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In traditional inventory models, it is implicitly assumed that the buyer must pay for the
purchased items as soon as they have been received. However, in many practical situations,
the vendor is willing to provide the buyer with a permissible delay period when the buyer’s
order quantity exceeds a given threshold. Therefore, to incorporate the concept of vendor–
buyer integration and order-size-dependent trade credit, we present a stylized model to
determine the optimal strategy for an integrated vendor–buyer inventory system under
the condition of trade credit linked to the order quantity, where the demand rate is consid-
ered to be a decreasing function of the retail price. By analyzing the total channel profit
function, we developed some useful results to characterize the optimal solution and pro-
vide an iterative algorithm to find the retail price, buyer’s order quantity, and the numbers
of shipment per production run from the vendor to the buyer. Numerical examples and
sensitivity analysis are given to illustrate the theoretical results, and some managerial
insights are also obtained.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The traditional economic order quantity (EOQ) model assumes that the buyer must pay for the purchased items when
these items are received. This is not always true in the actual business world. In fact, offering trade credit to buyers is a com-
mon strategy for vendors. Offering a credit period to the buyer will promote the vendor’s sale and reduce the on-hand stock
level. Simultaneously gaining capital, materials and service without a primary payment, the buyer can take advantage of a
credit period to reduce cost. In the literature, several authors have examined the credit terms and proposed various analyt-
ical models to obtain more insights into trade credit and inventory policy. Goyal [1] was the first to establish an EOQ model
with a constant demand rate under the condition of permissible delay in payments. Aggarwal and Jaggi [2] extended Goyal’s
[1] model to include deteriorating items. Kim et al. [3] examined the effects of a credit period upon ordering policies from the
view of the vendor. Jamal et al. [4] further generalized this issue with an allowable shortage. Teng [5] modified Goyal’s [1]
model by considering differences between the sales price and purchase cost, and found that the economic replenishment
interval and order quantity decrease under the permissible delay in payments in certain cases. Many research articles deal-
ing with the trade credit problem can be found in Arcelus et al. [6], Arcelus and Srinivasan [7,8], Biskup et al. [9], Salameh
et al. [10] and Teng et al. [11,12], etc. All previous models implicitly assumed that credit terms are independent of the order
quantity.
. All rights reserved.
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In reality, vendors may offer favorable credit terms to encourage buyers to order large quantities. Khouja and Mehrez [13]
were the first proponents to discuss the vendor credit policies on the EOQ model where credit terms are linked to the order
quantity. Later, Chang et al. [14] established an EOQ model for deteriorating items, in which the vendor provides a permis-
sible delay to the buyer if the order quantity is greater than or equal to a predetermined quantity. Chang [15] extended
Chang et al.’s [14] model by considering the effect of the inflation rate and deterioration rate in an EOQ model when vendor
credits linked to the order quantity. Other research articles dealing with the order-size-dependent trade credit problem can
be found in Shinn and Hwang [16], Chung et al. [17], and Chung and Liao [18,19], etc.

Previous studies about trade credit [1–19] focused on determining optimal policy for the buyer or the vendor only. How-
ever, these one-sided optimal inventory models neglected the complicated interaction and cooperation opportunity between
the buyer and the vendor. In practice, many companies learn that actions taken by one member of the chain can influence the
success of all others in the same value chain. Recognizing this principle, the vendor and buyer may consider how to relieve
the conflict relationship and attempt to become partners to create a win–win strategy. Goyal [20] first developed a single-
vendor single-buyer integrated inventory model. Subsequently, Banerjee [21] extended Goyal’s [20] model and assumed that
the vendor followed a lot-for-lot shipment policy with respect to a buyer. Goyal [22] relaxed the lot-for-lot policy and illus-
trated that the inventory cost can be reduced significantly if the vendor’s economic production quantity is an integer multi-
ple of the buyer’s purchase quantity. Many researchers (e.g., Lu [23], Goyal [24], Viswanathan [25], Hill [26,27], Kelle et al.
[28], Yang and Wee [29], and Wee and Chung [30]) continued to propose more batching and shipping policies for an inte-
grated inventory model. These researches on the integrated vendor–buyer inventory problem considered the production–
distribution schedule in terms of the number and size of batches transferred between both parties. Lately, some researches
discussed the impact of delay payment strategy on the integrated inventory models. Abad and Jaggi [31] provided a seller–
buyer integrated inventory model under trade credit and followed a lot-for-lot shipment policy. Jaber and Osman [32] pro-
posed a supplier–retailer supply chain model in which the permissible delay in payments is considered as a decision vari-
able. Yang and Wee [33] developed a vendor–buyer integrated inventory model for deteriorating items with permissible
delay in payment. Ho et al. [34] investigated the production and ordering policy under a two-part trade credit in an inte-
grated supplier–buyer inventory model. Given above, the order-size-dependent trade credit policy has not been examined
in an integrated inventory model.

On the other hand, in the classical inventory models the replenishment rate or production rate is often assumed to be
constant. However, it has been observed that the production rate is flexible in many practical situations. Silver [35] discussed
the effects of slowing down production rate in saving potential costs under controllable production rates. Schweitzer and
Seidmann [36] provided the concept of flexibility in production rate and discussed processing rate optimization for a flexible
manufacturing system. Bhunia and Maiti [37] presented two inventory models in which the production rate depends upon
the on-hand inventory for the first model and upon the demand for the second one. Manna and Chaudhuri [38] discussed an
EOQ model with deteriorating items in which the production rate is proportional to the time dependent demand rate.

In this article, extending the previous studies contributed by Khouja and Mehrez [13], Abad and Jaggi [31], and Teng et al.
[11], we develop an integrated vendor–buyer inventory model taking into account the following factors: (i) the demand rate
is retail price dependent; (ii) the production rate is finite and proportional to the demand rate; (iii) the credit terms are
linked to the order quantity. To optimize the joint total profit per unit time, the retail price and two basic issues will be deter-
mined in this study. These issues are how large should the replenishment order be, and how often should the vendor ship to
the buyer during a production run. An interactive procedure is developed to help determine the optimal solution. Finally,
numerical examples and sensitivity analysis are presented to illustrate the proposed model.

