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Abstract

In this paper, a deterministic inventory model for deteriorating items with two warehouses is developed. A rented ware-
house is used when the ordering quantity exceeds the limited capacity of the owned warehouse, and it is assumed that dete-
rioration rates of items in the two warehouses may be different. In addition, we allow for shortages in the owned warehouse
and assume that the backlogging demand rate is dependent on the duration of the stockout. We obtain the condition when
to rent the warehouse and provide simple solution procedures for finding the maximum total profit per unit time. Further,
we use a numerical example to illustrate the model and conclude the paper with suggestions for possible future research.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The general assumption in classical inventory models is that the organization owns a single warehouse with-
out capacity limitation. In practice, while a large stock is to be held, due to the limited capacity of the owned
warehouse (denoted by OW), one additional warehouse is required. This additional warehouse may be a
rented warehouse (denoted by RW), which is assumed to be available with abundant capacity. There exist
some practical reasons such that the organizations are motivated to order more items than the capacity of
OW. For example, the price discount for bulk purchase may be advantageous to the management; the demand
of items may be high enough such that a considerable increase in profit is expected; and so on. In these situ-
ations, it is generally assumed that the holding cost in RW is higher than that in OW. To reduce the inventory
costs, it will be economical to consume the goods of RW at the earliest. As a result, the stocks of OW will not
be released until the stocks of RW are exhausted.
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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An early discussion on the effect of two warehouses was considered by Hartely [1]. Recently this type of
inventory model has been considered by other authors. Sarma [2] developed a deterministic inventory model
with infinite replenishment rate and two levels of storage. Murdeshwar and Sathe [3] extended this model to
the case of finite replenishment rate. Dave [4] further discussed the cases of bulk release pattern for both finite
and infinite replenishment rates. He rectified the errors in Murdeshwar and Sathe [3] and gave a complete solu-
tion for the model given by Sarma [2]. In the above literature [2–4], deterioration phenomenon was not taken
into account. Assuming the deterioration in both warehouses, Sarma [5] extended his earlier model to the case
of infinite replenishment rate with shortages. Pakkala and Achary [6,7] extended the two-warehouse inventory
model for deteriorating items with finite replenishment rate and shortages, taking time as discrete and contin-
uous variable, respectively. In these models mentioned above, the demand rate was assumed to be constant.
Subsequently, the ideas of time-varying demand and stock-dependent demand were considered by some
authors, such as Goswami and Chaudhuri [8,9], Bhunia and Maiti [10,11], Benkherouf [12], Kar et al. [13]
and others. In a recent paper, Yang [14] proposed an alternative model for determining the optimal replenish-
ment cycle for the two-warehouse inventory problem under inflation, in which the inventory deteriorates at a
constant rate over times and shortages were allowed. She then proved that the optimal solution not only exists
but also is unique.

Furthermore, the characteristics of all above papers are that shortages are not allowed or assumed to be
completely backlogged. Zhou [15] presented a multi-warehouse inventory model for non-perishable items with
time-varying demand and partial backlogging. In his model, the backlogging function was assumed to be
dependent on the amount of demand backlogged. In many cases customers are conditioned to a shipping
delay, and may be willing to wait for a short time in order to get their first choice. Generally speaking, the
length of the waiting time for the next replenishment is the main factor for deciding whether the backlogging
will be accepted or not. The willingness of a customer to wait for backlogging during a shortage period
declines with the length of the waiting time. Therefore, a situation is quite likely to arise in which that many
savvy retailers suggest replacement items, and also provide the restocking date to allow the customer to wait
during the stockout period. To reflect this phenomenon, Abad [16,17] discussed a pricing and lot-sizing prob-
lem for a product with a variable rate of deterioration, allowing shortages and partial backlogging. The back-
logging rate depends on the time to replenishment—the longer customers must wait, the greater the fraction of
lost sales. However, he does not use the stockout cost (includes backorder cost and the lost sale cost) in the
formulation of the objective function since these costs are not easy to estimate, and its immediate impact is
that there is a lower service level to customers.

Companies have recognized that besides maximizing profit, customer satisfaction plays an important role
for getting and keeping a successful position in a competitive market. The proper inventory level should be set
based on the relationship between the investment in inventory and the service level. With a lost sale, the cus-
tomer’s demand for the item is lost and presumably filled by a competitor. It can be considered as the loss of
profit on the sales. Moreover, it also includes the cost of losing the customer, loss of goodwill, and of estab-
lishing a poor record of service. Therefore, if we omit the stockout cost from the total profit, then the profit
will be overrated. It is true that the stockout cost is very difficult to measure. However, this does not mean that
the unit does not have some specific values. In practice, the stockout cost can be easy to obtain from account-
ing data. In this paper, we develop a deterministic inventory model for deteriorating items with two ware-
houses. We assume that the inventory costs (including holding cost and deterioration cost) in RW are
higher than those in OW. In addition, shortages are allowed in the owned warehouse and the backlogging rate
of unsatisfied demand is assumed to be a decreasing function of the waiting time. We then prove that the opti-
mal replenishment policy not only exists but also is unique. Moreover, a numerical example is used to illustrate
the proposed model, and concluding remarks are provided.

2. Notation and assumptions

2.1. Notation

To develop the mathematical model of inventory replenishment schedule with two warehouses, the notation
adopted in this paper is as below:
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D the demand rate per unit time
A the replenishment cost per order
C the purchasing cost per unit
S the selling price per unit, where S > C
W the capacity of the owned warehouse
Q the ordering quantity per cycle
B the maximum inventory level per cycle
C11 the holding cost per unit per unit time in OW
C12 the holding cost per unit per unit time in RW, where C12 > C11

C2 the shortage cost per unit per unit time
R the opportunity cost (i.e., goodwill cost) per unit
a the deterioration rate in OW, where 0 6 a < 1
b the deterioration rate in RW, where 0 6 b < 1
tw the time at which the inventory level reaches zero in RW
t1 the time at which the inventory level reaches zero in OW
t2 the length of period during which shortages are allowed
T the length of the inventory cycle, hence T = t1 + t2

I1(t) the level of positive inventory in RW at time t

I2(t) the level of positive inventory in OW at time t

I3(t) the level of negative inventory at time t
P(tw, t2) the total profit per unit time in the two-warehouse case
P(t1, t2) the total profit per unit time under the case without capacity constraint in OW

2.2. Assumptions

In addition, the following assumptions are imposed:

1. Replenishment rate is infinite, and lead time is zero.
2. The time horizon of the inventory system is infinite.
3. The owned warehouse (OW) has a fixed capacity of W units; the rented warehouse (RW) has unlimited

capacity.
4. The goods of OW are consumed only after consuming the goods kept in RW.
5. To guarantee the optimal solution exists, we assume that the maximum deteriorating quantity for items in

OW, aW, is less than the demand rate D; that is, aW < D.
6. The unit inventory costs (including holding cost and deterioration cost) per unit time in RW are higher than

those in OW; that is, C12 + bC > C11 + aC.
7. Shortages are allowed. Unsatisfied demand is backlogged, and the fraction of shortages backordered is 1

1þdx,
where x is the waiting time up to the next replenishment and d is a positive constant.

