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Ranking and Selection Theory

Selecting the Best Process Based on Capability
Index via Empirical Bayes Approach
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Consider k �k ≥ 2� manufacturing processes whose mean �i, variance �2
i and

process capability index Cpw�i�, i = 1� � � � � k� are all unknown. For two given
control values Cpw�0� and �2

0 , we are interested in selecting some process whose
capability index is no less than Cpw�0� and is the largest in the qualified subset in
which each process variance is no larger than �2

0 . Under a Bayes framework, we
consider the normally distributed manufacturing processes taking normal-gamma as
its conjugate prior. A Bayes approach is set up and an empirical Bayes procedure is
proposed which has been shown to be asymptotically optimal. A simulation study is
carried out for the performance of the proposed procedure and it is found practically
useful.

Keywords Asymptotic optimality; Empirical Bayes rule; Process capability
index; Ranking and selection; Cpw.

Mathematics Subject Classification Primary 62C12; Secondary 90B50.

1. Introduction

To understand and evaluate a process, one of effective methods is to consider
some quantitative measure to estimate the performance of the process under study.
The well-known measure of product quality in industry is the capability index. It
is a dimensionless measure based on some parameters and specifications that are
involved in the process.

In most literature related to capability index, it is mainly focused on the
estimation and testing problems. In many practical applications, instead of these
topics, there occurs a problem that relates to select the most desirable manufacturing

Received May 1, 2008; Accepted December 29, 2008
Address correspondence to Wen-Tao Huang, Department of Management

Sciences and Decision Making, Tamkang University, Taipei, Taiwan, ROC; E-mail:
akenwt@yahoo.com.tw

1576



Selecting the Best Process by Capability Index 1577

process among several available processes. Suppose a new product is under study for
production, and there are k processes to produce it. We are interested in identifying
one of them as the most desirable process to produce the product.

For selecting the best manufacturing process, Tseng and Wu (1991) considered
the selection problem in terms of capability index Cp which is introduced by Kane
(1986a,b). Since the difference between the upper and lower specification limit is a
known quantity, the problem considered in Tseng and Wu (1991) is equivalent to
select the process which is corresponding to the smallest variance. There have been
several capability indices such as Cpm (see Chan et al., 1988), Cpk (see Gunter, 1989),
Cpmk (see Pearn et al., 1992), among others. However, mostly Cpm and Cpk are widely
used. Spiring (1997) modified Cpm and proposed Cpw which included Cp, Cpm, and
Cpk as special case. So in this article, we consider selecting the best process in terms
of Cpw which is a modified quantity of Cpm taking weight between the variance and
the square difference between mean and target. Furthermore, we consider another
criterion so that the capability index of the process selected should be larger than a
prefixed value which can be considered as a control. Some related selection problem
of identifying the best under some other multicriteria has been studied in Huang
and Lai (1999), among others.

The main purpose of this article is to propose a new selection rule for
practical applications of selecting the best manufacturing process in the area of
industrial statistics. We formulate the problem in a Bayes framework and apply
the empirical Bayes method which is pioneered by Robbins (1956, 1964). We focus
on practical computation and implement an alternative selection rule in the field
of manufacturing process. In this article, we do not intend to develop any new
theoretical results in the area of empirical Bayes methodology. Instead of evaluating
the convergence rate of regret, we carry out some simulation study to see its concrete
behavior of correct selection which maybe more helpful to applied statisticians
working in this area.

Since we consider our selection based on multicriteria, construction of a perfect
loss function confronts a dilemma, because it involves the priorities of criteria. It
is reasonable to question why penalty for committing error A is more serious than
that of committing error B. However, if one tries to change this situation, another
analogous problem would also happen.

In this Bayes setup, we consider normal-gamma for its prior. As is well known,
conjugate prior has its own justification and it has been widely applied in many
areas. As previously mentioned, we are mainly interested in practical applications in
selection problem. We have no intention to use more general nonparametric prior
for its mathematical generalization.

In Sec. 2, we formulate the problem and develop the Bayes framework. In Sec. 3,
we propose an empirical Bayes procedure and which is shown to be asymptotically
optimal. In the last section some Monte Carlo simulation results are given to show
the performance of the proposed procedure.

2. Formulation of Problem and a Bayes Decision Rule

In this article, we utilize the process capability index proposed by Spiring (1997)
to evaluate the effectiveness of a manufacturing process. This index is defined as
follows.