2. Notation and assumptions

The following notation is adopted throughout this paper.
R production rate
SV vendor’s setup cost per setup
SB buyer’s ordering cost per order
c production cost per unit
v the unit price charged by the vendor to the buyer
p the unit retail price to customers, where p > v > c
D(p) the market demand rate for the item is a decreasing function of the retail price p and is given by D(p) = ap�d, where

a > 0 is a scaling factor, and d > 1 is a price-elasticity coefficient. For notational simplicity, D(p) and D will be used
interchangeably

rV vendor’s holding cost rate, excluding interest charges
rB buyer’s holding cost rate, excluding interest charges
IVp vendor’s opportunity cost per dollar per unit time
IBp buyer’s opportunity cost per dollar per unit time
IBe buyer’s interest earned per dollar per unit time
q the capacity utilization, q = D/R, where q < 1 and given
M credit period offered to the buyer per order
Q buyer’s order quantity per order
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Qd the minimum order quantity at which the delay in payments is permitted
T replenishment cycle length, where T = Q/D
Td the time length that Qd units are depleted to zero
n number of shipments from the vendor to the buyer per production run, a positive integer
TVP vendor’s total profit per unit time
TBP buyer’s total profit per unit time

In addition, the following assumptions are made in deriving the model:

1. There is single-vendor and single-buyer for a single product in this model.
2. Shortages are not permitted.
3. The vendor sets a threshold Qd for offering delay payment. If the buyer’s order exceeds or equal to Qd, the buyer will

obtain a credit period M. Otherwise, the buyer must pay for the items immediately upon receiving them.
4. During the credit period, the buyer sells the items and uses the sales revenue to earn interest at a rate of IBe. At the end of

the permissible delay period, the buyer pays the purchasing cost to the vendor and incurs an opportunity cost at a rate of
IBp for the items in stock.

5. The buyer orders Q units for each order and incurs an ordering cost SB. The vendor manufactures, at rate R, in batches of
size nQ and incurs a batch setup cost SV. Each batch is dispatched to the buyer in n equal sized shipments.
3. Model formulation

In this section, we formulate an integrated inventory model with a retail price sensitive demand, where the delay in pay-
ments is only permitted if the order quantity is greater than or equal to a predetermined quantity. The inventory holding cost
in our model contains two components: unit holding cost and interest charge. The unit holding cost relates to the actual
ownership of the goods and includes storage and maintenance expenses, which is accounted on a per-unit-of-inventory
basis. The interest charge is considered on the money value of the inventory on hand.

3.1. Vendor’s total profit per unit time

For the vendor, the total profit per unit time is composed of sales profit, setup cost, holding cost, and opportunity cost.
These components are evaluated as following:

(1) Sales profit: The total sales profit per unit time is given by (v � c)D.
(2) Setup cost: The vendor manufactures nQ in one production run. The cycle length is nQ/D = nT. Therefore, the setup cost

per unit time is SV/(nT).
(3) Holding cost: The vendor’s inventory per cycle can be calculated by subtracting the buyer’s accumulated inventory

level from the vendor’s accumulated inventory level. Hence, the vendor’s average inventory per unit time is given by
nQ
Q
R
þ ðn� 1ÞQ

D

� �
� n2Q2

2R
� Q2

D
½1þ 2þ � � � þ ðn� 1Þ�

( ),
nQ
D
¼ Q

2R
½ðn� 1ÞðR� DÞ þ D�

¼ DT
2
½ðn� 1Þð1� qÞ þ q�; where q ¼ D=R:

So the holding cost per unit time is c(rV + IVp)DT[(n � 1)(1 � q) + q]/2. Note that a similar derivation in the vendor’s
average inventory using a manufacturing lot size of nQ units can be found in Joglekar [39].
(4) Opportunity cost: If the buyer orders up to Qd or more, then a credit period M will be offered. Under this situation, the
vendor endures a capital opportunity cost within the time gap between delivery and payment received of the product.
That is, when T P Td, the delay in payments is permitted; the opportunity cost per unit time for offering trade credit is
vIVpDM. Conversely, when T < Td, no opportunity cost will occur since a delay in payments is not permitted.

Consequently, the total profit per unit time for the vendor is the sales profit minus the total relevant costs, which can be
expressed as following:
TVPðnÞ ¼
TVP1ðnÞ; T < Td

TVP2ðnÞ; T P Td

�
; ð1Þ
where
TVP1ðnÞ ¼ ðv � cÞD� SV

nT
� cðrV þ IVpÞDT

2
½ðn� 1Þð1� qÞ þ q�; ð2Þ

TVP2ðnÞ ¼ ðv � cÞD� SV

nT
� cðrV þ IVpÞDT

2
½ðn� 1Þð1� qÞ þ q� � vIVpDM: ð3Þ
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3.2. Buyer’s total profit per unit time

For the buyer, the total profit per unit time is composed of sales profit, ordering cost, holding cost, opportunity cost, and
interest earned. These components are evaluated as following:

(1) Sales profit: The total sales profit per unit time is given by (p � v)D.
(2) Ordering cost: The ordering cost per unit time is SB/T.
(3) Holding cost: With the unit purchasing cost v, the holding cost rate rB and the average inventory over the cycle Q/2, the

buyer’s holding cost (excluding interest charges) per unit time is expressed as vrBQ/2 = vrBDT/2.
(4) Opportunity cost: Based on the values of T, M and Td, there are four cases to be considered: (i) 0 < T < Td, (ii) Td 6 T 6M,

(iii) Td 6M 6 T and (iv) M 6 Td 6 T.

Case 1. 0 < T < Td

When buyer’s order quantity Q less than Qd (i.e., T < Td), buyer must pay the purchasing cost as soon as the items are
received. The opportunity cost per unit time for these items is vIBpDT/2.

Case 2. Td 6 T 6M

When buyer’s order quantity Q greater than or equal to Qd (i.e., T P Td), then a credit period M will be offered. If the
permissible payment time expires on or after the inventory is completely depleted (i.e. M P T), the buyer pays no
opportunity cost for the purchased items.

Case 3. Td 6M 6 T, shown in Fig. 1.

When buyer’s order quantity greater than or equal to Qd (i.e., T P Td) and permissible payment time expires on or be-
fore the inventory is depleted completely (i.e. M 6 T), the buyer still has some inventory on hand when paying the total
purchasing amount to the vendor. Hence, for the items still in stock, buyer endures a capital opportunity cost at a rate

of IBp; the opportunity cost per unit time for these items is vIBp

T

R T
M DðT � tÞdt ¼ vIBpDðT�MÞ2

2T .