3. Mathematical formulation

Using above assumptions, the inventory level follows the pattern depicted in Fig. 1. To establish the total
relevant profit function, we consider the following time intervals separately, [0, tw], [tw, t1], and [t1,T]. During
the interval [0, tw], the inventory levels are positive at RW and OW. At RW, the inventory is depleted due to
the combined effects of demand and deterioration. At OW, the inventory is only depleted by the effect of dete-
rioration. Hence, the inventory level at RW and OW are governed by the following differential equations:
dI1ðtÞ
dt
¼ �D� bI1ðtÞ; 0 < t < tw; ð1Þ
with the boundary condition I1(tw) = 0 and



Fig. 1. Graphical representation of a two-warehouse inventory system.
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dI2ðtÞ
dt
¼ �aI2ðtÞ; 0 < t < tw; ð2Þ
with the initial condition I2(0) = W, respectively. Solving the differential equations (1) and (2) respectively, we
get the inventory level as follows:
I1ðtÞ ¼
D
b
½ebðtw�tÞ � 1�; 0 6 t 6 tw ð3Þ
and
I2ðtÞ ¼ W e�at; 0 6 t 6 tw. ð4Þ

During the interval [tw, t1], the inventory in OW is depleted due to the combined effects of demand and dete-

rioration. Hence, the inventory level at OW is governed by the following differential equation:
dI2ðtÞ
dt
¼ �D� aI2ðtÞ; tw < t < t1; ð5Þ
with the boundary condition I2(t1) = 0. Solving the differential equation (5), we obtain the inventory level as
I2ðtÞ ¼
D
a
½eaðt1�tÞ � 1�; tw 6 t 6 t1. ð6Þ
Due to continuity of I2(t) at point t = tw, it follows from Eqs. (4) and (6), then
W e�atw ¼ D
a
½eaðt1�twÞ � 1�; ð7Þ
which implies that
t1 ¼ tw þ
1

a
ln 1þ aW e�atw

D

� �
. ð8Þ
It notes that t1 is a function of tw. Then taking the first-order derivative of t1 with respect to tw, it yields
dt1

dtw

¼ 1

1þ aW e�atw=D
< 1. ð9Þ
Thus dt1
dtw
� 1 < 0 holds.
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Furthermore, at time t1, the inventory level reaches zero in OW and shortage occurs. During [t1,T], the
inventory level only depend on demand, and some demand is lost while a fraction 1

1þdðT�tÞ of the demand is

backlogged, where t 2 [t1,T]. The inventory level is governed by the following differential equation:
dI3ðtÞ
dt
¼ � D

1þ dðT � tÞ ; t1 < t < T ; ð10Þ
with the boundary condition I3(t1) = 0. Solving the differential equation (10), we obtain the inventory level as
I3ðtÞ ¼ �
D
d

ln½1þ dðT � t1Þ� � ln½1þ dðT � tÞ�f g; t1 6 t 6 T . ð11Þ
Therefore, the ordering quantity over the replenishment cycle can be determined as
Q ¼ I1ð0Þ þ I2ð0Þ � I3ðtÞ ¼
Dðebtw � 1Þ

b
þ W þ D lnð1þ dt2Þ

d
ð12Þ
and the maximum inventory level per cycle is
B ¼ I1ð0Þ þ I2ð0Þ ¼
Dðebtw � 1Þ

b
þ W . ð13Þ
Based on Eqs. (3), (4), (6) and (11), the total profit per cycle consists of the following elements:

1. ordering cost per cycle = A,
2. holding cost per cycle in RW
¼ C12

Z tw

0

I1ðtÞdt

¼ C12Dðebtw � btw � 1Þ=b2;
3. holding cost per cycle in OW
¼ C11

Z tw

0

I2ðtÞdt þ
Z t1

tw

I2ðtÞdt
� �

¼ C11fW ð1� e�atwÞ=aþ D½eaðt1�twÞ � 1� aðt1 � twÞ�=a2g
¼ C11½W � Dðt1 � twÞ�=a ðby Eq: (7)Þ;
4. shortage cost per cycle
¼ C2

Z T

t1

�I3ðtÞdt

¼ C2DfdðT � t1Þ � ln½1þ dðT � t1Þ�g=d2

¼ C2D½dt2 � lnð1þ dt2Þ�=d2; where t2 ¼ T � t1;
5. opportunity cost due to lost sales per cycle
¼ RD
Z T

t1

f1� 1=½1þ dðT � tÞ�gdt

¼ RDfdðT � t1Þ � ln½1þ dðT � t1Þ�g=d
¼ RD½dt2 � lnð1þ dt2Þ�=d;
6. purchase cost per cycle
¼ CQ

¼ CfW þ Dðebtw � 1Þ=bþ D ln½1þ dðT � t1Þ�=dg
¼ C½W þ Dðebtw � 1Þ=bþ D lnð1þ dt2Þ=d�;
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7. sales revenue per cycle
¼ S
Z t1

0

Ddt þ
Z T

t1

D=½1þ dðT � tÞ�dt
� �

¼ SDfdt1 þ ln½1þ dðT � t1Þ�g=d
¼ SD½dt1 þ lnð1þ dt2Þ�=d:
Therefore, the total profit per unit time of our model is obtained as follows:
P ðtw; t2Þ ¼
1

t1 þ t2

fsales revenue� ordering cost� holding cost� shortage cost

� opportunity cost� purchase costg

¼ DðS � CÞ � A
t1 þ t2

� C
t1 þ t2

W þ D
b
ðebtw � 1Þ � Dt1

� �
� C11

aðt1 þ t2Þ
½W � Dðt1 � twÞ�

� DC12

b2ðt1 þ t2Þ
ðebtw � btw � 1Þ � D½C2 þ dðS � C þ RÞ�

d2ðt1 þ t2Þ
½dt2 � lnð1þ dt2Þ�; ð14Þ
where t1 is a function of tw and is defined as in Eq. (8).
To maximize the total profit per unit time, taking the first derivative of P(tw, t2) with respect to tw and t2,

respectively, we obtain
oP ðtw; t2Þ
otw

¼ DðS � CÞ � Pðtw; t2Þ
t1 þ t2

dt1

dtw

� D
t1 þ t2

C ebtw � dt1

dtw

� �
� C11

a
dt1

dtw

� 1

� �
þ C12

b
ðebtw � 1Þ

� �

¼ 1

ðt1 þ t2Þð1þ aW e�atw=DÞ DðS � CÞ � P ðtw; t2Þ � D ðC11 þ aCÞW e�atw

D

��

þðC12 þ bCÞðebtw � 1Þ
b

1þ aW e�atw

D

� ���
ð15Þ
and
oP ðtw; t2Þ
ot2

¼ 1

ðt1 þ t2Þ2
Aþ C W þ D

b
ðebtw � 1Þ � Dt1

� �
þ C11

a
½W � Dðt1 � twÞ� þ

DC12

b2
ðebtw � btw � 1Þ

�

þD½C2 þ dðS � C þ RÞ�
d2

½dt2 � lnð1þ dt2Þ� �
D½C2 þ dðS � C þ RÞ�ðt1 þ t2Þt2

1þ dt2

�

¼ 1

t1 þ t2

DðS � CÞ � P ðtw; t2Þ �
D½C2 þ dðS � C þ RÞ�t2

1þ dt2

� �
. ð16Þ
The optimal solution of (tw, t2) must satisfy the equations oP ðtw;t2Þ
otw