Cpw � Let � be a normal manufacturing process with unknown mean � and
unknown variance �2. T is the target value, and USL and LSL are, respectively, the
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upper and lower specification limit, and which are all prefixed. A process capability
index Cpw of � is defined as the following:

Cpw = USL− LSL

6
√
�2 + w��− T�2

�

where w �0 ≤ w ≤ 1� is a weight.
According to process capability index introduced above, we define the best

manufacturing process as follows.

Criteria for Selection. Let �1� � � � � �k, be k normal manufacturing processes such
that �i has mean �i, variance �2

i , and process capability index Cpw�i�, i = 1� � � � � k.
Let Cpw�0� and �2

0 be two known control values (prefixed). Define S = 	�i � �i ≤
�0� i = 1� � � � � k
. A manufacturing process �i is considered as the best, if Cpw�i� ≥
Cpw�0� and it simultaneously satisfies the following conditions:

(i) �i ∈ S, and
(ii) Cpw�i� = Max�j∈SCpw�j�.

Let �∼ = ��1� � � � � �k�, �∼ = ��1� � � � � �k�, and � = 	��i� �i�� − � < �i < +�� �i >

0, i = 1� � � � � k
 be the parameter space. Let a∼ = �a0� a1� � � � � ak� denote an action,

where ai = 0� or 1; i = 0� 1� � � � � k, and
∑k

i=0 ai = 1. If ai = 1, for some i = 1� � � � � k,
it means that manufacturing process �i is selected as the best. When a0 = 1, it
means that no manufacturing process is considered as the best, i.e., none in k
manufacturing processes satisfies the selection criteria. Let � = 	a∼
 denote the
action space.

For the sake of convenience, corresponding to Cpw�i�, ∀i = 0� 1� � � � � k, we define
a new quantity C ′

pw�i� as follows. For a given positive C∗
pw < Cpw�0� and for i =

0� 1� � � � � k, define

C
′
pw�i� = Cpw�i�I	�i≤�0


+ C∗
pwI	�i>�0


� (1)

It is clear to see that those manufacturing processes which do not meet the
requirement (i) will also fail to meet the requirement (ii) in selection criteria in terms
of the associated quantity C ′

pw�i�.

In a decision-theoretic approach, we consider the following.

Loss Function. For a given control value Cpw�0�, and parameter vectors �∼� �∼, if
action a∼ is taken, a loss L��∼� �∼� a∼� is incurred and which is defined by

L��∼� �∼� a∼� =
k∑

i=0

aiC
′−2
pw �i�− C ′−2

pw
k�� (2)

where C ′
pw
k� = Max0≤i≤kC

′
pw�i�.

Note that here we are treating selection problem rather than estimation. For
instance, if we take an alternative loss such as L��∼� �∼� a∼� = C ′

pw
k� −
∑k

i=0 aiC
′
pw�i�.
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Then, this loss essentially is equivalent to that defined by (2) in the sense that they
both select the same process under same observed data. Since for a given data set,
the ith process which corresponds to the minimum loss in (2) is the same as that
corresponding to the minimum in the alternative loss. Yet, their respective penalties
corresponding to same incorrect selection may be quite different. This means that
the quantity of a penalty due to an incorrect selection (thus incurring a loss) is rather
in the sense of “relativeness” than that of “absoluteness”. Furthermore, we note that
two different incorrect selections may cause two quite different penalties and it is
difficult to judge which is more serious than the other in many situations, because
it concerns the priority order of multicriteria.

The so defined loss L��∼� �∼� a∼� has reflected penalty for a wrong action. However,
it may not reflect reasonable penalty in all cases. For its simplicity, we propose
the loss (2) for our selection problem. In this article, we consider an empirical
Bayes approach for the problem of selecting the best manufacturing process which
is normally distributed.

We would like to point out that in many occasions the random observation X

of some characteristic under study is not exactly normally distributed. So the usual
normality assumption may not be satisfied under certain circumstances. To modify
this difficulty, we consider a Bayes framework and this expands in some extent the
family of distributions of X under consideration.

