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Abstract

In this paper, a deterministic inventory model for deteriorating items with price-dependent demand is developed. The
demand and deterioration rates are continuous and differentiable function of price and time, respectively. In addition, we
allow for shortages and the unsatisfied demand is partially backlogged at a negative exponential rate with the waiting time.
Under these assumptions, for any given selling price, we first develop the criterion for the optimal solution for the replen-
ishment schedule, and prove that the optimal replenishment policy not only exists but also is unique. If the criterion is not
satisfied, the inventory system should not be operated. Next, we show that the total profit per unit time is a concave func-
tion of price when the replenishment schedule is given. We then provide a simple algorithm to find the optimal selling price
and replenishment schedule for the proposed model. Finally, we use numerical examples to illustrate the algorithm.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In many inventory systems, the deterioration of goods is a realistic phenomenon. It is well known that cer-
tain products such as medicine, volatile liquids, blood bank, food stuff and many others, decrease under dete-
rioration (vaporization, damage, spoilage, dryness and so on) during their normal storage period. As a result,
while determining the optimal inventory policy of that type of products, the loss due to deterioration cannot
be ignored. In the literature of inventory theory, the deteriorating inventory models have been continually
modified so as to accommodate more practical features of the real inventory systems. The analysis of deteri-
orating inventory began with Ghare and Schrader [1], who established the classical no-shortage inventory
model with a constant rate of decay. However, it has been empirically observed that failure and life expectancy
of many items can be expressed in items of Weibull distribution. This empirical observation has prompted
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researchers to represent the time to deterioration of a product by a Weibull distribution. Covert and Philip [2]
extended Ghare and Schrader’s [1] model and obtain an economic order quantity model for a variable rate of
deterioration by assuming a two-parameter Weibull distribution. Researchers including Philip [3], Misra [4],
Tadikamalla [5], Wee [6], Chakrabarty et al. [7] and Mukhopadhyay et al. [8,9] developed economic order
quantity models that focused on this type of products. Therefore, a realistic model is the one that treats
the deterioration rate as a time varying function.

However, the above inventory models unrealistically assume that during stockout either all demand is
backlogged or all is lost. In reality, often some customers are willing to wait until replenishment, especially
if the wait will be short, while other are more impatient and go elsewhere. To reflect this phenomenon,
Abad [10,11] discussed a pricing and lot-sizing problem for a product with a variable rate of deterioration,
allowing shortages and partial backlogging. The backlogging rate depends on the time to replenishment –
the longer customers must wait, the greater the fraction of lost sales. He presented two cases of the back-
logging rates: k0e�dx and k0

1þdx, where x is the waiting time up to the next replenishment, 0 < k0 6 1, and
d > 0. However, he does not use the stockout cost (includes backorder cost and the lost sale cost) in the
formulation of the objective function since these costs are not easy to estimate, and its immediate impact
is that there is a lower service level to customers. Recently, Dye [12] amended Abad’s [10,11] model by add-
ing both the backorder cost and the cost of lost sales into the total profit. He considered the backlogging
rate 1

1þdx. The backlogging rate states that if customers do not have to wait, then no sales are lost, and all
sales are lost if customers are faced with an infinite wait. However, the exponential backlogging rate
remained unexplored.

The main purpose of this paper is to amend the paper of Abad [10,11] with a view to making the model
more relevant and applicable in practice. We suppose that the fraction of customers who backlog their orders
increases exponentially as the waiting time for the next replenishment decreases. The rest of the paper is orga-
nized as follows. In the next section, the assumptions and notation related to this study are presented. In Sec-
tion 3, for any given selling price, we first develop the criterion for the optimal solution for the replenishment
schedule, and prove that the optimal replenishment policy not only exists but also is unique. Next, we show
that the total profit per unit time is a concave function of the selling price when the replenishment schedule is
given. In the last two sections, numerical examples are discussed to illustrate the procedure of solving the
model and concluding remarks are provided.
2. Notation and assumptions