¼ 0 and oPðtw;t2Þ
ot2
¼ 0, simultaneously. Solving

these two equations, we obtain
DðS � CÞ � Pðtw; t2Þ ¼ D ðC11 þ aCÞW e�atw

D
þ ðC12 þ bCÞðebtw � 1Þ

b
1þ aW e�atw

D

� �� �
ð17Þ
and
DðS � CÞ � Pðtw; t2Þ ¼
D½C2 þ dðS � C þ RÞ�t2

1þ dt2

; ð18Þ
respectively. Because both the left hand sides in Eqs. (17) and (18) are the same, the right hand sides in these
equations are equal, that is,
½C2 þ dðS � C þ RÞ�t2

1þ dt2

¼ ðC11 þ aCÞW e�atw

D
þ ðC12 þ bCÞðebtw � 1Þ

b
1þ aW e�atw

D

� �
. ð19Þ



C.-Y. Dye et al. / European Journal of Operational Research 178 (2007) 789–807 795
Furthermore, we substitute P(tw, t2) in (14) into Eq. (18) and obtain
D½C2 þ dðS � C þ RÞ�ðt1 þ t2Þt2

1þ dt2

¼ Aþ C W þ D
b
ðebtw � 1Þ � Dt1

� �
þ C11

a
½W � Dðt1 � twÞ�

þ DC12

b2
ðebtw � btw � 1Þ þ D½C2 þ dðS � C þ RÞ�

d2
½dt2 � lnð1þ dt2Þ�.

ð20Þ
Now, we let K(tw) denote the right hand side of Eq. (19), that is,
KðtwÞ ¼ ðC11 þ aCÞW e�atw

D
þ ðC12 þ bCÞðebtw � 1Þ

b
1þ aW e�atw

D

� �
; tw P 0. ð21Þ
Then we have:

Lemma 1. K(tw) is a continuous and strictly increasing function of tw 2 [0,1), and its range is [W(C11 + aC)/

D,1).

Proof. Taking the derivative of K(tw) with respect to tw, we have
dKðtwÞ
dtw

¼ ðC12 þ bCÞebtw 1þ aW e�atw

D

� �
� a

b
ðC12 þ bCÞðebtw � 1Þ aW e�atw

D
� ðC11 þ aCÞ aW e�atw

D

¼ ðC12 þ bCÞ aW e�atw

D
HðtwÞ þ ½ðC12 þ bCÞ � ðC11 þ aCÞ� aW e�atw

D
;

where
HðtwÞ ¼
D
W

eðaþbÞtw

a
þ ðe

btw � 1Þ
b

ðb� aÞ; tw P 0.
Because
dHðtwÞ
dtw

¼ D
W

aþ b
a

eðaþbÞtw þ ebtwðb� aÞ > ebtw
D

aW
ðaþ bÞ � ðaþ bÞ

� �
> ðaþ bÞ D

aW
� 1

� �
> 0

ðby Assumption 5Þ;
H(tw) is a strictly increasing function of tw 2 [0,1), which implies
HðtwÞ > Hð0Þ ¼ D
aW

> 0; for tw > 0.
Thus, from the above result and Assumption 6, we know that dKðtwÞ
dtw

> 0, for tw > 0. Therefore, K(tw) is a strictly
increasing function of tw 2 [0,1). The fact that K(0) = W(C11 + aC)/D and limtw!1KðtwÞ ¼ 1 are obvious.
This completes the proof. h

For any given tw 2 [0,1), from Eq. (19), we define a function
F ðt2Þ ¼ ½C2 þ dðS � C þ RÞ� t2

1þ dt2

� KðtwÞ; t2 P 0; ð22Þ
then, if C2þdðS�CþRÞ
d 6 Kð0Þ ¼ W ðC11þaCÞ

D , we have
F ðt2Þ <
C2 þ dðS � C þ RÞ

d
� KðtwÞ <

C2 þ dðS � C þ RÞ
d

� Kð0Þ ¼ C2 þ dðS � C þ RÞ
d

� W ðC11 þ aCÞ
D

6 0; for t2 2 ½0;1Þ;

which implies, for any given tw 2 [0,1), there does not exist a value t2 2 [0,1) such that F(t2) = 0, i.e., we can
not find a value t2 which satisfies Eq. (19). However, for this situation, from Eq. (15), we have
oP ðtw; t2Þ
otw

¼ D
t1 þ t2

1

1þ aW e�atw

D

F ðt2Þ < 0.
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Thus, when C2þdðS�CþRÞ
d 6

W ðC11þaCÞ
D or equivalently, W P D½C2þdðS�CþRÞ�

dðC11þaCÞ , the maximum value of P(tw, t2) occurs at
the boundary point t�w ¼ 0.

In the special circumstance that t�w ¼ 0, the optimal value of t1 (denoted by t�1) can be obtained by Eq. (8)
and is t�1 ¼ 1

a ln 1þ aW
D

� 	
. Besides, from Eq. (13), the maximum inventory level per cycle is B* = W. Then,

plunging t�w and t�1 into Eq. (20), the optimal value of t2 should be selected to satisfy
D½C2 þ dðS � C þ RÞ� ðt
�
1 þ t2Þt2

1þ dt2

¼ Aþ C þ C11

a

� �
ðW � Dt�1Þ þ

D½C2 þ dðS � C þ RÞ�
d2

½dt2 � lnð1þ dt2Þ�.

ð23Þ

Now, we want to prove that the value of t2 which satisfies Eq. (23) is unique. Let
Zðt2Þ ¼
D½C2 þ dðS � C þ RÞ�ðt�1 þ t2Þt2

1þ dt2

� A� C þ C11

a

� �
ðW � Dt�1Þ

� D½C2 þ dðS � C þ RÞ�
d2

½dt2 � lnð1þ dt2Þ�; for t2 P 0.
The derivative of Z(t2) with respect to t2 is
dZðt2Þ
dt2

¼ D½C2 þ dðS � C þ RÞ�ðt�1 þ t2Þ
ð1þ dt2Þ2

> 0;
thus, Z(t2) is a strictly increasing function of t2 2 [0,1). Furthermore, we have Zð0Þ ¼ �A�
C þ C11

a

� 	
ðW � Dt�1Þ < 0, and limt2!1Zðt2Þ ¼ 1. By using the Intermediate Value Theorem, there exists a

unique solution t2 ¼ t�2 2 ð0;1Þ such that Zðt�2Þ ¼ 0, that is, t�2 is the unique value which satisfies Eq. (23).
Summarize the above arguments, we obtain the following theorem.

Theorem 1. If W P D½C2þdðS�CþRÞ�
dðC11þaCÞ , then the optimal value of (tw, t1, t2) is given by t�w ¼ 0, t�1 ¼ 1

a ln 1þ aW
D

� 	
, and

t�2 is the value which satisfies Eq. (23).