For each i = 1� � � � � k, let Xi1� � � � � XiM be an independently random sample of
size M from �i with mean �i and variance �2

i and its observed value is denoted
by xi1� � � � � xiM , respectively. For its convenience, let �i = 1/�2

i � i = 1� � � � � k. It is
assumed that ��i� �i� is a realization of a random vector ��i� �i� with a normal-
gamma prior distribution which is the product of conditional normal distribution
N��i� 
�2�i − 1��i�

−1� of �i given �i, and a marginal gamma prior distribution
Gamma��i� �i� of �i.

As we have previously mentioned, we consider this selection problem for
practical application as our main purpose. So it is important to consider the
problem of applicability for practical application when sample size is small. If a
nonparametric prior is considered, though it covers a larger family of priors, it still
needs to impose some conditions on the prior density and one may still ask what
happens if the conditions are not satisfied. However, the key point to consider a
parametric prior is that it concerns the applicability for the situation that the sample
is small. As can be seen in Table 1 in Sec. 4, the rate of correct selection is more than
85% even when the sample size is as small as 10. It may have difficulty to achieve
it when a nonparametric prior is considered. So we restrict ourselves to a conjugate
priors in our set up.

For convenience of notation, we denote x∼i = �xi1� � � � � xiM�, xi = 1
M

∑M
j=1 xij , and

s2i = 1
M−1

∑M
j=1 �xij − xi�

2, for i = 1� � � � � k. It has been shown that (see Raiffa and
Schlaifer, 1961) the conditional posterior distribution of �i given x∼i and �i is a

normal distribution N��i�xi�� 
�2�i +M − 1��i�
−1�, where

�i�xi� = E
�i � x∼i� �i� =
�2�i − 1��i +Mxi

2�i +M − 1
� (3)
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Table 1
Behavior of empirical Bayes rules with respect to various sample sizes (w = 1)

n fn Dn nDn SE�Dn�

10 0.8556 1.7125E-02 1.7125E-01 3.3902E-03
20 0.8917 9.4061E-03 1.8812E-01 1.3359E-03
30 0.9110 5.9942E-03 1.7983E-01 6.4524E-04
40 0.9231 4.8998E-03 1.9599E-01 5.0000E-04
50 0.9339 3.6897E-03 1.8449E-01 3.4546E-04
60 0.9431 2.8443E-03 1.7066E-01 2.3656E-04
70 0.9435 2.5919E-03 1.8144E-01 2.0210E-04
80 0.9461 2.3654E-03 1.8923E-01 1.6538E-04
90 0.9522 1.9827E-03 1.7845E-01 1.4753E-04
100 0.9491 1.9496E-03 1.9496E-01 1.2354E-04
200 0.9674 9.4790E-04 1.8958E-01 4.5927E-05
300 0.9753 5.6293E-04 1.6888E-01 2.1498E-05
400 0.9775 4.4768E-04 1.7907E-01 1.4806E-05
500 0.9808 3.0333E-04 1.5166E-01 8.2669E-06
600 0.9788 3.4662E-04 2.0797E-01 9.3995E-06
700 0.9802 2.7777E-04 1.9444E-01 6.6305E-06
800 0.9830 2.0734E-04 1.6587E-01 4.0981E-06
900 0.9818 2.2765E-04 2.0488E-01 4.8548E-06
1000 0.9849 1.6283E-04 1.6283E-01 3.3842E-06

and the marginal posterior distribution of �i given x∼i is a gamma distribution

Gamma��′i� �i�, where

�′i = 2�i +
M

2
− 1� and

(4)

�i = �i +
�M − 1�s2i

2
+ �2�i − 1�M�xi − �i�

2

2�2�i +M − 1�
�

The random vectors ��1� �1�� � � � � ��k� �k� are assumed to be mutually independent.
Let x∼ = �x∼1� � � � � x∼k� and � be the sample space generated by x∼. A selection

rule d∼ = �d0� d1� � � � � dk� is a mapping defined on the sample space � into the k+ 1

product space 
0� 1�× 
0� 1�× · · · × 
0� 1� such that
∑k

i=0 di�x∼� = 1, for all x∼ ∈ �. For

every x∼ ∈ �, di�x∼� denotes the probability of selecting manufacturing process �i as

the best, i = 1� � � � � k; and d0�x∼� denotes the probability that none is selected as the
best.