2.1. Notation

To develop the mathematical model of inventory replenishment schedule, the notation adopted in this
paper is as below:

A the replenishment cost per order
c the purchasing cost per unit
s the selling price per unit, where s > c

Q the ordering quantity per cycle
B the maximum inventory level per cycle
c1 the holding cost per unit per unit time
c2 the backorder cost per unit per unit time
c3 the cost of lost sales (i.e., goodwill cost) per unit
t1 the time at which the inventory level reaches zero, t1 P 0
t2 the length of period during which shortages are allowed, t2 P 0
T the length of the inventory cycle, hence T = t1 + t2

I1(t) the level of positive inventory at time t, where 0 6 t 6 t1

I2(t) the level of negative inventory at time t, where t1 6 t 6 t1 + t2

TP(s, t1, t2) the total profit per unit time
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2.2. Assumptions
In addition, the following assumptions are imposed:

1. Replenishment rate is infinite, and lead time is zero.
2. The time horizon of the inventory system is infinite.
3. The demand rate, d(s), is any non-negative, continuous, convex, decreasing function of the selling price in

[0, su].
4. The items deteriorate at a varying rate of deterioration h(t), where 0 < h(t)� 1.
5. Shortages are allowed. We adopt the concept used in Abad [10,11], where the unsatisfied demand is back-

logged, and the fraction of shortages backordered is e�dx, where x is the waiting time up to the next replen-
ishment and d is a positive constant.
2.3. Mathematical formulation

Using above assumptions, the inventory level follows the pattern depicted in Fig. 1. To establish the total
relevant profit function, we consider the following time intervals separately, [0, t1] and [t1, t1 + t2]. During the
interval [0, t1], the inventory is depleted due to the combined effects of demand and deterioration. Hence the
inventory level is governed by the following differential equation:
dI1ðtÞ
dt
¼ �dðsÞ � hðtÞI1ðtÞ; 0 < t < t1 ð1Þ
with the boundary condition I1(t1) = 0. Solving the differential Eq. (1), we get the inventory level as
I1ðtÞ ¼ dðsÞe�gðtÞ
Z t1

t
egðuÞ du; 0 6 t 6 t1; ð2Þ
where gðzÞ ¼
R z

0 hðuÞdu.
Furthermore, at time t1, shortage occurs and the inventory level starts dropping below 0. During the inter-

val [t1, t1 + t2], the inventory level only depends on demand, and a fraction e�dðt1þt2�tÞ of the demand is back-
logged, where t 2 [t1, t1 + t2]. The inventory level is governed by the following differential equation:
dI2ðtÞ
dt
¼ �dðsÞe�dðt1þt2�tÞ; t1 < t < t1 þ t2 ð3Þ
with the boundary condition I2(t1) = 0. Solving the differential Eq. (3), we obtain the inventory level as
I2ðtÞ ¼ �
dðsÞ
d
½e�dðt1þt2�tÞ � e�dt2 �; t1 6 t 6 t1 þ t2: ð4Þ
Fig. 1. Graphical representation of inventory system.



C.-Y. Dye et al. / European Journal of Operational Research 181 (2007) 668–678 671
Therefore, the ordering quantity over the replenishment cycle can be determined as
Q ¼ I1ð0Þ � I2ðt1 þ t2Þ ¼ dðsÞ
Z t1

0

egðuÞ duþ 1� e�dt2

d

� �
ð5Þ
and the maximum inventory level per cycle is
B ¼ I1ð0Þ ¼ dðsÞ
Z t1

0

egðuÞ du: ð6Þ
Based on Eqs. (2), (4) and (5), the total profit per cycle consists of the following elements:

1. ordering cost per cycle = A,
2. holding cost per cycle ¼ c1

R t1

0
I1ðtÞdt ¼ c1dðsÞ

R t1
0

e�gðtÞ R t1
t egðuÞdudt,

3. backorder cost per cycle ¼ c2

R t1þt2

t1
½�I2ðtÞ�dt ¼ c2dðsÞ

d2 1� e�dt2 � dt2e�dt2ð Þ,
4. opportunity cost due to lost sales per cycle ¼ c3dðsÞ