Theorem 1 shows that if W P D½C2þdðS�CþRÞ�
dðC11þaCÞ , then the capacity of the OW is sufficient and the maximum

inventory level per cycle is B* = W. Besides, the optimal inventory cycle is T � ¼ t�1 þ t�2. Once the optimal solu-
tion ðt�w; t�2Þ ¼ ð0; t�2Þ is obtained, we substitute ð0; t�2Þ into Eqs. (12 ) and (14) together with t�1 ¼ 1

a ln 1þ aW
D

� 	
,

the optimal ordering quantity per cycle (denoted by Q*) and the maximum total profit per unit time Pð0; t�2Þ are
as follows:
Q� ¼ W þ D lnð1þ dt�2Þ
d

and � �� �

P ð0; t�2Þ ¼ DðS � CÞ � 1

t�1 þ t�2
Aþ C þ C11

a
ðW � Dt�1Þ þ

D½C2 þ dðS � C þ RÞ�
d2

½dt�2 � lnð1þ dt�2Þ�

¼ DðS � CÞ � D½C2 þ dðS � C þ RÞ�t�2
ð1þ dt�2Þ

. ð24Þ
Next, we consider the case: C2þdðS�CþRÞ
d > Kð0Þ ¼ W ðC11þaCÞ

D . From Lemma 1, K(tw) is a continuous and strictly
increasing function of tw 2 [0,1), thus we can find a unique value t̂w 2 ð0;1Þ such that K ð̂twÞ ¼ C2þdðS�CþRÞ

d .
Furthermore, for tw P t̂w, we have
KðtwÞP K ð̂twÞ ¼
C2 þ dðS � C þ RÞ

d
>

C2 þ dðS � C þ RÞ
d

� C2 þ dðS � C þ RÞ
d

1

1þ dt2

¼ ½C2 þ dðS � C þ RÞ�t2

1þ dt2

.

It implies that Eq. (19) does not hold for tw 2 ½̂tw;1Þ. Therefore, the optimal solution of tw which satisfies Eq.
(19) will occur in the interval ð0; t̂wÞ.
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On the other hand, from the definition of F(t2) in Eq. (22), it can be shown that F(t2) is a continuous and
strictly increasing function of t2 2 [0,1). Besides, we have F ð0Þ ¼ �KðtwÞ < �Kð0Þ ¼ � W ðC11þaCÞ

D < 0, and for
any given tw 2 ð0; t̂wÞ,
lim
t2!1

F ðt2Þ ¼
C2 þ dðS � C þ RÞ

d
� KðtwÞ >

C2 þ dðS � C þ RÞ
d

� K ð̂twÞ ¼ 0.
Thus, there exists a unique value t2 2 (0,1) such that F(t2) = 0. Consequently, when C2þdðS�CþRÞ
d > W ðC11þaCÞ

D , or

equivalent, W < D½C2þdðS�CþRÞ�
dðC11þaCÞ , and for any given tw 2 ð0; t̂wÞ, we can find a unique value t2 2(0,1) such that
½C2 þ dðS � C þ RÞ� t2

1þ dt2

¼ KðtwÞ. ð25Þ
From Eq. (25), we obtain
t2 ¼
KðtwÞ

C2 þ dðS � C þ RÞ � dKðtwÞ
. ð26Þ
Thus, t2 is a function of tw 2 ð0; t̂wÞ, and further we have
dt2

dtw

¼
½C2 þ dðS � C þ RÞ� dKðtwÞ

dtw

½C2 þ dðS � C þ RÞ � dKðtwÞ�2
> 0. ð27Þ
Once the value t�w 2 ð0; t̂wÞ is obtained, the optimal solutions of t1, t2 and T (denoted by t�1, t�2 and T*, respec-
tively) are as follows
t�1 ¼ t�w þ
1

a
ln 1þ aW e�at�w

D

� �
; ð28Þ

t�2 ¼
Kðt�wÞ

C2 þ dðS � C þ RÞ � dKðt�wÞ
ð29Þ
and
T � ¼ t�1 þ t�2. ð30Þ

Now, we want to prove the existence of t�w in ð0; t̂wÞ. Motivated by Eq. (20), we let
GðtwÞ ¼ Aþ C W þ D
b
ðebtw � 1Þ � Dt1

� �
þ C11

a
½W � Dðt1 � twÞ� þ

DC12

b2
ðebtw � btw � 1Þ

þ D½C2 þ dðS � C þ RÞ�
d2

½dt2 � lnð1þ dt2Þ� � D½C2 þ dðS � C þ RÞ� ðt1 þ t2Þt2

1þ dt2

; tw 2 ½0; t̂wÞ;

ð31Þ

where t1 and t2 are defined as in Eqs. (8) and (26), respectively. Due to the relations shown in Eqs. (19) and
(27), the derivative of G(tw) with respect to tw 2 ð0; t̂wÞ yields
dGðtwÞ
dtw

¼ DC ebtw � dt1

dtw

� �
� DC11

a
dt1

dtw

� 1

� �
þ DC12

b
ðebtw � 1Þ

� D½C2 þ dðS � C þ RÞ� t1 þ t2

ð1þ dt2Þ2
dt2

dtw

� D½C2 þ dðS � C þ RÞ� t2

1þ dt2

dt1

dtw

¼ �D½C2 þ dðS � C þ RÞ�ðt1 þ t2Þ
ð1þ dt2Þ2

dt2

dtw

< 0.
Therefore, G(tw) is a strictly decreasing function of tw 2 ½0; t̂wÞ. Furthermore, we have
lim
tw!t̂�w

GðtwÞ ¼ AþC11 þ aC
a

W �D
a

ln 1þ aW e�âtw

D

� �� �
þDðC12 þ bCÞ

b2
ðeb̂tw � b̂tw � 1Þ

�D½C2 þ dðS �C þ RÞ�
d

t̂1 þ
D½C2 þ dðS � C þ RÞ�

d2
�D½C2 þ dðS �C þ RÞ�

d2
lim

tw!t̂�w
lnð1þ dt2Þ;
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where t̂1 ¼ t̂w þ 1
a ln 1þ aW e�âtw

D


 �
. From Eq. (26), we obtain t2!1 as tw ! t̂�w, hence it is easy to see that

limtw!t̂�w G1ðtwÞ ¼ �1. And,
Gð0Þ ¼ Aþ C þ C11

a

� �
ðW � Dt1Þ þ

D½C2 þ dðS � C þ RÞ�
d2

½dt2 � lnð1þ dt2Þ�

� D½C2 þ dðS � C þ RÞ� ðt1 þ t2Þt2

1þ dt2

¼ Aþ W ðC11 þ aCÞ
d

� DðC11 þ aCÞ
a2

1þ aW
D

� �
ln 1þ aW

D

� �
� aW

D

� �

� D½C2 þ dðS � C þ RÞ�
d2

ln
D½C2 þ dðS � C þ RÞ�

D½C2 þ dðS � C þ RÞ� � dW ðC11 þ aCÞ

� �
.