Case 4. M 6 Td 6 T

Case 4 is similar to Case 3 because T is also greater than or equal to M.

(5) Interest earned: Same as the opportunity cost, there are four cases to be considered in terms of the interest.

Case 1. 0 < T < Td

In this case, buyer pays the purchasing cost when the items are received, and hence, no interest is earned.

Case 2. Td 6 T 6M, shown in Fig. 2.

When order quantity greater than or equal to Qd, the vendor offers a credit period M without interest charged to the
buyer. During the credit period, buyer sells the products and uses the sales revenue to earn interest at a rate of IBe.
Thus, the interest earned per unit time is
Fig. 1. Buyer’s inventory model when Td 6M 6 T.
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1
T

pIBe

Z T

0
Dt dt þ pIBeDTðM � TÞ

� �
¼ DpIBe M � T

2

� �
:

Case 3. Td 6M 6 T, shown in Fig. 3.

In this case, the buyer can sell the items and earn interest with rate IBe until the end of the credit period M. Thus, the
interest earned per unit time is pIBe

T

RM
0 Dt dt ¼ DpIBeM2

2T .

Case 4. M 6 Td 6 T
In this case, M is less than or equal to T. Thus, Case 4 is similar to Case 3.

The total profit per unit time for the buyer is the sales profit plus the interest earned, minus the total relevant costs. From
above arguments, we have

Fig. 2. Buyer’s inventory model of interest earned when Td 6 T 6M.
TBPðp; TÞ ¼

TBP1ðp; TÞ; 0 < T < Td;

TBP2ðp; TÞ; Td 6 T 6 M;

TBP3ðp; TÞ; Td 6 M 6 T;
TBP4ðp; TÞ; M 6 Td 6 T;

8>><
>>: ð4Þ
where
TBP1ðp; TÞ ¼ D p� v � vðrB þ IBpÞT
2

� �
� SB

T
; ð5Þ

TBP2ðp; TÞ ¼ D p� v � vrBT
2
þ pIBe M � T

2

� �� �
� SB

T
; ð6Þ

TBP3ðp; TÞ ¼ TBP4ðp; TÞ ¼ D p� v � vrBT
2
þ pIBeM2

2T
� vIBpðT �MÞ2

2T

" #
� SB

T
: ð7Þ
Fig. 3. Buyer’s inventory model of interest earned when Td 6M 6 T.
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3.3. The joint total profit per unit time

Once the vendor and the buyer have established a long-term strategic partnership and contracted to the relationship, they
will jointly determine the best policy for the entire supply chain system. Under this circumstance, the joint total profit per
unit time for the integrated system is
Pðn; p; TÞ ¼

P1ðn; p; TÞ ¼ TVP1ðnÞ þ TBP1ðp; TÞ; 0 < T < Td;

P2ðn; p; TÞ ¼ TVP2ðnÞ þ TBP2ðp; TÞ; Td 6 T 6 M;

P3ðn; p; TÞ ¼ TVP2ðnÞ þ TBP3ðp; TÞ; Td 6 M 6 T;

P4ðn; p; TÞ ¼ TVP2ðnÞ þ TBP3ðp; TÞ; M 6 Td 6 T:

8>>><
>>>:

ð8Þ
For notational convenience, let S ¼ SV
n þ SB and u = c(rV + IVp)[(n � 1)(1 � q) + q], then
P1ðn; p; TÞ ¼ �
S
T
þ D p� c � T

2
½vðrB þ IBpÞ þu�

� �
; ð9Þ

P2ðn; p; TÞ ¼ �
S
T
þ D p� c þ ðpIBe � vIVpÞM �

T
2
ðvrB þ pIBe þuÞ

� �
; ð10Þ

P3ðn; p; TÞ ¼ P4ðn;p; TÞ ¼ �
S
T
þ D p� c þ vðIBp � IVpÞM �

ðvIBp � pIBeÞM2

2T
� T

2
½vðrB þ IBpÞ þu�

( )
: ð11Þ
4. Solution procedure

To find the optimal solution, say (n*,p*,T*), for P(n,p,T), the following procedures are taken. First, for fixed p and T, we note
that P(n,p,T) is a concave function of n (by the fact o2P(n,p,T)/on2 = �2SV/(n3T) < 0). Therefore, the search for the optimal
shipment number, n*, is reduced to find a local optimal solution.

Case 1. 0 < T < Td

For fixed n and p, the first and second order partial derivatives of P1(n,p,T) in (9) with respect to (w.r.t.) T are as following:
oP1ðn; p; TÞ
oT

¼ S

T2 �
D
2
½vðrB þ IBpÞ þu�; ð12Þ

o2P1ðn;p; TÞ
oT2 ¼ �2S

T3 < 0: ð13Þ
Hence, for fixed n and p, P1(n,p,T) is concave in T. Thus, a unique value T exists (denoted by T1(n,p)) which maximizes
P1(n,p,T). T1(n,p) can be obtained by solving the first order necessary condition (FONC), i.e., oP1(n,p,T)/oT = 0, and is given
by
T1ðn; pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S

D½vðrB þ IBpÞ þu�

s
;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðSV=nþ SBÞ
ap�dfvðrB þ IBpÞ þ cðrV þ IVpÞ½ðn� 1Þð1� qÞ þ q�g

s
: ð14Þ
To ensure T1(n,p) < Td, substituting (14) into this inequality, we have
2S < D½vðrB þ IBpÞ þu�T2
d if and only if T1ðn;pÞ < Td: ð15Þ
Next, motivated by (15), we let f1ðpÞ ¼ D½vðrB þ IBpÞ þu�T2
d ¼ ½vðrB þ IBpÞ þu� Q2

d
ap�d. It can be proved that f1(p) is an increasing

function of p. Furthermore, by the fact that limp!0þ f1ðpÞ ¼ 0 and limp?1f1(p) =1, we can find a unique value p̂1 such that
f1ðp̂1Þ ¼ 2S, that is
2S ¼ ½vðrB þ IBpÞ þu� Q2
d

ap̂�d
1
: ð16Þ
Thus, we have
2S < D½vðrB þ IBpÞ þu�T2
d if and only if p > p̂1: ð17Þ
Therefore, the following result can be obtained.