R t1þt2
t1
½1� e�dðt1þt2�tÞ�dt ¼ c3dðsÞ

d ðe�dt2 þ dt2 � 1Þ,
5. purchase cost per cycle ¼ cQ ¼ cdðsÞ

R t1
0

egðuÞ duþ 1�e�dt2

d

h i
,

6. sales revenue per cycle ¼ s
R t1

0
dðsÞdu� I2ðt1 þ t2Þ

� �
¼ sdðsÞt1 þ sdðsÞ

d ð1� e�dt2Þ.

Therefore, the total profit per unit time of our model is obtained as follows:
TPðs; t1; t2Þ ¼
1

t1 þ t2

sales revenue� ordering cost� holding cost

�backorder cost� opportunity cost� purchase cost

� �

¼ ðs� cÞdðsÞ � 1

t1 þ t2

½c2 � dðs� cþ c3Þ�dðsÞ
d2

ð1� dt2 � e�dt2Þ þ A
�

þ cdðsÞ
Z t1

0

½egðuÞ � 1�duþ c1dðsÞ
Z t1

0

e�gðtÞ
Z t1

t
egðuÞ dudtþ c2dðsÞ

d
t2ð1� e�dt2Þ

�
: ð7Þ
To maximize the total profit per unit time, taking the first-order derivative of TP(s, t1, t2) with respect to t1,
t2 and s, respectively, we obtain
oTPðs; t1; t2Þ
ot1

¼ 1

ðt1 þ t2Þ2
½c2 � dðs� cþ c3Þ�dðsÞ

d2
ð1� dt2 � e�dt2Þ þ A

�

þ cdðsÞ
Z t1

0

½egðuÞ � 1�duþ c1dðsÞ
Z t1

0

e�gðtÞ
Z t1

t
egðuÞdu dt þ c2dðsÞ

d
t2ð1� e�dt2Þ

�

� dðsÞ
t1 þ t2

c½egðt1Þ � 1� þ c1

Z t1

0

egðt1Þ�gðtÞdt
� �

; ð8Þ

oTPðs; t1; t2Þ
ot2

¼ 1

ðt1 þ t2Þ2
½c2 � dðs� cþ c3Þ�dðsÞ

d2
ð1� dt2 � e�dt2Þ þ A

�

þ cdðsÞ
Z t1

0

½egðuÞ � 1�duþ c1dðsÞ
Z t1

0

e�gðtÞ
Z t1

t
egðuÞdu dt þ c2dðsÞ

d
t2ð1� e�dt2Þ

�

� dðsÞ
t1 þ t2

½ðs� cþ c3Þð1� edt2Þ þ c2t2e�dt2 �; ð9Þ
and
oTPðs; t1; t2Þ
os

¼ ½dðsÞ þ ðs� cÞd 0ðsÞ� 1þ 1� dt2 � e�dt2

dðt1 þ t2Þ

� �

� d 0ðsÞ
t1 þ t2

c2ð1� e�dt2 � dt2e�dt2Þ
d2

� c3ð1� dt2 � e�dt2Þ
d

�

þ c
Z t1

0

½egðuÞ � 1�duþ c1

Z t1

0

e�gðuÞ
Z t1

t
egðuÞ dudt

�
: ð10Þ
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First, for any given selling price s, we want to prove that the optimal replenishment schedule not only exists
but also is unique. To this end, the optimal solution of (t1, t2) must satisfy the equations oTPðt1; t2jsÞ

ot1
¼ 0 and

oTPðt1; t2jsÞ
ot2

¼ 0 simultaneously, which implies
ðs� cÞdðsÞ � TPðt1; t2jsÞ ¼ dðsÞ c½egðt1Þ � 1� þ c1