For ease of notation, let �∼ = ��1� � � � � �k�, �
∼
= ��1� � � � � �k�, �∼ = ��1� � � � � �k��

�
∼
= ��1� � � � � �k���∼ = ��1� � � � � �k�, and �∼ = ��1� � � � � �k�� Let h��∼� � x∼� �∼� �∼� �∼� be the

joint conditional posterior probability density function of �∼ given x∼ and �∼, and g��∼ �
x∼� �∼� �∼

� be the joint conditional posterior probability density function of �∼ given x∼.

Let hi��i � x∼i� �i� �i� �i� and gi��i � x∼i� �i� �i� be the conditional posterior probability
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density function of �i and �i, respectively. Under the preceding formulation, the
Bayes risk of a selection rule d∼, denoted by r�d∼�, can be then computed.

According to notations of h�·� and g�·� which have been defined previously, we
compute the Bayes risk as follows.

Define

�i�x∼i� =
36

�USL− LSL�2

{
�w + �2�i +M − 1���1−G��0 � �′i − 1� �i��

�2�i +M − 1���′i − 1��i

+ w��i�xi�− T�2�1−G��0 � �′i� �i��
}
+ C∗−2

pw G��0 � �′i� �i�� (5)

where G�x � b� c� is a Gamma cumulative distribution function (cdf) with parameters
b and c, respectively. For convenience of notation, we define �0�x∼0� = C−2

pw �0�.

For some constant C and denoting the joint marginal density of X∼ by f�x∼�, the
Bayes risk is given by

r�d∼� =
∫
�

k∑
i=0

di�x∼��i�x∼i�f�x∼�dx∼ − C� (6)

Bayes Rule. For each x∼ ∈ �, let

Q�x∼� =
{
i ��i�x∼i� = Min

0≤j≤k
�j�x∼j�� i = 0� 1� � � � � k

}
� (7)

Define

i∗ = i∗�x∼� =


0 if Q�x∼� = 	0
�

Min
{
i � i ∈ Q�x∼�� i 
= 0

}
otherwise�

(8)

Then, according to (5), (7), and (8), it can be derived that a Bayes selection rule
d∼
B = �dB

0 � d
B
1 � � � � � d

B
k � is given as follows:



dB
i∗�x∼� = 1�

dB
j �x∼� = 0� for j 
= i∗�

(9)

3. The Empirical Bayes Selection Rule

In the problem formulated in Sec. 2, we consider that �1� � � � � �k are all known with
�i > 1 for all i. Since �i�x∼i� still involves the unknown parameters �i� �i, i = 1� � � � � k,

hence, the proposed Bayes selection rule d∼
B is not applicable. However, based on the

past data, these unknown parameters can be estimated and a decision can be made
if one more observation is taken. For i = 1� � � � � k, let Xijt denote a sample of size M
from �i with a normal distribution N��it� �

−1
it � at time t �t = 1� � � � � n�, j = 1� � � � �M ,

and ��it� �it� is a realization of a random vector ��it� �it� which is an independent
copy of ��i� �i� with a normal-gamma distribution described in preceding section.
It is assumed that ��it� �it�, i = 1� � � � � k, t = 1� � � � � n, are mutually independent.
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For our convenience, we denote the current random sample Xijn+1 by Xij , for j =
1� � � � �M , i = 1� � � � � k.

For each �i, i = 1� � � � � k, we estimate the unknown parameters �i and �i based
on the past data Xijt, j = 1� � � � �M , t = 1� � � � � n. We denote



Xi�t =

1
M

M∑
j=1

Xijt� Xi�n� =
1
n

n∑
t=1

Xi�t�

W 2
i�t =

1
M − 1

M∑
j=1

�Xijt − Xi�t�
2� W 2

i �n� =
1
n

n∑
t=1

W 2
i�t�

(10)

For ease of notation, we define �in and �in as estimators of �i and �i,
respectively, by the following:

{
�in = Xi�n��

�in = ��i − 1�W 2
i �n��

(11)

Also, for i = 1� � � � � k, we define

�in�x∼i� =
36

�USL− LSL�2

{
�w + �2�i +M − 1���1−G��0 � �′i − 1� �in��

�2�i +M − 1���′i − 1��in

+ w��in�xi�− T�2�1−G��0 � �′i� �in��
}
+ C∗−2

pw G��0 � �′i� �in�� (12)

where

�in = �in +
�M − 1�s2i

2
+ �2�i − 1�M�xi − �in�

2

2�2�i +M − 1�
� (13)

and

�in�xi� =
�2�i − 1��in +Mxi

2�i +M − 1
� (14)