Lemma 1. For any given n and p,

(i) If 2S < D½vðrB þ IBpÞ þu�T2
d, or equivalently p > p̂1, then the optimal replenishment cycle length is T1(n,p).

(ii) If 2S P D½vðrB þ IBpÞ þu�T2
d, or equivalently p 6 p̂1, then the optimal replenishment cycle length is T�d .
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Proof

(i) It immediately follows from (15) and (17).
(ii) If 2S P D½vðrB þ IBpÞ þu�T2

d , from (12), we obtain
oP1ðn;p; TÞ
oT

P
D½vðrB þ IBpÞ þu�T2

d

2T2 � D
2
½vðrB þ IBpÞ þu�;

¼ D½vðrB þ IBpÞ þu�
2

T2
d

T2 � 1

" #
> 0;
because 0 < T < Td. Thus, P1(n,p,T) is a strictly increasing function in T 2 (0,Td). Therefore, P1(n,p,T) has a maximum value at
point T ¼ T�d . h

Alternative 1-1. The buyer’s optimal replenishment cycle length is T1(n,p)
Substituting (14) into (9), we can get
P1ðn;pÞ � P1ðn;p; T1ðn; pÞÞ ¼ ap�dðp� cÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ap�d

SV

n
þ SB

� �
vðrB þ IBpÞ þ cðrV þ IVpÞ½ðn� 1Þð1� qÞ þ q�
	 
s

: ð18Þ
The optimal value of p (denoted as p11) which maximizes P1(n,p) in (18) should satisfy p11 > p̂1, the FONC, and the second
order sufficient condition (SOSC) for concavity, i.e.
oP1ðn;pÞ
op

¼ ap�d � ap�d�1dðp� cÞ þ
d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ap�dS½vðrB þ IBpÞ þu�

q
ffiffiffi
2
p

p
¼ 0; ð19Þ
and
o2P1ðn;pÞ
op2 ¼ adðdþ 1Þp�d�2ðp� cÞ � 2adp�d�1 �

dð2þ dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ap�dS½vðrB þ IBpÞ þu�

q
2
ffiffiffi
2
p

p2
< 0: ð20Þ
Alternative 1-2. The buyer’s optimal replenishment cycle length is T�d
Substituting T ¼ T�d ¼ Q d=ðap�dÞ into (9), we can obtain
P1ðn;pÞ � P1ðn;p;Qd=ðap�dÞÞ ¼ � ap�dS
Q d

þ ap�d p� c � Q d

2ap�d
½vðrB þ IBpÞ þu�

� �
: ð21Þ
The optimal value of p (denoted as p12) which maximizes P1(n,p) in (21) should satisfy p12 6 p̂1, the FONC, and the SOSC for
concavity, i.e.
oP1ðn;pÞ
op

¼ ap�d�1d c þ S
Q d

 !
� ap�dðd� 1Þ ¼ 0; ð22Þ
and
o2P1ðn;pÞ
op2 ¼ �ap�d�2dðdþ 1Þ c þ S

Q d

 !
þ ap�d�1ðd� 1Þd < 0: ð23Þ
From above arguments, we obtain the following result.

Result 1. For any given n, if there exists a value p11 which satisfies (19), (20) and p11 > p̂1, then p11 is the optimal retail price
such that P1(n,p) in (18) has a maximum value. Otherwise, the maximum value of P1(n,p,T) is P1(n,p12) as shown in (21),
and the optimal retail price is p12, which satisfies (22) and (23) and p12 6 p̂1.

The similar procedure as described in Case 1 can be applied to solve the remaining three cases.

Case 2. Td 6 T 6M

For fixed n and p, by taking the second order partial derivative of P2(n,p,T) in Eq. (10) w.r.t. T, we have
o2P2ðn; p; TÞ=oT2 ¼ �2S=T3 < 0. Therefore, P2(n,p,T) is concave in T. Thus, there exists a unique value of T (denoted by
T2(n,p)) which maximizes P2(n,p,T). Solving oP2(n,p,T)/oT = 0, we obtain
T2ðn;pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S

DðvrB þ pIBe þuÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðSV=nþ SBÞ

ap�dfvrB þ pIBe þ cðrV þ IVpÞ½ðn� 1Þð1� qÞ þ q�g

s
: ð24Þ
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To ensure Td 6 T2(n,p) 6M, substituting (24) into this inequality results in
DðvrB þ pIBe þuÞT2
d 6 2S 6 DðvrB þ pIBe þuÞM2if and only ifTd 6 T2ðn;pÞ 6 M: ð25Þ
Next, motivated by (25), let f21ðpÞ ¼ DðvrB þ pIBe þuÞT2
d ¼ ðvrB þ pIBe þuÞ Q2

d
ap�d and f22(p) = D(vrB + pIBe + u)M2 =

ap�d(vrB + pIBe + u)M2. It can be proved that f21(p) increases in p and f22(p) decreases in p; also, limp!1f21ðpÞ ¼
limp!0þ f22ðpÞ ¼ 1 and limp!0þ f21ðpÞ ¼ limp!1f22ðpÞ ¼ 0. Hence, p̂21 and p̂22 exist such that f21ðp̂21Þ ¼ 2S and f22ðp̂22Þ ¼ 2S,
respectively. That is
2S ¼ ðvrB þ p̂21IBe þuÞ Q 2
d

ap̂�d
21
; ð26Þ

2S ¼ ap̂�d
22 ðvrB þ p̂22IBe þuÞM2: ð27Þ
Thus, we have
DðvrB þ pIBe þuÞT2
d 6 2S 6 DðvrB þ pIBe þuÞM2 if and only if p 6 Minfp̂21; p̂22g: ð28Þ
Therefore, we obtain the following result.