Z t1

0

egðt1Þ�gðtÞ dt
� �

; ð11Þ
and
ðs� cÞdðsÞ � TPðt1; t2jsÞ ¼ dðsÞ ðs� cþ c3Þð1� e�dt2Þ þ c2t2e�dt2
� �

; ð12Þ
respectively. Because both the left-hand sides in Eqs. (11) and (12) are the same, the right-hand sides in these
equations are equal, that is,
ðs� cþ c3Þð1� e�dt2Þ þ c2t2e�dt2 ¼ c½egðt1Þ � 1� þ c1

Z t1

0

egðt1Þ�gðtÞ dt: ð13Þ
Furthermore, we substitute TP(t1, t2js) in Eq. (7) into Eq. (12) and obtain
dðsÞðt1 þ t2Þ ðs� cþ c3Þð1� e�dt2Þ þ c2t2e�dt2
� �

¼ ½c2 � dðs� cþ c3Þ�dðsÞ
d2

� ð1� dt2 � e�dt2Þ þ A

þ cdðsÞ
Z t1

0

½egðuÞ � 1�duþ c1dðsÞ
Z t1

0

e�gðtÞ

�
Z t1

t
egðuÞ dudt þ c2dðsÞ

d
t2ð1� e�dt2Þ: ð14Þ
Taking the first-order derivative of the left-hand side of Eq. (13) with respect to t2, it yields
½dðs� cþ c3Þ þ c2ð1� dt2Þ�e�dt2 . Hence the left-hand side of Eq. (13) is a continuous function which increases

strictly in t2 2 ½0;~t2� and decreases strictly in t2 2 ½~t2;1Þ, respectively, where ~t2 ¼ c2þdðs�cþc3Þ
c2d

. As a result, the left

hand side of Eq. (13) has a maximum at the point t2 ¼ ~t2, and is s� cþ c3 þ c2

d exp � c2þdðs�cþc3Þ
c2

h i
. On the other

hand, because the right-hand side of Eq. (13) is a strictly increasing function of t1 and it goes to infinite as
t1!1, there exists a unique ~t1 such that
c egð~t1Þ � 1
� �

þ c1

Z ~t1

0

egð~t1Þ�gðtÞ dt ¼ s� cþ c3 þ
c2

d
exp � c2 þ dðs� cþ c2Þ

c2

� �
:

Besides, for any given t02 2 ð0;~t2Þ, there exists a unique t01 2 ð0;~t1Þ such that Eq. (13) holds. Similarly, for any
given t002 2 ð~t2;1Þ, we can also find a unique t001 2 ð0;~t1Þ such that Eq. (13) holds. Consequently, t1 can be un-
iquely determined as a function of t2.

Now, motivated by Eq. (14), we let
Gðt2Þ ¼
½c2 � dðs� cþ c3Þ�dðsÞ

d2
ð1� dt2 � e�dt2Þ þ Aþ cdðsÞ

Z t1

0

½egðuÞ � 1�duþ c1dðsÞ
Z t1

0

e�gðtÞ

�
Z t1

t
egðuÞ dudt þ c2dðsÞ

d
t2ð1� e�dt2Þ � dðsÞðt1 þ t2Þ ðs� cþ c3Þð1� e�dt2Þ þ c2t2e�dt2

� �
: ð15Þ
After assembling Eq. (13), the first-order derivative of G(t2) with respect to t2 becomes
dGðt2Þ
dt2

¼ dðsÞ c½egðt1Þ � 1� þ c1

Z t1

0

egðt1Þ�gðtÞ dt
� �

dt1

dt2

� dðsÞ½ðs� cþ c3Þð1� e�dt2Þ þ c2t2e�dt2 � dt1

dt2

� dðsÞðt1 þ t2Þ½dðs� cþ c3Þ þ c2ð1� dt2Þ�e�dt2

¼ �dðsÞðt1 þ t2Þ½dðs� cþ c3Þ þ c2ð1� dt2Þ�e�dt2 : ð16Þ
Then, we have the following result.
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Theorem 1. For any given s, we have