Note that the value in the brace is well-defined because we have C2þdðS�CþRÞ
d > W ðC11þaCÞ

D . If we let D = G(0), i.e.,
D ¼ Aþ W ðC11 þ aCÞ
d

� DðC11 þ aCÞ
a2

1þ aW
D

� �
ln 1þ aW

D

� �
� aW

D

� �

� D½C2 þ dðS � C þ RÞ�
d2

ln
D½C2 þ dðS � C þ RÞ�

D½C2 þ dðS � C þ RÞ� � dW ðC11 þ aCÞ

� �
; ð32Þ
then we have the following result.

Lemma 2. For W < D½C2þdðS�CþRÞ�
dðC11þaCÞ , we have:

(a) If D > 0, then the solution t�w 2 ð0; t̂wÞ which satisfies Eq. (20) not only exists but also is unique.

(b) If D 6 0, then the optimal value of tw is t�w ¼ 0.
Proof

(a) If D > 0, i.e., G(0) > 0. Since G(tw) is a strictly decreasing function in tw 2 ½0; t̂wÞ, and limtw!t̂�w GðtwÞ < 0,
by using the Intermediate Value Theorem, there exists a unique solution t�w 2 ð0; t̂wÞ such that Gðt�wÞ ¼ 0.

(b) If D < 0, i.e., G(0) < 0. Hence, for tw 2 ½0; t̂wÞ, we know the solution of G(tw) = 0 does not exist. For this

situation, from Eqs. (16) and (31), we then obtain that oPðtw;t2Þ
ot2
¼ GðtwÞ
ðt1þt2Þ2

< Gð0Þ
ðt1þt2Þ2

< 0, which implies that a

smaller value of t2 causes a higher value of P(tw, t2). By using the finding of Eq. (27), we know that t2 is a
strictly increasing function of tw; therefore, the maximum value of P(tw, t2) occurs at the boundary point
t�w ¼ 0.

For the another case: D = 0, i.e., G(0) = 0, then from the property that G(tw) is a strictly decreasing of
function of tw 2 ½0; t̂wÞ, we see that t�w ¼ 0 is the unique solution. This completes the proof. h

When W < D½C2þdðS�CþRÞ�
dðC11þaCÞ , Lemma 2(a) shows that D > 0 is the condition for the existence and uniqueness of

the solution. On the other hand, even if W < D½C2þdðS�CþRÞ�
dðC11þaCÞ , Lemma 2(b) reveals that if the ordering cost, A,

or the unit inventory cost per unit in OW, C11 + aC, is relatively low so that D 6 0, the inventory model return
to the one-warehouse problem.

The unique solution in Lemma 2(a) will be proved to be indeed a global maximum by checking the second
order optimality conditions, that is, we have the following main result.

Theorem 2. For W < D½C2þdðS�CþRÞ�
dðC11þaCÞ , if D > 0, then the point ðt�w; t�2Þ which satisfies the Eqs. (19) and (20)

simultaneously is the global maximum of the total profit per unit time.

Proof. If D > 0, then from Lemma 2(a), the solution t�w 2 ð0; t̂wÞ which satisfies Eq. (20) not only exists but also

is unique. Hence, the value t�2 can be determined by Eq. (29). Furthermore, since 0 < dt1

dtw
< 1 and dKðtwÞ

dtw
> 0, we

then obtain
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o2P ðtw; t2Þ
ot2

w

����
ðtw;t2Þ¼ðt�w ;t�2Þ

¼ �D
t1 þ t2

dt1

dtw

dKðtwÞ
dtw

����
ðt�w;t�2Þ

< 0;

o2P ðtw; t2Þ
ot2

2

����
ðtw;t2Þ¼ðt�w ;t�2Þ

¼ �D½C2 þ dðS � C þ RÞ�
ðt1 þ t2Þð1þ dt2Þ2

�����
ðt�w;t�2Þ

< 0
and
o2P ðtw; t2Þ
otwot2

����
ðtw;t2Þ¼ðt�w;t�2Þ

¼ 0.
Thus, the determinant of the Hessian matrix at the stationary point ðt�w; t�2Þ is
H¼ o2Pðtw; t2Þ
ot2

w

����
ðt�w;t�2Þ

� o2P ðtw; t2Þ
ot2

2

����
ðt�w;t�2Þ
� o2P ðtw; t2Þ

otwot2

� �2
�����
ðt�w;t�2Þ

¼D2½C2þ dðS�CþRÞ�
ðt1þ t2Þ2ð1þ dt2Þ2

dt1

dtw

dK1ðtwÞ
dtw

�����
ðt�w;t�2Þ

> 0.
As a result, we can conclude that the stationary point ðt�w; t�2Þ for our optimization problem is a global max-
imum. This completes the proof. h

Once the optimal solution ðt�w; t�2Þ is obtained, we substitute ðt�w; t�2Þ into Eqs. (12) and (14), the optimal
ordering quantity per cycle and the maximum total profit per unit time P ðt�w; t�2Þ are as follows:
Q� ¼ W þ Dðebt�w � 1Þ
b

þ D lnð1þ dt�2Þ
d

and
P ðt�w; t�2Þ ¼ DðS � CÞ � D½C2 þ dðS � C þ RÞ�t�2
1þ dt�2

. ð33Þ
4. Inventory problem without capacity constraint in OW

When the OW is so abundant that the RW is not used, the previous model reduces to the one-warehouse
inventory problem. We remove the capacity constraint of the OW, and hence the total profit per unit time in
Eq. (14) becomes
Pðt1; t2Þ ¼ DðS � CÞ � A
t1 þ t2

� C11 þ aC
aðt1 þ t2Þ

D
a
ðeat1 � 1Þ �Dt1

� �
�D½C2 þ dðS � C þ RÞ�

d2ðt1 þ t2Þ
½dt2 � lnð1þ dt2Þ�.

ð34Þ

Solving the necessary conditions: oPðt1;t2Þ

ot1
¼ 0 and oPðt1;t2Þ

ot2
¼ 0 for the maximum value of P (t1, t2), we get
½C2 þ dðS � C þ RÞ�t2

1þ dt2

� ðC11 þ aCÞðeat1 � 1Þ
a

¼ 0 ð35Þ
and
Aþ C11 þ aC
a

D
a
ðeat1 � 1Þ � Dt1

� �
þ D½C2 þ dðS � C þ RÞ�

d2
½dt2 � lnð1þ dt2Þ�

� D½C2 þ dðS � C þ RÞ� ðt1 þ t2Þt2

1þ dt2

¼ 0. ð36Þ
After some algebraic manipulation, Eq. (35) can be rewritten as
t2 ¼
ðC11 þ aCÞðeat1 � 1Þ

a½C2 þ dðS � C þ RÞ� � dðC11 þ aCÞðeat1 � 1Þ . ð37Þ
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Note that t2 is a function of t1, and when t1 2 0; 1
a ln 1þ a½C2þdðS�CþRÞ�

dðC11þaCÞ

n o
 �
, we have t2 > 0. Induced by Eq. (36),

we define a function, X(t1), as follows:
X ðt1Þ ¼ Aþ C11 þ aC
a

D
a
ðeat1 � 1Þ � Dt1

� �
þ D½C2 þ dðS � C þ RÞ�

d2
½dt2 � lnð1þ dt2Þ�

� D½C2 þ dðS � C þ RÞ� ðt1 þ t2Þt2

1þ dt2

ð38Þ
for t1 2 0; 1
a ln 1þ a½C2þdðS�CþRÞ�

dðC11þaCÞ

n o
 �
and t2 is given as Eq. (37). By using the similar arguments as the above

section, we can easily obtain the following two results. The proofs are omitted.