Lemma 2. For any given n and p,

1. If DðvrB þ pIBe þuÞT2
d 6 2S 6 DðvrB þ pIBe þuÞM2, or equivalently p 6 Minfp̂21; p̂22g, then the optimal replenishment cycle

length is T2(n,p).
2. If 2S < DðvrB þ pIBe þuÞT2

d, or equivalently p > p̂21, then the optimal replenishment cycle length is Td.
3. If 2S > DðvrB þ pIBe þuÞM2, or equivalently p > p̂22, then the optimal replenishment cycle length is M.
Proof. The proof is similar to Lemma 1, we omit it here. h

Alternative 2-1. The buyer’s optimal replenishment cycle length is T2(n,p)
Substituting (24) into (10), we can get
P2ðn; pÞ � P2ðn;p; T2ðn; pÞÞ

¼ ap�d½p� c þ ðpIBe � vIVpÞM� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ap�dSfvrB þ pIBe þ cðrV þ IVpÞ½ðn� 1Þð1� qÞ þ q�g

q
: ð29Þ
Alternative 2-2. The buyer’s optimal replenishment cycle length is Td.
Substituting T = Td = Qd/(ap�d) into (10), we can obtain
P2ðn; pÞ � P2ðn;p;Q d=ðap�dÞÞ ¼ � ap�dS
Q d

þ ap�d p� c þ ðpIBe � vIVpÞM �
Q d

2ap�d
ðvrB þ pIBp þuÞ

� �
: ð30Þ
Alternative 2-3. The buyer’s optimal replenishment cycle length is M.
Substituting T = M into (10), we get
P2ðn; pÞ � P2ðn;p;MÞ ¼ �
S
M
þ ap�d p� c þ ðpIBe � vIVpÞM �

M
2
ðvrB þ pIBe þuÞ

� �
: ð31Þ
Similar to the arguments of Case 1, we obtain the following result.

Result 2. For any given n,

(i) If there exists a value p21 which determined by solving the FONC of P2(n,p) in (29), and satisfies the corresponding
SOSC as well as p21 6 Minfp̂21; p̂22g, then p21 is the optimal retail price.

(ii) If there exists a value p22 which determined by solving the FONC of P2(n,p) in (30), and satisfies the corresponding
SOSC as well as p22 > p̂21, then p22 is the optimal retail price.

(iii) If there exists a value p23 which determined by solving the FONC of P2(n,p) in (31), and satisfies the corresponding
SOSC as well as p23 > p̂22, then p23 is the optimal retail price.

Case 3. Td 6M 6 T

Working on P3(n,p,T) (Eq. (11)), for fixed n and p, by solving oP3(n,p,T)/oT = 0, we obtain the value of T (denoted by
T3(n,p)) which maximizes P3(n,p,T) as follows:
T3ðn; pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ DðvIBp � pIBeÞM2

D½vðrB þ IBpÞ þu�

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðSV=nþ SBÞ þ ap�dðvIBp � pIBeÞM2

ap�dfvðrB þ IBpÞ þ cðrV þ IVpÞ½ðn� 1Þð1� qÞ þ q�g

s
: ð32Þ
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To ensure Td 6M 6 T3(n,p), substituting (32) into this inequality results in
Then;
if 2S P DðvrB þ pIBe þuÞM2 and M P Td; then Td 6 M 6 T3ðn;pÞ: ð33Þ
Note that when 2S P DðvrB þ pIBe þuÞM2 holds, then 2Sþ DðvIBp � pIBeÞM
2 > 0 holds, which implies (32) is well-defined

and o2P3(n,p,T)/oT2 < 0 (see Appendix A for the proof). As Td = Qd/(ap�d), substituting it into M P Td, we have p 6 (aM/
Qd)1/d.

Furthermore, from the discussions in Case 2, we see that f22(p) = D(vrB + pIBe + u)M2 is strictly decreasing in p, and a un-
ique value p̂22 exists such that f22ðp̂22Þ ¼ 2S. Thus, we have
2S P DðvrB þ pIBe þuÞM2 and M P Td if and only if p̂22 6 p 6
aM
Q d

� �1
d

: ð34Þ
Therefore, the following result is obtained.

Lemma 3. For any given n and p,

(i) If 2S P DðvrB þ pIBe þuÞM2 and M P Td (or equivalently, p̂22 6 p 6 ðaM=QdÞ1=dÞ, then the optimal replenishment cycle
length is T3(n,p).

(ii) If 2S < DðvrB þ pIBe þuÞM2 and M P Td (or equivalently, p < p̂22 and p 6 (aM/Qd)1/d), then the optimal replenishment
cycle length is M.
Proof. The proof is similar to Lemma 1, we omit it here. h

Alternative 3-1. The buyer’s optimal replenishment cycle length is T3(n,p).
Substituting (32) into (11), we can obtain
P3ðn;pÞ � P3ðn;p; T3ðn; pÞÞ

¼ ap�d½p� c þ vðIBp � IVpÞM� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ap�dfvðrB þ IBpÞ þ cðrV þ IVpÞ½ðn� 1Þð1� qÞ þ q�qg

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

SV

n
þ SB

� �
þ DðvIBp � pIBeÞM2

s
: ð35Þ
Alternative 3-2. The buyer’s optimal replenishment cycle length is M.
Substituting T = M into (11), we have
P3ðn;pÞ � P3ðn;p;MÞ ¼ �
S
M
þ ap�d½p� c þ vðIBp � IVpÞM� �

ap�dM
2
ð2vIBp � pIBe þ vrB þuÞ: ð36Þ
Similar to the arguments of Case 1, we obtain the following result.

Result 3. For any given n,

(i) If there exists a value p31 which determined by solving the FONC of P3(n,p) in (35), and satisfies the corresponding
SOSC as well as p̂22 6 p31 6 ðaM=QdÞ1=d, then p31 is the optimal retail price.

(ii) If there exists a value p32 which determined by solving the FONC of P3(n,p) in (36), and satisfies the corresponding
SOSC, p32 6 (aM/Qd)1/d and p32 < p̂22, then p32 is the optimal retail price.