(a) If Gð~t2Þ < 0, then the solution ðt�1; t�2Þ which maximizes TP(t1, t2js) not only exists but also is unique, and

t�2 2 ð0;~t2Þ.
(b) If Gð~t2ÞP 0, then the optimal value of t2 is t�2 !1.
Proof. See Appendix A for details. h

For any given positive s, Theorem 1(a) provides that if Gð~t2Þ < 0, then we can find a unique point ðt�1; t�2Þ,
where t�2 2 ð0;~t2Þ, such that the total profit per unit time TP t�1; t

�
2js

� 	
is maximum. Once the optimal solution

t�1; t
�
2

� 	
is obtained, the optimal TP t�1; t

�
2js

� 	
can be found from Eq. (12) and is
TPðt�1; t�2jsÞ ¼ ðs� cÞdðsÞ � dðsÞ ðs� cþ c3Þð1� e�dt�
2Þ þ c2t�2e�dt�

2

� �
:

On the other hand, Theorem 1(b) reveals that if Gð~t2ÞP 0, then t�2 !1. By Eq. (13), the corresponding
t�1 is the point which satisfies c½egðt�

1
Þ � 1� þ c1

R t�
1

0 egðt�
1
Þ�gðtÞ dt ¼ s� cþ c3, and the optimal total profit per unit

time is
lim
t�
2
!1

TPðt�1; t�2jsÞ ¼ ðs� cÞdðsÞ � lim
t�
2
!1

dðsÞ ðs� cþ c3Þð1� e�dt�
2Þ þ c2t2e�dt�

2

� �
� lim

t�
2
!1

Gðt�2Þ
t�1 þ t�2

: ð17Þ
Because limt2!1jGðt2Þj <1, we have limt�
2
!1

Gðt�
2
Þ

t�
1
þt�

2
¼ 0. Hence Eq. (17) reduces to limt�

2
!1TPðt�1; t�2jsÞ ¼

�c3dðsÞ. The negative total profit per unit time, �c3d(s), reveals that this given selling price is unsuitable. That
is, at this given selling price s, the inventory system should not be operated. Once this case occurs, to improve
the profit, we should rise the selling price.

Next, we study the condition under which the optimal selling price also exists and is unique. For given
t�1 and t�2, the first-order necessary condition for TPðsjt�1; t�2Þ to be maximum is
dTPðsjt�1; t�2Þ
ds

¼ ½dðsÞ þ ðs� cÞd 0ðsÞ� 1þ 1� dt�2 � e�dt�
2

dðt�1 þ t�2Þ

� �

� d 0ðsÞ
t�1 þ t�2

c2 1� e�dt�
2 � dt�2e�dt�

2

� 	
d2

�
c3 1� dt�2 � e�dt�

2

� 	
d

�

þ c
Z t�

1

0

egðuÞ � 1
� �

duþ c1

Z t�
1

0

e�gðtÞ
Z t�

1

t
egðuÞ dudt

�

¼ 0: ð18Þ
It is easy to see that 1 � e�x � xe�x > 0 and 1 � x � e�x < 0 for all x > 0. Hence we obtain 1� e�dt�
2�

dt�2e�dt�
2 > 0 and 1� dt�2 � e�dt�

2 < 0. Besides, we have
1þ 1� dt�2 � e�dt�
2

dðt�1 þ t�2Þ
¼ t�1

t�1 þ t�2
þ 1� e�dt�

2

dðt�1 þ t�2Þ
> 0:
According to the above, it is clear that the Eq. (18) has a solution only if d(s) + (s � c)d 0(s) < 0. Further, if the
gross profit is a strictly concave function of s, then d(s) + (s � c)d 0(s), which is the derivative of the concave
(s � c)d(s), is a strictly decreasing function of s, which implies 2d 0(s) + (s � c)d 0 0(s) < 0, we then have
d2TPðsjt�1; t�2Þ
ds2