For convenience, we may define �0n�x∼0� = C−2
pw �0�. We consider �in�x∼i� to be an

estimator of �i�x∼i�.
For each x∼ ∈ �, let

Qn�x∼� =
{
i ��in�x∼i� = Min

0≤j≤k
�jn�x∼j�� i = 0� 1� � � � � k

}
� (15)

Again, define

i∗n = i∗n�x∼� =


0 if Qn�x∼� = 	0
�

Min
{
i � i ∈ Qn�x∼�� i 
= 0

}
otherwise�

(16)
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Then, according to (12), (15), and (16), we conclude that an empirical Bayes
selection rule d∼

∗n = �d∗n
0 � d∗n

1 � � � � � d∗n
k � is given as follows:



d∗n
i∗n �x∼� = 1�

d∗n
j �x∼� = 0� for j 
= i∗n�

(17)

According to Robbins (1964), a sequence of empirical Bayes selection rule
	d∼

n
�n=1 is said to be asymptotically optimal, if limn→�
En
r�d∼
n��− r�d∼

B�� = 0.

Note that the estimators W 2
i �n� (defined in (10)), �in, �in (both defined in (11)),

�in (defined in (13)), �in�xi� (defined in (14)), and �in�x∼i� (defined in (12)) are,

respectively, consistent estimators of �i/��i − 1�, �i, �i, �i, �i�xi�, and �i�x∼i�, i =
1� � � � � k.

Checking conditions (C) and (D) of Robbins (1964) and applying the
Dominated Convergence Theorem, we can conclude the following.

Proposition 3.1. The empirical Bayes selection rule d∼
∗n �x∼�, defined in (15)–(17), is

asymptotically optimal.

4. Simulation Study

Since we emphasize applicability of our selection rule for small sample size, and also
we are interested in asking if the result of simulation study is acceptable for small
size of sample though it is asymptotic optimal. So a simulation study is important
and worthwhile.

To investigate the performance of proposed empirical Bayes selection rule
d∼
∗n �x∼� defined in Sec. 3, we carry out some simulation studies which are summarized

in Tables 1 and 2 and Figs. 1–5. The quantity En
r�d∼
∗n ��− r�d∼

B� is used as a measure

of performance of the empirical Bayes selection rule d∼
∗n �x∼�.

For a given current observation x∼ and given past observation xijt, let

Dn�x∼� =
k∑

i=0

[
d
∗n
i �x∼�− dB

i �x∼�
]
�i�x∼i� = �i∗n �x∼i∗n �− �i∗�x∼i∗��

Then

En

[
r�d∼

∗n ��− r�d∼
B� = E
En
Dn�X∼ ��

]
�

Therefore, the sample mean of Dn�x∼� based on the observations of x∼ and xijt,

i = 1� � � � � k� j = i� � � � �M� t = 1� � � � � n� can be used as an estimator of En
r�d∼
∗n ��−

r�d∼
B�.
We briefly explain the simulation scheme as follows.

(1) For each time t, t = 1� � � � � n� and each manufacturing process �i, i = 1� � � � � k�
generate observations xi1t� � � � � xiMt� by the following way.

(1.a) Take a value �it according to distribution Gamma��i� �i�.
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Table 2
The frequency of the process selected as the best under various weights for

Group 2 (n = 100)

Process

Weight CD 0 1 2 3 4 5

0.0 9914 0 0 0 1609 38 8353
(0) (0) (0) (1695) (37) (8268)
[0] [0] [0] [1609] [37] [8268]

0.1 9454 0 8 2714 7268 10 0
(0) (8) (2772) (7208) (12) (0)
[0] [7] [2471] [6966] [10] [0]

0.2 9437 0 11 2641 7334 14 0
(0) (13) (2695) (7275) (17) (0)
[0] [8] [2390] [7027] [12] [0]

0.3 9414 0 8 2687 7294 11 0
(0) (9) (2746) (7232) (13) (0)
[0] [8] [2424] [6972] [10] [0]

0.4 9442 23 9 2708 7255 5 0
(28) (8) (2789) (7170) (5) (0)
[19] [6] [2475] [6939] [3] [0]

0.5 9250 1204 0 1662 7133 1 0
(1233) (0) (1699) (7067) (1) (0)
[1014] [0] [1425] [6810] [1] [0]