Case 4. M 6 Td 6 T

Since the total profit per unit time in Case 4 is the same as that in Case 3, the optimal value of T (denoted as T4(n,p)) for
Case 4 is hence the same as T3(n,p), i.e., T4(n,p) = T3(n,p), as showed in (32). To ensure M 6 Td 6 T4(n,p), substituting (32) for
T4 (n,p) into this inequality, we have
if 2S P D½vðrB þ IBpÞ þu�T2
d þ DM2ðpIBe � vIBpÞ and Td P M; then M 6 Td 6 T4ðn; pÞ: ð37Þ
Since Td = Qd/(ap�d), substituting it into M 6 Td, we have p P (aM/Qd)1/d. Let
f4ðpÞ ¼ D½vðrB þ IBpÞ þu�T2
d þ DM2ðpIBe � vIBpÞ ¼ ½vðrB þ IBpÞ þu� Q 2

d

ap�d
þ ap�dM2ðpIBe � vIBpÞ: ð38Þ

f 04ðpÞ �
df4ðpÞ

dp
¼ d½vðrB þ IBpÞ þu�Q

2
d

Dp
þM2D IBe þ

d
p
ðvIBp � pIBeÞ

� �
: ð39Þ
Likewise, we can find a unique value p̂4 such that f4ðp̂4Þ ¼ 2S. That is
2S ¼ ap̂�d
4 ½vðrB þ IBpÞ þu�T2

d þ ap̂�d
4 M2ðp̂4IBe � vIBpÞ: ð40Þ



H.-C. Chang et al. / Applied Mathematical Modelling 33 (2009) 2978–2991 2987
Thus, we know that
ðiÞ when f 04ðpÞ > 0; then 2S P D½vðrB þ IBpÞ þu�T2
d þ DM2ðpIBe � vIBpÞ if and only if p 6 p̂4;

ðiiÞ when f 04ðpÞ < 0; then 2S P D½vðrB þ IBpÞ þu�T2
d þ DM2ðpIBe � vIBpÞ if and only if p P p̂4:

ð41Þ
Therefore, we have the following result.

Lemma 4. For any given n and p,

(i) If 2S P D½vðrB þ IBpÞ þu�T2
d þ DM2ðpIBe � vIBpÞ and Td P M (or equivalently, ðaM=Q dÞ1=d 6 p 6 p̂4 when f 04ðpÞ > 0, or

p P Maxfp̂4; ðaM=Q dÞ1=dg when f 04ðpÞ < 0Þ, then the optimal replenishment cycle length is T4(n,p).
(ii) If 2S < D½vðrB þ IBpÞ þu�T2

d þ DM2ðpIBe � vIBpÞ and Td P M (or equivalently, p > p̂4 and p P (aM/Qd)1/d when f 04ðpÞ > 0, or
ðaM=QdÞ1=d 6 p 6 p̂4 when f 04ðpÞ < 0Þ, then the optimal replenishment cycle length is Td.

Proof. The proof is similar to Lemma 1, we omit it here. h

Alternative 4-1. The buyer’s optimal replenishment cycle length is T4(n,p).
The profit function P4(n,p) �P4(n,p,T4(n,p)) = P3(n,p) is shown in (35).

Alternative 4-2. The buyer’s optimal replenishment cycle length is Td.
Substituting T = Td = Qd/(ap�d) into (11), we have
P4ðn; pÞ � P4ðn;p;Q d=ðap�dÞÞ

¼ � ap�dS
Q d

þ ap�d½p� c þ vðIBp � IVpÞM� � ap�d ðvIBp � pIBeÞM
2ap�d

2Q d
þ Q d

2ap�d
½vðrB þ IBpÞ þu�

( )
: ð42Þ
Therefore, the following result is obtained.

Result 4. For any given n, if there exists a value p41 which satisfies the FONC and SOSC with (i) ðaM=QdÞ1=d 6 p41 6 p̂4 when
f 04ðpÞ > 0, or with (ii) p41 P Maxfp̂4; ðaM=QdÞ1=dg when f 04ðpÞ < 0, then p41 is the optimal retail price such that P4(n,p) as
shown in (35) is maximized. Otherwise, P4(n,p) in (42) is maximized at p = p42 which satisfies the FONC, SOSC and the
inequality p42 P (aM/Qd)1/d and p42 > p̂4 when f 04ðpÞ > 0, or ðaM=QdÞ1=d 6 p42 < p̂4 when f 04ðpÞ < 0.

Summarizing the above arguments, we now establish the following algorithm to obtain the optimal solution (n*,p*,T*).

Algorithm

Step 1. Set n = 1.
Step 2. Determine p̂1, p̂21, p̂22 and p̂4 from (16), (26), (27) and (40), respectively.
Step 3. Find p11 which satisfies the FONC and SOSC of P1(n,p) (Eq. (18)) w.r.t. p.
Step 3-1. If p11 > p̂1, then determine T1(n,p11) by (14) and calculate P1(n,p1,T1) = P1(n,p11,T1(n,p11)) by (18), go to
Step 4; otherwise, perform Step 3-2.
Step 3-2. Find p12 which satisfies the FONC and SOSC of P1(n,p) (Eq. (21)) w.r.t. p. If p12 6 p̂1, then take
T1 ¼ Q d=ðap�d

12 Þ and calculate P1ðn; p1; T1Þ ¼ P1ðn; p12;Q d=ðap�d
12 ÞÞ by (21); otherwise, set P1(n,p1,T1) = 0.
Step 4. Find p21 which satisfies the FONC and SOSC of P2(n,p) (Eq. (29)) w.r.t. p.

Step 4-1. If p21 6 Minfp̂21; p̂22g, then determine T2(n,p21) by (24) and calculate P2(n,p2,T2) = P2(n,p21,T2(n,p21)) by
(29), go to Step 5; otherwise, perform Steps 4-2.
Step 4-2. Find p22 which satisfies the FONC and SOSC of P2(n,p) (Eq. (30)) w.r.t. p. If p22 > p̂21, then take
T2 ¼ Q d=ðap�d

22 Þ and calculate P2ðn; p2; T2Þ ¼ P2ðn; p22;Qd=ðap�d
22 ÞÞ by (30), go to Step 5; otherwise, perform Steps

4-3.
Step 4-3. Find p23 which satisfies the FONC and SOSC of P2(n,p) (Eq. (31)) w.r.t. p. If p23 > p̂22, then take T2 = M and
calculate P2(n,p2,T2) = P2(n,p23,M) by (31); otherwise, set P2(n,p2,T2) = 0.
Step 5. Find p31 which satisfies the FONC and SOSC of P3(n,p) (Eq. (35)) w.r.t. p.