¼ ½2d 0ðsÞ þ ðs� cÞd 00ðsÞ� 1þ 1� dt�2 � e�dt�
2

dðt�1 þ t�2Þ

� �

� d 00ðsÞ
t�1 þ t�2

c2ð1� e�dt�
2 � dt�2e�dt�

2Þ
d2

� c3ð1� dt�2 � e�dt�
2Þ

d

�
þc
Z t�

1

0

½egðuÞ � 1�du

þ c1

Z t�
1

0

e�gðtÞ
Z t�

1

t
egðuÞ dudt

�
< 0:
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Consequently, there exists a unique optimal selling price s* which maximizes TP sjt�1; t�2
� 	

. The solution of

d(s) + (s � c)d 0(s) = 0, say sl, is the lower bound for the optimal selling price s* such that
dTP sjt�

1
;t�

2ð Þ
ds ¼ 0.

Summarize the above results, we can now establish the following algorithm to obtain the optimal solution
of our problem.

Algorithm

Step 1. Start with j = 0 and sj = sl, where sl is a solution of d(s) + (s � c)d 0(s) = 0.

Step 2. Put sj and ~t2 ¼ c2þdðsj�cþc3Þ
c2d

into Eq. (13) to obtain the corresponding value of t1, i.e., ~t1, and then from

Eq. (15) to calculate Gð~t2Þ.
Step 3. If Gð~t2Þ < 0, then go to Step 4. Otherwise, let sj+1 = sj + e, where e is any small positive number, and

set j = j + 1; then, go back to Step 2.
Step 4. From Eq. (15) to find the optimal value t�2 such that Gðt�2Þ ¼ 0, and then put t�2 into Eq. (13) to obtain

the corresponding value of t1, i.e., t�1, for a given selling price sj.
Step 5. Use the result in Step 4 to determine the optimal sj+1 by Eq. (18).
Step 6. If the difference between sj and sj+1 is sufficiently small, set s* = sj+1, then s�; t�1; t

�
2

� 	
is the optimal solu-

tion and stop. Otherwise, set j = j + 1 and go back to Step 2.
3. Numerical example

To illustrate the results, let us apply the proposed algorithm to solve the following numerical examples.

Example 1. We first consider an inventory situation proposed by Wee [6]: A = $250/per order, c = $8/per unit,
c1 = $0.50/per unit/per unit time, c2 = $2.00/per unit/per unit time, d(s) = 25 � 0.5s, where s 2 [0,50],
h(t) = a · b · tb�1 = 0.05 · 1.5 · t1.5�1 = 0.075t0.5 (e.g. Weibull deterioration rate, where a is scale parameter
and b is shape parameter). Besides, we take c3 = $2.00/per unit and assume that the backlogging rate is e�0.2x,
where x is the waiting time up to the next replenishment. By solving d(s) + (s � c)d 0(s) = 0, we obtain
sl = s0 = 29. Then, applying the algorithm, the iterations to find the optimal replenishment policy are shown in
Table 1. After five iterations, we have s* = 30.36569, t�1 ¼ 4:42898, t�2 ¼ 1:32528. Therefore, from Eqs. (5) and
(7), we obtain Q* = 64.3 and TP* = 143.91.

The three-dimensional total profit per unit time graph as s* = 30.36569 is shown in Fig. 2. Note that we run
the numerical results with distinct starting values of s = 15,17.5, . . . , 45. The numerical results indicate that
TPðsÞ ¼ TPðsjt�1; t�2Þ is strictly concave in s, as shown in Fig. 3. Consequently, we are sure that the local
maximum obtained here indeed the global maximum solution.