0.6 9364 3324 0 219 6457 0 0
(3362) (0) (235) (6403) (0) (0)
[3049] [0] [182] [6133] [0] [0]

0.7 9286 4394 0 32 5574 0 0
(4362) (0) (34) (5603) (1) (0)
[4023] [0] [26] [5237] [0] [0]

0.8 9283 5056 0 12 4932 0 0
(5095) (0) (12) (4893) (0) (0)
[4718] [0] [11] [4554] [0] [0]

0.9 9323 5615 0 2 4383 0 0
(5606) (0) (2) (4392) (0) (0)
[5272] [0] [2] [4049] [0] [0]

1.0 9326 6073 0 2 3925 0 0
(6053) (0) (2) (3945) (0) (0)
[5726] [0] [2] [3598] [0] [0]

(1.b) Take a value �it according to distribution N��i� 
�2�i − 1��it�
−1�.

(1.c) Let �2
it = �−1

it . For given �it and �2
it, generate random samples

xi1t� � � � � xiMt� according to distribution N��it� �
2
it�.

(2) Based on the observations xijt, i = 1� � � � � k� j = i� � � � �M� t = 1� � � � � n� estimate
the unknown parameters �i and �i according to (11) and they are denoted by
�in and �in, respectively.
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Figure 1. Relative frequency of correct decision with respect to sample sizes for both
groups of manufacturing processes (w = 0�5).

(3) For each manufacturing process �i� i = 1� � � � � k� repeat Step (1) with t = n+ 1
and j = 1� � � � �M� and take its sample mean as our current sample xi. Thus, the
current sample vector is given by x∼ = �x1� � � � � xk�.

(4) For given value of weight w and control value Cpw�0�, based on the current
sample vector, determine the Bayes selection rule d∼

B and the empirical Bayes

selection rule d∼
∗n according to (9) and (17), respectively. Then compute Dn�x∼�.

(5) Repeat Steps (1)–(4) 10,000 times, and then take its average denoted by Dn

which is used as an estimate of E
r�d∼
∗n ��− r�d∼

B�. Let SE�Dn� denote the
estimated standard deviation.

Figure 2. Relative frequency of correct decision with respect to different weight for both
groups of manufacturing processes (n = 50).
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Figure 3. Relative frequency of correct decision with respect to sample size for three
different weight values for Group 1.

In this simulation study, we consider two groups of manufacturing processes,
called Group 1 and Group 2. For both groups, we take M = 5, T = 100,
USL− LSL = 8, Cpw�0� = 1�5� and C∗

pw = 1�499� In Group 1, we take k = 3� ��1 =
98�75� �1 = 4� �1 = 4�� ��2 = 101� �2 = 4� �2 = 0�1�, and ��3 = 101�5� �3 = 4� �3 =
6�. For Group 2, k = 5, ��1 = 98�5� �1 = 4� �1 = 6�� ��2 = 98�75� �2 = 4� �2 =
4�� ��3 = 101� �3 = 4� �3 = 0�1�� ��4 = 101�5� �4 = 4� �4 = 6�, and ��5 = 102� �5 =
4� �5 = 8�.

The relative frequency that an action taken according to the proposed empirical
decision rule coincides with that of the Bayes decision rule is denoted by fn.

Figure 4. Relative frequency of correct decision with respect to sample size for three
different weight values for Group 2.
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Figure 5. Total times that each process is selected as the best with respect to different
weight for Group 1. ∗Process 0 means none is selected as the best.

In Table 1, we consider Group 1 with w = 1. It can be seen that the value of Dn

decreases quite rapidly as n increases and on the other hand, that relative frequency
fn increases rapidly. In Table 2, we consider the case of Group 2. For given weight,
the first entry in the column of the ith process denotes the number of times that
process i has been selected according to the Bayes rule, and the second entry (in
parenthesis) denotes the number of times that is selected according to the empirical
Byes rule. The third entry (in bracket) shows total times that the ith process has
been selected simultaneously by the Bayes rule and the empirical Bayes rules. CD
denotes correct decision which means the decision made by the empirical Bayes rule
coincides with that of the Bayes rule. For given weight, the entry in column of CD
denotes the total times of correct decision in 10,000 simulations for Group 2. This
table clearly shows that the factor of weight value has significant influence on the
behaviors of correct decision for each process in Group 2, especially, when weight
is zero, or near both extreme values of 0 and 1.
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