Step 5-1. If p̂22 6 p31 6 ðaM=QdÞ1=d, then determine T3(n,p31) by (32) and calculate P3(n,p3,T3) = P3(n,p31,
T3(n,p31)) by (35), go to Step 6; otherwise, perform Step 5-2.
Step 5-2. Find p32 which satisfies the FONC and SOSC of P3(n,p) (Eq. (36)) w.r.t. p. If p32 6 MinfðaM=Q dÞ1=d; p̂22g,
then take T3 = M and calculate P3(n,p3,T3) = P3(n,p32,M) by (36); otherwise, set P3(n,p3,T3) = 0.
Step 6. Find p41 which satisfies the FONC and SOSC of P4(n,p) �P3(n,p) (Eq. (35)) w.r.t. p, and examine f 04ðpÞ by (39). If
p41 P (aM/Qd)1/d, perform Step 6-1; otherwise, perform Step 6-2.

Step 6-1.
(i) If f 04ðpÞ > 0and p41 6 p̂4, then determine T4(n,p41) = T3(n,p41) by (32) and calculate P4(n,p4,T4) =

P3(n,p41,T4(n,p41)) by (35). Go to Step 7.
(ii) If f 04ðpÞ < 0 and p41 P p̂4, then determine T4(n,p41) = T3(n,p41) by (32) and calculate P4(n,p4,T4) = P3(n,p41,

T4(n,p41)) by (35). Go to Step 7. Otherwise, perform Step 6-2.
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Qd

0
100
200
300
400
500
600

Table 2
Optima

M (day

20
30
40
50
60
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Step 6-2. Find p42 which satisfies the FONC and SOSC of P4(n,p) (Eq. (42)) w.r.t. p.
(i) If f 04ðpÞ > 0 and p42 P MaxfðaM=QdÞ1=d; p̂4g, then take T4 ¼ Q d=ðap�d

42 Þ and calculate P4ðn; p4; T4Þ ¼ P4ðn; p42;

Qd=ðap�d
42 ÞÞ by (42). Go to Step 7.

(ii) If f 04ðpÞ < 0 and ðaM=Q dÞ1=d 6 p42 < p̂4, then take T4 ¼ Qd=ðap�d
42 Þ and calculate P4ðn; p4; T4Þ ¼ P4ðn; p42;

Q d=ðap�d
42 ÞÞ by (42). Go to Step 7. Otherwise, set P4(n,p4,T4) = 0.
l solu

l solu

s)
Step 7. Find Maxi=1,2,3,4{Pi(n,pi,Ti)}. Set P(n)(n,p(n),T(n)) = Maxi=1,2,3,4{Pi(n,pi,Ti)}. Then (p(n),T(n)) is the optimal solution for
this given n.

Step 8. Set n = n + 1. Repeat Steps 2–7 to find P(n)(n,p(n),T(n)).
Step 9. If P(n)(n,p(n),T(n)) P P(n�1)(n � 1,p(n�1),T(n�1)), go to Step 8. Otherwise, go to Step 10.
Step 10. Set P*(n*,p*,T*) = P(n�1)(n � 1,p(n�1),T(n�1)). (n*,p*,T*) is the optimal solution.
Once the optimal solution (p*,T*) is obtained, the optimal order quantity Q* = D(p*)T* follows.

5. Numerical examples and discussion

Example 1. An inventory system with the following data is considered: a = 1.0 � 105, d = 1.5, q = 0.7, c = $5/unit, v = $10/
unit, SV = $400/setup, SB = $50/order, rV = 0.1, rB = 0.1, IBe = 0.05, IBp = 0.08, IVp = 0.02 and M = 30days. The optimal pricing,
ordering and delivery policies for various Qd are shown in Table 1.

From the results shown in Table 1, we find that as the value of Qd increases, the annual total profit for the integrated sys-
tem decreases, in which the buyer’s total profit decreases first and then increases. The vendor’s total profit increases first and
then decreases. This consequence shows that setting the minimum order quantity (i.e., threshold) for permitting delay pay-
ments could be a successful strategy for the vendor to increase buyer’s order quantity. We can see that the buyer’s optimal
order quantity, Q*, is equal to Qd when Qd = 300 and 400, and less than Qd when Qd P 500. It reveals that the vendor should
set the minimum order quantity carefully to make sure that this threshold is effective. If the threshold set by the vendor is
too high, the buyer may decide not to order a quantity greater than the threshold to obtain delayed payments. This may work
against the buyer or the entire system setting a lower retail price for the end demands. As a result, the effect of stimulating
the demands from the buyer turns negative when the vendor adopts a policy to increase the threshold Qd over some limit.

Example 2. To illustrate the effects of credit terms on performance, the optimal solutions of various credit periods are listed
in Table 2. The data is same as Example 1 except we set Qd = 300 here. Comparing the performance among the different credit
terms, it is observed that longer trade credit can increase the buyer’s total profit and the vendor’s total profit. This result
identifies that trade credit is an effective strategy for supply chain systems. The reasons are somewhat similar to that
illustrated in Example 1. With an appropriate threshold for permitting delaying payments is set by the vendor, the buyer
may thus gain some profit or reduce cost, then in turn setting a lower retail price to entice the end demands, so as to increase
the profit for the entire system.
tions under different Qd.

Q* n* p* T* (days) D(p*) Profit ($)

Buyer Vendor System

272.27 10 15.88 62.86 1580.90 8857.12 7368.57 16225.69
272.27 10 15.88 62.86 1580.90 8857.12 7368.57 16225.69
272.27 10 15.88 62.86 1580.90 8857.12 7368.57 16225.69
300.00 9 15.83 68.94 1588.38 8822.94 7401.47 16224.41
400.00 7 15.68 90.64 1610.84 8690.99 7497.62 16188.61
270.66 10 16.00 63.21 1562.86 8841.02 7307.25 16148.27
270.66 10 16.00 63.21 1562.86 8841.02 7307.25 16148.27

tions under different M(Qd = 300).

Q* n* p* T* (days) D(p*) Profit ($)

Buyer Vendor System

300.00 9 15.86 69.15 1583.43 8812.26 7386.20 16198.46
300.00 9 15.83 68.94 1588.38 8822.94 7401.47 16224.41
300.00 9 15.80 68.77 1592.34 8838.43 7411.91 16250.34
300.00 9 15.78 68.64 1595.31 8858.76 7417.48 16276.24
300.00 9 15.77 68.55 1597.26 8883.92 7418.17 16302.09
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Example 3. In this example, we perform the sensitivity analysis to show the changes in the optimal solutions Q*, n*, p*, and T*

when the value of parameters varies. All the parameter values are identical to those in Example 1 and Qd = 300, except the
given parameter. The influences of these various values on the optimal solutions are provided in Table 3. The results show
that as the value of q, IBe and IBp increases, or SV, SB and IVp decreases, the optimal order quantity Q* remains at the threshold,
the optimal retail price p* and the optimal replenishment cycle length T* decrease. Besides, as q and SV increases, the optimal
number of shipments from the vendor to the buyer per production run n* increases. Furthermore, some reasonable results
with regard to the profit are observed. When the retail price decreases, the total profit obtained at the buyer decreases. At the
same time, for the situation where the unit price charged by the vendor to the buyer remains, since the market demand
increases (due to lower retail price), the total profit obtained at the vendor increases.