Example 2. In this example, the same deterioration rate and backlogging rate in Example 1 are used. Then, we
consider an inventory situation proposed by Dye [12]: A = $250/per order, c = $40/per unit, c1 = $1.50/per
unit/per unit time, c2 = $5.00/per unit/per unit time, c3 = $5.00/per unit, d(s) = 16 · 107 · s�3.21, where
s 2 [0,75]. By solving d(s) + (s � c)d 0(s) = 0, we obtain sl = s0 = 58.0995. Then, applying the algorithm, the iter-
ations to find the optimal replenishment policy are shown in Table 2. After 4 iterations, we have s* = 59.19363,
t�1 ¼ 0:59049, t�2 ¼ 0:18990. Therefore, from Eqs. (5) and (7), we obtain Q* = 256.1 and TP* = 5690.02.

The three-dimensional total profit per unit time graph as s* = 59.19363 is shown in Fig. 4. Note that we run
the numerical results with distinct starting values of s = 45,47.5, . . . , 75. The numerical results indicate that
Table 1
Iterations to find the optimal replenishment policy for Example 1

j Gð~t2Þ t1 t2 s

1 �1793.996 4.31689 1.32286 30.31641
2 �1818.090 4.42479 1.32507 30.36382
3 �1818.679 4.42882 1.32527 30.36561
4 �1818.701 4.42897 1.32528 30.36568
5 �1818.702 4.42898 1.32528 30.36569
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Table 2
Iterations to find the optimal replenishment policy for Example 2

j Gð~t2Þ t1 t2 s

1 �43610.72 0.57442 0.18751 59.16020
2 �43332.12 0.59999 0.18983 59.19260
3 �43323.38 0.59048 0.18990 59.19360
4 �43323.10 0.59049 0.18990 59.19363

0.5
1

1.5

2

t
0.5

1

1.5

t2

4000

4500

5000

5500

TP

0.5
1

1.5t1

Fig. 4. The total profit per unit time, TP(t1, t2js* = 59.19363).
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TPðsÞ ¼ TPðsjt�1; t�2Þ is strictly concave in s, as shown in Fig. 5. Consequently, we are sure that the local
maximum obtained here is indeed the global maximum solution.
4. Concluding remarks

In this paper, we provide some useful properties for finding the optimal price and replenishment schedule
under exponential partial backlogging. Since decision variables in our problem cannot be solved by simple
algebraic means, they have to be solved numerically by using Newton–Raphson Method (or any bisection
method). Based on our arguments, in order to find a value t�2 such that Gðt�2Þ ¼ 0 and t�2 is optimal, a proper
choice of the initial value t2 is very important due to possible local maxima. Without the right choice of initial
value, for example, taking t2 > ~t2, Newton–Raphson Method fails to produce a solution satisfying the suffi-
cient condition for the maximality problem of TP(t1, t2js) and it will converge to a saddle point. In contrast
to Wee [6] and Mukhopadhyay et al. [8,9], the approach in this paper provides solutions better than those
obtained by using Taylor Series approximation. We can also see that any deterioration rate can be applied
to this model such as the three-parameter Weibull deterioration rate (e.g., Philip [3]) and Gamma deterioration
rate (e.g., Tadikamalla [5]). Hence the utilization of general price-dependent demand and deterioration rates
make the scope of the application broader.
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Appendix A
The proof of Theorem 1

(a) Because we have
½dðs� cþ c3Þ þ c2ð1� dt2Þ�e�dt2
> 0; if t2 2 ½0;~t2Þ;
< 0; if t2 2 ð~t2;1Þ;

�

thus, from Eq. (16), we obtain
dGðt2Þ
dt2

< 0; if t2 2 ½0;~t2Þ;
> 0; if t2 2 ð~t2;1Þ;

�
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which implies G(t2) is strictly decreasing in the interval ½0;~t2� and strictly increasing in the interval ½~t2;1Þ, and
has a minimum at point t2 ¼ ~t2, i.e., Gð~t2Þ is the minimum value.

First, we consider the interval ½0;~t2�. By using Eq. (13), we see that t1 = 0 as t2 = 0. Thus, we obtain
G(0) = A > 0. Because G(t2) is strictly decreasing in the interval ½0;~t2�, and on condition that Gð~t2Þ < 0, from
the Intermediate Value Theorem, we can find a unique solution t�2 2 ð0;~t2Þ such that Gðt�2Þ ¼ 0.