Lemma 3. The point t��1 2 0; 1
a ln 1þ a½C2þdðS�CþRÞ�

dðC11þaCÞ

n o
 �
which satisfies the equation X(t1) = 0 in (38) not only

exists but also is unique.

Theorem 3. The point ðt��1 ; t��2 Þ which satisfies the Eqs. (35) and (36) simultaneously is the global maximum of the

total profit per unit time P(t1, t2).

From Theorem 3, once the optimal solution ðt��1 ; t��2 Þ is obtained, the optimal ordering quantity per cycle
(denoted by Q**), the maximum inventory level per cycle (denoted by B**) and the maximum total profit
per unit time Pðt��1 ; t��2 Þ are as follows:
Q�� ¼ D
a
ðeat��

1 � 1Þ þ D lnð1þ dt��2 Þ
d

;

B�� ¼ D
a
ðeat��

1 � 1Þ
and
Pðt��1 ; t��2 Þ ¼ DðS � CÞ � D½C2 þ dðS � C þ RÞ�t��2
1þ dt��2

. ð39Þ
Without the capacity constraint, we know that all of the ordering quantity can be stored in the OW. Under
this situation, we want to compare the magnitude of the maximum inventory level B** with the value W. Let us

consider the following two cases: Case 1. W P D½C2þdðS�CþRÞ�
dðC11þaCÞ and Case 2. W < D½C2þdðS�CþRÞ�

dðC11þaCÞ . For Case 1:

W P D½C2þdðS�CþRÞ�
dðC11þaCÞ , from Lemma 3, we know that t��1 2 0; 1

a ln 1þ a½C2þdðS�CþRÞ�
dðC11þaCÞ

n o
 �
. Consequently, the maxi-

mum inventory level per cycle
B�� ¼ D
a
ðeat��

1 � 1Þ < D
a

e
a�1

a ln 1þa½C2þdðS�CþRÞ�
dðC11þaCÞ

n o
� 1

 !
6

D
a

ea�1
a ln 1þaW

Dð Þ � 1
h i

¼ W .
For Case 2: W < D½C2þdðS�CþRÞ�
dðC11þaCÞ , we have
1

a
ln 1þ a½C2 þ dðS � C þ RÞ�

dðC11 þ aCÞ

� �
>

1

a
ln 1þ aW

D

� �
.

From Eqs. (32) and (38), it is not difficult to check that X 1
a ln 1þ aW

D

� 	� 	
¼ D. Besides, it can be shown that

X(t1) in Eq. (38) is a strictly decreasing function of t1 2 0; 1
a ln 1þ a½C2þdðS�CþRÞ�

d C11þaCð Þ

n o
 �
in conjunction with
lim
t1!0þ

X ðt1Þ ¼ A > 0
and

lim

t1!1
a ln 1þa½C2þdðS�CþRÞ�

dðC11þaCÞ

n o� X ðt1Þ < 0.
Now, we investigate the condition under which X 1
a ln 1þ aW

D

� 	� 	
6 0 or >0, and the following two cases arise.
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(a) If D 6 0, then X 1
a ln 1þ aW

D

� 	� 	
¼ D 6 0. By the property of the function X(t1) and the Intermediate

Value Theorem, we know that the optimal t��1 must belong to the interval 0; 1
a ln 1þ aW

D

� 	� 

. It in turn

implies that the maximum inventory level per cycle
B�� ¼ D
a
ðeat��

1 � 1Þ 6 D
a

ea�1
a ln 1þaW

Dð Þ � 1
h i

¼ W .
(b) If D > 0, then X 1
a ln 1þ aW

D

� 	� 	
¼ D > 0. We know that the optimal t��1 belongs to the interval

1
a ln 1þ aW

D

� 	
; 1

a ln 1þ a½C2þdðS�CþRÞ�
dðC11þaCÞ

n o
 �
. It implies that the maximum inventory level per cycle
B�� ¼ D
a
ðeat��

1 � 1Þ > D
a

ea�1
a ln 1þaW

Dð Þ � 1
h i

¼ W .
From the above arguments, we know that when the capacity of the OW is unrestricted (i.e., one-warehouse

inventory problem), if W P D½C2þdðS�CþRÞ�
dðC11þaCÞ , or W < D½C2þdðS�CþRÞ�

dðC11þaCÞ and D 6 0, then the maximum ordering inven-

tory quantity per cycle B** is less or equal to W, i.e., B** 6W. On the other hand, if W < D½C2þdðS�CþRÞ�
dðC11þaCÞ and

D > 0, then the maximum ordering quantity per cycle B** is larger than W, i.e., B** > W.
Next, we want to compare the difference between the total profit per unit time of the one-warehouse inven-

tory problem with the two-warehouse inventory problem which the RW is not required. It can be shown that
P 1

a ln 1þ aW
D

� 	
; t�2

� 	
¼ P ð0; t�2Þ, where t�2 is the root which satisfies Eq. (23). However, since ðt��1 ; t��2 Þ is the opti-

mal solution such that P (t1, t2) is maximum, hence we have that P 1
a ln 1þ aW

D

� 	
; t�2

� 	
< Pðt��1 ; t��2 Þ, which

implies P ð0; t�2Þ < Pðt��1 ; t��2 Þ. As a result, once the condition of Theorem 1 or Lemma 2(b) is satisfied, since
P ð0; t�2Þ < Pðt��1 ; t��2 Þ, the inventory model with two warehouses will return to the one-warehouse inventory
problem such that Theorem 3 applies.

5. Some special cases

In this section, the two-warehouse inventory model is illustrated for some special cases. We construct them
as follows:

Case 1. Without shortage

When d!1 (i.e., the fraction of shortages backordered is zero), from Eq. (29), we get t2 � 0. The model
reduce to the case where shortages are not allowed and the total profit per unit time in Eq. (14) approaches to
P 1ðtwÞ � P ðtw; 0Þ

¼ DðS � CÞ � A
t1

� C
t1

W þ D
b
ðebtw � 1Þ � Dt1

� �
� C11

at1

½W � Dðt1 � twÞ� �
DC12

b2t1

ðebtw � btw � 1Þ;

ð40Þ

where t1 is a function of tw and be defined as in Eq. (8). The necessary condition to find the optimal solution of
P1(tw) is
dP 1ðtwÞ
dtw