Example 4. To see the efficiency of a vendor–buyer integrated system, the optimal integrated policy and independent policy
solutions are listed in Table 4. The parameter values are identical to those in Example 1 and Qd = 300. Table 4 shows that the
total annual profit under the integrated policy, $16224.41 (=$8822.94 + 7401.47), is greater than the total annual profit
under the independent policy, $14405.20 (=$11843.43 + 2561.77). This result reveals the benefit of integration between ven-
Table 3
Sensitivity analysis of some parameters.

Parameter Q* n* p* T* (days) D(p*) Profit ($)

Buyer Vendor System

q 0.6 300.00 8 15.88 69.30 1580.10 8862.88 7305.19 16168.07
0.7 300.00 9 15.83 68.94 1588.38 8822.94 7401.47 16224.41
0.8 300.00 11 15.75 68.41 1600.54 8763.95 7530.41 16294.36
0.9 300.00 15 15.65 67.79 1615.35 8691.73 7699.60 16391.33

SV 200 300.00 6 15.72 68.22 1605.15 8741.55 7623.00 16364.55
300 300.00 8 15.76 68.49 1598.82 8772.31 7515.99 16288.30
400 300.00 9 15.83 68.94 1588.38 8822.94 7401.47 16224.41
500 300.00 10 15.88 69.30 1580.10 8862.88 7305.19 16168.07

SB 30 300.00 9 15.63 67.64 1618.77 8782.88 7548.43 16331.31
40 300.00 9 15.73 68.29 1603.46 8803.23 7474.37 16277.61
50 300.00 9 15.83 68.94 1588.38 8822.94 7401.47 16224.41
60 300.00 9 15.93 69.59 1573.53 8842.02 7329.69 16171.71

IBe 0.040 300.00 9 15.84 69.01 1586.69 8826.63 7393.29 16219.92
0.045 300.00 9 15.83 68.97 1587.53 8824.79 7397.38 16222.16
0.050 300.00 9 15.83 68.94 1588.38 8822.94 7401.47 16224.41
0.055 300.00 9 15.82 68.90 1589.23 8821.09 7405.57 16226.66

IBp 0.06 300.00 9 15.85 69.12 1584.21 8852.67 7381.33 16234.00
0.07 300.00 9 15.84 69.03 1586.30 8837.81 7391.39 16229.20
0.08 300.00 9 15.83 68.94 1588.38 8822.94 7401.47 16224.41
0.09 300.00 9 15.81 68.85 1590.46 8808.08 7411.54 16219.63

IVp 0.010 300.00 9 15.80 68.78 1592.07 8805.05 7455.68 16260.73
0.015 300.00 9 15.81 68.86 1590.23 8814.01 7428.56 16242.57
0.020 300.00 9 15.83 68.94 1588.38 8822.94 7401.47 16224.41
0.025 300.00 9 15.84 69.02 1586.54 8831.85 7374.41 16206.26

Table 4
Optimal solutions of independent and integrated models.

Model type Buyer Vendor

Independent Ordering quantity 178.60 Production quantity 1607.40
Retail price 31.19
Annual demand 574.15
Total annual profit $11843.43 Total annual profit $2561.77

Integrated Ordering quantity 300.00 Production quantity 2700.00
Retail price 15.83
Annual demand 1588.38
Total annual profit $8822.94 Total annual profit $7401.47

Allocated total annual profit $13339.121 Allocated total annual profit $2885.292

Note: 1. ð8822:94þ 7401:47Þ � 11843:43
11843:43þ2561:77 ¼ 13339:12: 2: ð8822:94þ 7401:47Þ � 2561:77

11843:43þ2561:77 ¼ 2885:29:
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dor and buyer. From the vendor’s perspective, the integrated policy is much more advantageous than the independent policy.
To encourage the buyer to cooperate with the vendor, Goyal [20] suggested that the vendor should pay compensation to the
buyer for the loss in profit. Following Goyal’s suggestion, we evaluate the allocated total annual profit for the buyer and the
supplier in the last row of Table 4.
6. Conclusion

We formulate an integrated vendor–buyer inventory model in this paper with the assumptions that the market demand is
sensitive to the retail price and the credit terms are linked to the order quantity. By analyzing the total channel profit func-
tion, we develop a solution algorithm to simultaneously determine the optimal retail price, order quantity and number of
shipments per production run from the vendor to the buyer. Finally, numerical examples are presented to illustrate the solu-
tion procedure, and sensitivity analysis of the optimal solution is also indicated.

Based on our analysis, it was found that a longer trade credit term can increase profits for the entire supply chain. How-
ever, the vendor should determine the minimum order quantity (i.e., threshold) for allowing delay in payments comprehen-
sively to ensure the greatest benefit for both parties. We assumed that the threshold is a fixed constant and studied its effect
on the integrated system. Treating the threshold as a decision variable from vendor’s perspective or a negotiable factor from
the view point of both parties would be of interest for future research. Our model can be extended to more general supply
chain networks, for example, multi-echelon or assembly supply chains. Deteriorating items and the order quantity as a func-
tion of credit period will be considered in the proposed model in our future work.
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Appendix A

Note that o2P3ðn;p;TÞ
oT2 ¼ � 2S

T3 �
DðvIBp�pIBeÞM2

T3 . From 2S P DðvrB þ pIBe þuÞM2, we have
2Sþ DðvIBp � pIBeÞM
2 P DðvrB þ pIBe þuÞM2 þ DðvIBp � pIBeÞM

2 ¼ DM2½vðrB þ IBpÞ þu� > 0: ðA:1Þ
Thus, o2P3ðn;p;TÞ
oT2 ¼ � 1

T3 ½2Sþ DðvIBp � pIBeÞM2� < 0. The proof is completed.
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