Sj

ic m q p
c S S

α

=

−≤∑  and 
1 2

(0) 2
.j jS

j j

c Sm q
icQ ⎡ ⎤= ⎢ ⎥⎣ ⎦

  

The minimum total cost is 
(0)

(0)
1

1[ ]
n

j j j j
jj Q

A B Q C
=

+ +∑  + f = 
1

2
n

S j j j
j

c Sic m q
=

+∑
1

n

j j
j

c m
=
∑  

+ f, revealing that the result is the first formula of Eq. (10). Using Eq. (2) of Theorem 2,  

the 
2

2( ) S
iSD
P

c
α−

≥  can be replaced by 
1

2

n
j j j

Sj

ic m q p
c S S

α

=

−≥∑  and 
(1)
j

S
pQ α−=

1 22 j j

j

m q
c

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

1 2

1
2 .

n
j j j

j

c m q

=

⎛ ⎞⎜ ⎟
⎝ ⎠∑  Therefore, the minimum total cost is constructed as 

(1)
(1)

1

1[
n

j j j
jj Q

A B Q
=

+∑   

 ]jC f+ +

2

1
2

4( ) ( )

n

j j j
j

Sic m q

Sp c pα α=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−

∑
= + −

1
,

n

j j
j

c m f
=

+ +∑  which indicates that the result  

is the second formula of Eq. (10). Hence, the optimal solution of problem (in Eqs. (8) 
and (9)) of the crisp case is the special condition of the optimal solution of problem (in 
Eqs. (25) and (26)) of fuzzy case in Theorem 2. 
 
5.3 Fuzzification of Fixed Cost f 
 

Because the fixed cost f is an estimate in Eq. (7), it may change slightly after the fin-
ishing production process. Therefore, similar to section 3.2, the following consideration 
is made. Assume that the fixed cost is located in the interval [f − Δ1, f + Δ2], and decision 
maker takes reasonable values of Δ1 and Δ2 which fulfill 0 < Δ1 < f and 0 < Δ2. By propo- 
sition 5, corresponding to the interval [f − Δ1, f + Δ2], the triangular fuzzy number f�  = (f  
− Δ1, f, f + Δ2) is set. Hence, by taking signed distance and the centroid method respect-  
tively for defuzzification of ,f�  f* = 2 1

1
4( , 0) ( ),d f f= + Δ − Δ� �

 and f** = ( )C f =�
 f +  

2 1
1
3 ( )Δ − Δ  are obtained. Therefore, the fixed cost f of Theorems 2 and 4 can be recast 
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in the following.  
Theorems 1-4 reveals that the fixed cost f of optimal solution of minimum total cost 

has no relationship with Qj. Hence, all the fixed cost f that are in minimum total cost F(0), 
F(1) of Theorem 2 can be rewritten as f*. Same as in minimum total cost F(2), F(3) of Theo-
rem 4, all the fixed cost f can be replaced by f**. 

6. CONCLUSION 

In this section, we compare the usual method for fuzzification of the crisp total cost 
function F(Qj; mj, qj, cj) (in Eq. (6)) of section 3.1 to that of the new creative method of 
this paper for the jth product in the following three steps. Also, the advantages of this 
new proposed method are addressed as follows. 

6.1 The First Step of Fuzzification 

For each product j, the average demand of per unit time (mj), relative duration of 
setup (qj), and unit cost of production (cj) can not be fixed as a value during the planning 
period. Hence, the fuzzification problem is emerged. In the following, we consider the 
usual fuzzification method and the method of this paper respectively. 
 
(A1) The usual method is that the mj, qj, cj are fuzzified respectively as the triangular 

fuzzy numbers jm�  = (mj − wj11, mj, mj + wj12), jq�  = (qj − wj21, qj, qj + wj22) and jc�  
= (cj − wj31, cj, cj + wj32). 

(B1) For the new method, we consider the quantities of mj, qj and cj are located respec-
tively in the interval of [mj − Δj11, mj + Δj12], [qj − Δj21, qj + Δj22] and [cj − Δj31, cj + 
Δj32]. 