¼ A
t2
1

dt1

dtw

þ C
t2
1

W þ D
b
ðebtw � 1Þ � Dt1

� �
dt1

dtw

� DC
t1

ebtw � dt1

dtw

� �
þ C11

at2
1

½W � Dðt1 � twÞ�
dt1

dtw

þ DC11

at1

dt1

dtw

� 1

� �
þ DC12

b2t2
1

ðebtw � btw � 1Þ dt1

dtw

� DC12

bt1

ðebtw � 1Þ

¼ 1

t2
1ð1þ aW e�atw=DÞ Aþ W ðC11 þ aCÞ

a
� DðC11 þ aCÞðt1 � twÞ

a
þ DðC12 þ bCÞðebtw � btw � 1Þ

b2

�

�DðC11 þ aCÞW e�atw

D
t1 �

DðC12 þ bCÞðebtw � 1Þ
b

1þ aW e�atw

D

� �
t1

�

¼ 1

t2
1ð1þ aW e�atw=DÞ Aþ W ðC11 þ aCÞ

a
� DðC11 þ aCÞðt1 � twÞ

a

�

þDðC12 þ bCÞðebtw � btw � 1Þ
b2

� Dt1KðtwÞ
�
¼ 0; ð41Þ
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which implies
Aþ W ðC11 þ aCÞ
a

� DðC11 þ aCÞðt1 � twÞ
a

þ DðC12 þ bCÞðebtw � btw � 1Þ
b2

� Dt1KðtwÞ ¼ 0.
Let
LðtwÞ ¼ Aþ W ðC11 þ aCÞ
a

þ DðC12 þ bCÞðebtw � btw � 1Þ
b2

� DðC11 þ aCÞðt1 � twÞ
a

� Dt1KðtwÞ; tw P 0.

ð42Þ

By using the analogous derivations as above section, we can show L(tw) is a strictly decreasing function in
tw 2 [0,1), and hence there exists a unique value tKw 2 ð0;1Þ such that LðtKwÞ ¼ 0. Substituting tKw into Eq.
(8), a corresponding tK1 can be determined, and thus the optimal quantity per cycle (denoted by QK) and
the maximum total profit per unit time P 1ðtKwÞ are as follows:
QK ¼ W þ DðebtKw � 1Þ
b

and
P 1ðtKwÞ ¼ DðS � CÞ � DKðtKwÞ. ð43Þ

Case 2. Without stock

We consider the case that retailers do not carry any stock on hand and just accept backorders. In this sit-
uation, the inventory model starts with shortages, and keep the negative inventory level in the interval (0, t2).
Hence, the total profit per unit time in Eq. (34) becomes
P 2ðt2Þ � P ð0; t2Þ ¼ DðS � CÞ � A
t2

� D½C2 þ dðS � C þ RÞ�
d2t2

½dt2 � lnð1þ dt2Þ� ð44Þ
The necessary condition to find the optimal solution of P2(t2) is
dP 2ðt2Þ
dt2

¼ 1

t2
2

Aþ D½C2 þ dðS � C þ RÞ�
d2

dt2

1þ dt2

� lnð1þ dt2Þ
� �� �

¼ 0;
which implies
Aþ D½C2 þ dðS � C þ RÞ�
d2

dt2

1þ dt2

� lnð1þ dt2Þ
� �

¼ 0. ð45Þ
We define a new function as follows:
Mðt2Þ ¼ Aþ D½C2 þ dðS � C þ RÞ�
d2

dt2

1þ dt2

� lnð1þ dt2Þ
� �

; t2 P 0. ð46Þ
For any given t2 2 [0,1), because dMðt2Þ
dt2
¼ �D½C2 þ dðS � C þ RÞ� t2

ð1þt2Þ2
< 0, M(0) = A, and limt2!1Mðt2Þ ¼

�1. Hence, there exists a unique value t#
2 2 ð0;1Þ such that Mðt#

2 Þ ¼ 0. Thus the maximum total profit
per unit time
P 2ðt#
2 Þ ¼ DðS � CÞ � D½C2 þ dðS � C þ RÞ�t#

2

1þ dt#
2

ð47Þ
follows.
Next, for the two-warehouse inventory model with partial backlogging discussed originally and the two

special cases, we will demonstrate which of these three cases is profitable. Due to the relations shown in
Eqs. (42) and (46), Eq. (20) can be written as
A ¼ LðtwÞ þMðt2Þ. ð48Þ

Note that Eq. (48) is the necessary condition to find the optimal solution of P(tw, t2). Then we have the fol-
lowing result.
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Theorem 4. For W < D½C2þdðS�CþRÞ�
dðC11þaCÞ , if D > 0, then Pðt�w; t�2Þ > maxfP 1ðtKwÞ; P 2ðt#

2 Þg.

Proof. Because tKw and ðt�w; t�2Þ are the optimal solutions of P1(tw) in Eq. (40) and P(tw, t2) in Eq. (14) respec-
tively, from Eqs. (42) and (48), we have
LðtKwÞ ¼ 0 ð49Þ

and
A ¼ Lðt�wÞ þMðt�2Þ. ð50Þ
Eq. (50) can be rewritten as
Lðt�wÞ ¼ A�Mðt�2Þ > A�Mð0Þ ¼ 0; ð51Þ
because M(t2) is a strictly decreasing function and M(0) = A. Comparing Eqs. (49) and (51), we get
Lðt�wÞ > LðtKwÞ. ð52Þ

Recall that L(tw) is a strictly decreasing function in tw 2 [0,1), Eq. (52) implies tKw > t�w. Then, from Eqs. (33)
and (43), we obtain
P ðt�w; t�2Þ ¼ DðS � CÞ � D½C2 þ dðS � C þ RÞ�t�2
1þ dt�2

¼ DðS � CÞ � DKðt�wÞ > DðS � CÞ � DKðtKwÞ

¼ P 1ðtKwÞ. ð53Þ
Similarly, we can get t#
2 > t�2. Then, from Eqs. (33) and (47), we obtain
P ðt�w; t�2Þ ¼ DðS � CÞ � D½C2 þ dðS � C þ RÞ�t�2
1þ dt�2

> DðS � CÞ � D½C2 þ dðS � C þ RÞ�t#
2

1þ dt#
2

¼ P 2ðt#
2 Þ. ð54Þ
Combining Eqs. (53) and (54), we get
P ðt�w; t�2Þ > maxfP 1ðtKwÞ; P 2ðt#
2 Þg.
This completes the proof. h

Furthermore, let P1(t1) represent the total profit per unit time in the one-warehouse problem without short-
ages and let tKK

1 denote the optimal solution of P1(t1); and let P2(t2) represent the total profit per unit time in
the one-warehouse problem without stock and let t#

2 denote the optimal solution of P2(t2). By using the anal-
ogous derivations as in Theorem 4, we can easily obtain the following result. The proof is omitted.

Theorem 5. For the one-warehouse problem, Pðt��1 ; t��2 Þ > maxfP1ðtKK
1 Þ;P2ðt#

2 Þg.

Up to now, we present three inventory policies: without shortage, without stock and partial backlogging.
From Theorems 4 and 5, we show that the inventory policy with partial backlogging is profitable.

6. Numerical example

In this section, our illustration begins from a two-warehouse inventory problem under the condition

W < D½C2þdðS�CþRÞ�
dðC11þaCÞ with a precise judgment criterion, D. Because t�w, t�1, t�2 and T* cannot be determined in

the closed forms, they have to be solved numerically by using some computer algorithm. While D > 0, Theo-
rem 2 applies and we can obtain the value of t�w from Eq. (20) by using Newton–Raphson Method (or any
bisection method). Once the optimal t�w has been determined, the optimal t�1, t�2 and T* follows by using
Eqs. (28)–(30), respectively. On the other hand, while D 6 0, Theorem 3 applies and the optimal solution
can be obtained by using the similar technique.