Moreover, since d(s � c + c3) + c2(1 � dt2) > 0 for t2 < ~t2, we then obtain
o
2TPðt1; t2jsÞ

ot2
2






ðt1;t2Þ¼ðt�1;t

�
2
Þ
¼ 1

ðt�1 þ t�2Þ
2
� ½c2 � dðs� cþ c3Þ�dðsÞ

d
ð1� e�dt�

2Þ
�

þ c2dðsÞ
d
ð1� e�dt�

2 þ dt�2e�dt�
2Þ � dðsÞ½ðs� cþ c3Þð1� e�dt�

2Þ þ c2t�2e�dt�
2 �

� dðsÞðt�1 þ t�2Þ½dðs� cþ c3Þ þ c2ð1� dt�2Þ�e�dt�
2

�

¼ �dðsÞ
t�1 þ t�2

½dðs� cþ c3Þ þ c2ð1� dt�2Þ�e�dt�
2 < 0;

o2TPðt1; t2jsÞ
ot2

1






ðt1;t2Þ¼ðt�1;t

�
2
Þ
¼ �dðsÞ

t�1 þ t�2
chðt�1Þegðt�

1
Þ þ c1 1þ hðt�1Þ

Z t�
1

0

egðt�
1
Þ�gðtÞ dt

� �� �
< 0;
and
o
2TPðt1; t2jsÞ

ot2ot1






ðt1;t2Þ¼ðt�1;t

�
2
Þ
¼ 0:
Thus, the determinant of the Hessian matrix at the stationary point t�1; t
�
2

� 	
is
detðHÞ ¼ dðsÞ
t�1 þ t�2

� �2

chðt�1Þegðt�
1
Þ þ c1 1þ hðt�1Þ

Z t�
1

0

egðt�
1
Þ�gðtÞ dt

� �� �

� e�dt�
2 ½dðs� cþ c3Þ þ c2ð1� dt�2Þ�

>0:
As a result, we can conclude that the stationary point t�1; t
�
2

� 	
is the optimal solution for our maximum

problem.
Next, we consider the interval ½~t2;1Þ. Because G(t2) is strictly increasing in the interval ½~t2;1Þ, when

Gð~t2Þ < 0, which implies we cannot find a value t2 2 ½~t2;1Þ such that G(t2) = 0 (in this situation, the optimal
solution of t2 2 ½~t2;1Þ does not exist), or there exists a unique solution t��2 2 ð~t2;1Þ such that Gðt��2 Þ ¼ 0. For
the latter situation, since ½dðs� cþ c3Þ þ c2ð1� dt2Þ�e�dt2 < 0 for t2 2 ð~t2;1Þ, the determinant of the Hessian
matrix at the stationary point t��1 ; t

��
2

� 	
is det(H) < 0. Consequently, t��1 ; t

��
2

� 	
is not the optimal solution for our

maximum problem. This completes the proof.
(b) Since G(t2) has a global minimum at ~t2, if Gð~t2Þ > 0, then we have Gðt2Þ > Gð~t2Þ > 0 for all t2 6¼ ~t2.

Therefore, from Eqs. (9) and (15), we obtain that oTPðt1;t2;jsÞ
ot2

¼ Gðt2Þ
ðt1þt2Þ2

> 0, which implies that a larger value of t2

causes a higher value of TP(t1, t2js). Hence the maximum value of TP(t1, t2js) occurs at the point t�2 !1. For

the another case Gð~t2Þ ¼ 0, since oTPðt1;t2jsÞ
ot2





t2¼~t2

¼ 0 and TP(t1, t2js) is strictly increasing in ð0;~t2Þ and ð~t2;1Þ,
respectively. As a result, t2 ¼ ~t2 is an inflection point and the maximum value of TP(t1, t2js) occurs at the point
t�2 !1. This completes the proof. h
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