 
Therefore, the advantage of this new method can be stated as follows: 

 
(C1.1) In the usual fuzzification method of (A1), there is not objective method to decide 

the value of wjtk, t = 1, 2, 3, k = 1, 2. 
(C1.2) In the method of this paper of (B1), we estimate the value of Δjtk, t = 1, 2, 3, k = 1, 

2 by the interval which is obtained by applying statistical method on the past data 
and thus it is supposed to be more practical and objective than that of the usual 
method. 

 
6.2 The Second Step of Fuzzification 
 
(A2) In usual method, for jth product, the mj, qj, cj of F(Qj; mj, qj, cj) are fuzzified by 

, , ,j j jm q c� � �  and then we obtain the following fuzzy total cost.  

1 1( ; , , ) .
2j j j j s j j j j j j

j
F Q m q c c Sm q iQ c c m

Q
= + +� � � � � � � �                       (35) 

(B2) For the new method, as discussed in section 3.2, the fuzzy total cost (in Eq. (15)) 
can be obtained via the interval of section 6.1 (B1) and applying proposition 5. 
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So, the advantage of this method is stated as follows: 
 
(C2.1) In the usual method of (A2), we must fuzzify the parameters mj, qj, cj of crisp total 

cost function F(Qj; mj, qj, cj) to derive the fuzzy total cost function (in Eq. (35)). 
(C2.2) However, for the new method, we can obtain the fuzzy total cost function (in Eq. 

(15)) by method of (B2) without fuzzification for the parameters mj, qj, cj of crisp 
total cost function F(Qj; mj, qj, cj). 

 
6.3 The Defuzzification in Third Step of Fuzzification 
 
(A3) In usual method, we need to derive the membership function before the fuzzy total 

cost ( ; , , )j j j jF Q m q c� � �  is defuzzified by centroid. Though , ,j j jm q c� � �  are triangu-
lar fuzzy numbers, but, fuzzy sets j jm q� �  and j jc m� �  are not. Therefore, the extension  
principle is employed for deriving the membership function ( ) sup ( )

j j jm q m
ts x

x tμ μ
=

=� � �   

( ) sup ( )
j j jm q m

ts x
x tμ μ

=
=� � � ( )

jq sμ∧ �  and ( ) sup ( ) ( ).
j j j jc m c m

ts u
u t sμ μ μ

=
= ∧� � � �  From Eq. (35) 

and applying extension principle, let aj = cSS/Qj, bj = i/2, we obtain 

( ; , , ) ( ) sup ( ) ( ) ( ).
j j j j j j j j j

j j

F Q m q c m q c c m
a x b y u z

z x y uμ μ μ μ
+ + =

= ∧ ∧� � � � � � � �                (36) 

From Eq. (36), the centroid of Eq. (35) is given as follows: 

 
( ; , , ) ( ; , , ) 

( ( ; , , )) ( ) ( ) .
j j j j j j j jj j j j F Q m q c F Q m q cC F Q m q c z z dz z dzμ μ

∞ ∞

−∞ −∞
= ∫ ∫� � � � � �� � �   (37) 

(B3) For the new method, since Eq. (15) is triangular fuzzy number, we have ( ( );jC F Q�  
Δjtk) in Eq. (27) of section 3.2.2. 

 
Accordingly, the advantage of the new method against that of the usual can be con-

cluded as follows: 
 
(C3.1) In the usual method of (A3), from Eq. (36), we know that it is very difficult to 

derive the membership function of fuzzy total cost (in Eq. (35)). Hence, it is hard 
to obtain the centroid (in Eq. (37)) of fuzzy total cost. Therefore, it is difficult to 
consider the optimal solution in the fuzzy sense.  

(C3.2) However, for the method of this paper of (B3), we can derive the cerntroid (in Eq. 
(27)) easily. From section 3.2.2, the optimal is obtained in Theorem 4. In the sec-
tion 3.2.1, the signed distance is applied for defuzzification, and then we attain 
the optimal solution in Theorem 2. 

 
On the other hand, the exact optimal solutions can be computed via Theorems 2 and 

4. Therefore, the simulation method or genetic algorithm method are not needed for ap-
proximate solutions. 
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