In order to illustrate the proposed model, we provide some computational results for a numerical example
with the parameters specified in the following: D = 1000, A = 100, C = 10, C11 = 0.2, C12 = 0.5, C2 = 2,
S = 15, a = 0.02, b = 0.05, R = 7 and d 2 {0.25, 0.5, 1,2.5, 5,1} with suitable units. Note that d!1 implies
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that shortages are not allowed. Besides, we consider the problem for W = {300,500,700} to examine the prac-

tical inventory system. In our illustration, we denote U ¼ D½C2þdðS�CþRÞ�
dðC11þaCÞ , and have U 2 {50,000, 40,000,

35,000, 32,000, 31,000, 30,000} corresponding to different given d. Furthermore, by calculating D in Eq.
(32), we can check the RW is required or not. When W = 300 and 500, we have D > 0 for all d such that The-
orem 2 applies. Next, when W = 700, we have D < 0 for d 2 {0.25, 0.5, 1} such that Theorem 3 applies, and
D > 0 for d 2 {2.5, 5,1} such that Theorem 2 applies. The computational results for the optimal value of
t�w, t�1, T*, t�1=T � (the optimal service rate), Pðt�w; t�2Þ, Pðt��1 ; t��2 Þ and B* (the maximum inventory level) with
respect to different values of W and d are shown in Table 1. For comparison, the result of the special case,
d = 0 (i.e. complete backlogging) is also listed in the same table. The results were obtained using Mathematica
version 4.0.

Based on Table 1, the effects of W and d on the maximum total profit per unit time, ordering quantity and
maximum inventory level are portrayed in Figs. 2–4, respectively. Besides, the following inferences can be
made from the results in Table 1 and Figs. 2–4.

1. For fixed W, an increase in the value of d (which decreases the backlogging rate) will result in a decrease in
T*, Q* and P ðt�w; t�2Þ, but an increase in t�w, t�1, t�1=T � and B*.

2. For fixed W, the maximum profit occurs at d = 0 (i.e. complete backlogging), and the minimum profit
occurs at d!1 (i.e. without shortage).
Table 1
Effects of W and d on the optimal solution

Complete backlogging
(d = 0)

d Without shortage
(d!1)0.25 0.5 1 2.5 5

W = 300 U 1 50,000 40,000 35,000 32,000 31,000 30,000
D 78.44 80.59 81.13 81.52 81.81 81.92 82.04
t�w 0.1620 0.1842 0.1909 0.1959 0.1999 0.2015 0.2032
t�1 0.4601 0.4822 0.4888 0.4939 0.4979 0.4994 0.5011
T* 0.6017 0.5443 0.5287 0.5171 0.5082 0.5048 0.5011
t�1=T � 0.7647 0.8859 0.9246 0.9551 0.9797 0.9894 1.0000
Q* 604.26 546.70 531.22 519.84 511.12 507.80 504.22
B* 462.64 485.08 491.78 496.90 500.94 502.51 504.22
Pðt�w; t�2Þ 4716.77 4694.25 4687.54 4682.40 4678.34 4676.76 4675.04

W = 500 D 40.17 46.14 47.65 48.72 49.53 49.84 50.17
t�w 0.0619 0.0783 0.0830 0.0866 0.0894 0.0905 0.0916
t�1 0.5588 0.5750 0.5797 0.5833 0.5860 0.5871 0.5883
T* 0.6900 0.6316 0.6158 0.6042 0.5953 0.5919 0.5883
t�1=T � 0.8099 0.9104 0.9414 0.9653 0.9844 0.9919 1.0000
Q* 693.21 634.60 618.96 607.51 598.76 595.43 591.85
B* 562.02 578.43 583.19 586.78 589.59 590.68 591.85
Pðt�w; t�2Þ 4737.61 4721.1 4716.32 4712.7 4709.87 4708.78 4707.60

W = 700 D �17.15 �5.46 �2.50 �0.38 1.21 1.81 2.45
t��1 0.6425 0.6770 0.6866 0.6938 – – –
T** 0.7718 0.7323 0.7218 0.7142 – – –
t��1 =T �� 0.8324 0.9245 0.9513 0.9715 – – –
Q** 775.98 736.51 726.25 718.82 – – –
B** 646.65 681.61 691.38 698.66 – – –
Pðt��1 ; t��2 Þ 4741.34 4727.36 4723.45 4720.54 – – –
t�w – – – – 0.0017 0.0026 0.0035
t�1 – – – – 0.6968 0.6977 0.6986
T* – – – – 0.7058 0.7023 0.6986
t�1=T � – – – – 0.9872 0.9934 1.0000
Q* – – – – 710.61 707.17 703.49
B* – – – – 701.70 702.56 703.49
Pðt�w; t�2Þ – – – – 4718.28 4717.41 4716.48



Fig. 2. Effects of d and W on the maximum total profit per unit time.

Fig. 3. Effects of d and W on ordering quantity (Q).
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3. For fixed d, a higher value of W results in higher values for t�1, T*, t�1=T �, Q*, B* and P ðt�w; t�2Þ, but a lower
value for t�w.

4. Q*, B* and P ðt�w; t�2Þ are less sensitive to d when it’s value is larger.

The inferences above are consistent with the intuitive reasoning. For a fixed W, as d decreases, the back-
logging rate will increase and result in a larger profit. Hence, in order to increase the profit per unit time,
the retailer should reduce the value of the backlogging parameter d. When d equals to zero, the model reduces
to the case of complete backlogging, and has the maximum profit per unit time. On the other hand, for fixed d,
as W increases, the retailer should increase the ordering quantity and shorten the duration that inventory is
stored in the RW.



Fig. 4. Effects of d and W on maximum inventory level (B).
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7. Concluding remarks

In this paper, an inventory model is developed for deteriorating items with finite warehouse capacity, per-
mitting shortage and time-proportional backlogging rate. Holding costs and deterioration costs are different in
OW and RW due to different preservation environments. The inventory costs (including holding cost and dete-
rioration cost) in RW are assumed to be higher than those in OW. To reduce the inventory costs, it will be
economical for firms to store goods in OW before RW, but clear the stocks in RW before OW. In particular,
the backlogging rate considered to be a decreasing function of the waiting time for the next replenishment is
more realistic. In practice, we can observe periodically the proportion of demand which would accept back-
logging and the corresponding waiting time for the next replenishment. Then the statistical techniques, such as
the nonlinear regression method, can be used to estimate the backlogging rate. Furthermore, we show that the
inventory policy with partial backlogging is more profitable than those without shortage and without stock.
We also provide some useful properties for finding the optimal replenishment policy and show in a rigorous
way that the policy suggested is indeed optimal. By using the presented approach, we can easily decide whether
the retailer has to rent another warehouse and obtain the optimal replenishment policy among those cases with
the help of the auxiliary values.

The proposed model can be extended in several ways. For instance, we may consider finite rate of replen-
ishment. Also, we could extend the deterministic demand function to stochastic demand patterns. Further-
more, we could generalize the model to allow for permissible delay in payments.
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