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In a recent paper, Soni and Shah (2008) presented an inventory model with a stock-dependent demand
under progressive payment scheme, assuming zero ending-inventory and adopting a cost-minimization
objective. However, with a stock-dependent demand a non-zero ending stock may increase profits result-
ing from the increased demand. This work is motivated by Soni and Shah’s (2008) paper extending their
model to allow for: (1) a non-zero ending-inventory, (2) a profit-maximization objective, (3) a limited
inventory capacity and (4) deteriorating items with a constant deterioration rate. For the resulted model
sufficient conditions for the existence and uniqueness of the optimal solution are provided. Finally, sev-
eral economic interpretations of the theoretical results are also given.
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1. Introduction

An increase in shelf space for an item induces more consumers
to buy it. This occurs because of its visibility, popularity or variety.
Conversely, low stocks of certain goods (e.g., baked goods) might
raise the perception that they are not fresh. Therefore, building
up inventory often has a positive impact on the sales, as well as
the profit. Levin et al. (1972) observed that ‘‘large piles of con-
sumer goods displayed in a supermarket will lead the customer
to buy more. Yet, too much pileup in everyone’s way leaves a neg-
ative impression on buyer and employee alike’’. Silver and Peterson
(1982) also noted that sales at the retail level tend to be propor-
tional to the amount of inventory displayed. In order to quantify
this, Baker and Urban (1988) established an economic order quan-
tity (EOQ) model for a power-form inventory- level-dependent de-
mand pattern (i.e., the demand rate at time t is D(t) = a[I(t)]b,
where I(t) is the inventory level, a > 0, and 0 < b < 1). Mandal and
Phaujder (1989) then developed a production inventory model
for deteriorating items with uniform rate of production and line-
arly stock-dependent demand (i.e., D(t) = a + bI(t), where both a
and b > 0). Recently, two closely related papers were Chang et al.
(2010) and Yang et al. (2010).

In practice, suppliers frequently offer retailers many incentives
such as a permissible delay in payments to attract new customers
and increase sales. Goyal (1985) first established an economic
ll rights reserved.
order quantity (EOQ) model when a supplier offers its retailer a
permissible delay in payments. Recently, Soni and Shah (2008)
established an inventory model with a stock-dependent demand
under progressive payment scheme. Their analysis imposed a ter-
minal condition of zero ending-inventory and also they adopted
a cost-minimization objective. However, with a stock-dependent
demand, ‘‘it may be desirable to order large quantities, resulting
in stock remaining at the end of the cycle, due to the potential prof-
its resulting from the increased demand’’ as stated in Urban (1992).
Therefore, in this paper we extend their model to allow for: (1) an
ending-inventory to be non-zero, (2) a profit-maximization objec-
tive, (3) a maximum inventory ceiling to reflect either a limited
shelf space or ‘‘too much piled up in everyone’s way leaves a neg-
ative impression on buyer and employee alike’’ as stated in Levin
et al. (1972), and (4) deteriorating items. In addition, we prove
the solution uniquely exists. Furthermore, we provide several eco-
nomic interpretations for the reader to understand the implication
of our theoretical results.

2. Assumptions and notation

The assumptions of Soni and Shah (2008) are used in the model
development. However, we need the following additional assump-
tions to extend their model.

1. The maximum inventory level is U.
2. The ending inventory level (or shelf space) could be greater

than zero.

http://dx.doi.org/10.1016/j.ejor.2011.05.056
mailto:tengj@wpunj.edu
http://dx.doi.org/10.1016/j.ejor.2011.05.056
http://www.sciencedirect.com/science/journal/03772217
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3. The demand rate, D(t), is a function of inventory-level I(t) as
follows:
DðtÞ ¼ aþ bIðtÞ; 0 6 t 6 T; where a; b > 0: ð1Þ
Some additional notation is used throughout this paper:
h
 the inventory holding cost/unit/year, excluding interest
charges
P
 the selling price/unit

c
 the unit purchase cost, with c < P

A
 the ordering cost/order

h
 the constant deterioration rate

T
 the replenishment cycle time in years (a decision variable)

q
 the inventory level at time T (a decision variable)

Q
 the inventory level at time 0
3. Mathematical models

An order of Q–q units arrives at time t = 0. Since the ending
inventory is q units, the inventory level at time t = 0 is Q units. Then
the inventory gradually depletes to q (with 06q) at time t = T due
to deterioration and consumption. Likewise, another order of Q–q
units is placed and delivered at time t = T. Thus, the replenishment
cycle is repeated again. The supplier provides the retailer a pro-
gressive payment scheme. Therefore, if the retailer pays the sup-
plier by M, then the supplier does not charge the retailer any
interest. Hence, from time 0 to M, the retailer can deposit its sales
revenue into an interest bearing account at the rate of Ie/unit/year.
At time M, the retailer pays all items sold, and starts paying inter-
est on unsold items. If the retailer pays after M but before N(N > M),
then the supplier charges the retailer an interest rate of Ic1/unit/
year. If the retailer pays after N, then the supplier charges the retai-
ler an interest rate of Ic2/unit/year (Ic2 > Ic1). From the assump-
tions, the inventory level I(t) at time t 2 [0,T] satisfies the
following differential equation:

dIðtÞ
dt
þ hIðtÞ ¼ �a� bIðtÞ; ð2Þ

with the boundary condition I(T) = q P 0. Solving (2), we get:

IðtÞ ¼ qþ a
w

� �
ewðT�tÞ � a

w
; 0 6 t 6 T; where w ¼ bþ h: ð3Þ

Since I(0) = Q, we obtain

Q ¼ qþ a
w

� �
ewT � a

w
6 U: ð4Þ

Notice that the original concept of supplier’s progressive interest
scheme came from Goyal et al. (2007). Recently, Soni and Shah
(2009) also proposed a power-form stock-dependent demand rate
(i.e., D(t) = aI(t)b, where 0 6 t 6 T,a > 0, and 0 6 b < 1), instead of a
linear-form stock-dependent demand rate here (i.e., D(t) = a + bI(t),
where 0 6 t 6 T, and a, b > 0). In a linear-form stock-dependent de-
mand, if building up inventory is profitable, then the optimal inven-
tory level should increase without bound until some capacity
constraint is reached. Hence, we impose the maximum inventory
level U here. By contrast, with a power-form stock-dependent de-
mand, there is diminishing return in demand with respect to inven-
tory level and the optimal inventory level should not be increased
without bound. However, for both stock-dependent demand func-
tions, the annual total profit increases if we relax the condition of
a zero ending inventory as shown in Examples 1–3.

The retailer’s replenishment cycle time, T, has the following
three alternatives: (A) T 6 M, (B) M < T < N, and (C) T P N. We
then calculate the annual total profit for each alternative
accordingly.
3.1. T 6M

In this case, based on profit = revenue + interest earned � pur-
chasing cost � holding cost � ordering cost, we have the retailer’s
annual total profit as:

P1ðT; qÞ ¼
1
T

P
Z T

0
DðtÞdt þ PIe

Z T

0

Z t

0
DðxÞdxdt

��

þðM � TÞ
Z T

0
DðtÞdt

�
� cðIð0Þ � qÞ � h

Z T

0
IðtÞdt � A

�
:

After some algebraic manipulations, we can simplify it to:

P1ðT; qÞ ¼ Pð1þ IeMÞa 1� b
w

� �
þ ha

w
þ PIe

b
w

qþ a
w

� �

� PIe
a
2

1� b
w

� �
T þ X qþ a

w

� � 1
w
ðewT � 1Þ1

T
� A

T
; ð5Þ

where

X ¼ Pb 1þ IeM � Ie
w

� �
� cw� h

¼ ðP � cÞbþ PbIeM � h� ch� PbIe
1
w
: ð6Þ
3.2. M < T < N

Similarly, we get the retailer’s annual total profit as

P2ðT; qÞ ¼
1
T

P
Z T

0
DðtÞdt þ PIe

Z M

0

Z t

0
DðxÞdxdt � cðIð0Þ � qÞ

�

�h
Z T

0
IðtÞdt � A� cIc1

Z T

M
IðtÞdt

�
:

Taking some algebraic manipulations, we derive:

P2ðT; qÞ ¼ Pa 1� b
w

� �
þ ha

w
þ cIc1

a
w
þ X þ PIe

b
w
� cIc1

� �
e�wM

� �

� qþ a
w

� � 1
w

ewT 1
T
þ PIe 1� b

w

� �� �
aM2

2
� cIc1

aM
w

"

�A� ðPb� cw� h� cIc1Þ qþ a
w

� � 1
w

#
1
T
: ð7Þ
3.3. T P N

It is clear that the retailer’s annual total profit is

P3ðT; qÞ ¼
1
T

P
Z T

0
DðtÞdt þ PIe

Z M

0

Z t

0
DðxÞdxdt � cðIð0Þ � qÞ

�

�h
Z T

0
IðtÞdt � A� cIc1

Z N

M
IðtÞdt � cIc2

Z T

N
IðtÞdt

�
:

After some algebraic manipulations, it can be reduced to:

P3ðT; qÞ ¼ Pa 1� b
w

� �
þ ha

w
þ cIc2

a
w
þ X þ PIe

b
w
� cIc1

� �
e�wM

�

þ c Ic1 � Ic2Þe�wN

� �
qþ a

w

� � 1
w

ewT 1
T

þ PIe 1� b
w

� �� �
aM2

2
� A� ðPb� cw� h� cIc2Þ

"

� qþ a
w

� � 1
w
þ cðIc1 � Ic2Þ

a
w

N � cIc1
a
w

M

#
1
T
: ð8Þ
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Obviously the retailer’s annual total profit function is as follows:

PðT; qÞ ¼
P1ðT; qÞ; 0 < T 6 M:

P2ðT; qÞ; M < T < N;

P3ðT; qÞ; T P N:

8><
>:

By substituting T = M into the profit functions P1ðT; qÞ and P2ðT; qÞ,
we have P1(M,q) = P2(M,q). Similarly, we get P2(N,q) = P3(N,q).

4. Optimal solution

To find the optimal solution for the problem, we maximize
P1ðT; qÞ;P2ðT; qÞ and P3ðT; qÞ separately, and then compare them
to obtain the maximum value.

4.1. Maximizing P1(T,q)

For the first subsection, the problem to be solved is:

max
ðT;qÞ

P1ðT; qÞ

subject to 0 < T 6 M;

qþ a
w

� 	
ewT � a

w 6 U; and
q P 0:

Taking the first- and the second-order derivatives of P1(T,q) with
respect to T and q, we obtain:

@P1ðT; qÞ
@T

¼ 1
T2 A� X qþ a

w

� � 1
w
ðewT � 1Þ

� �
þ 1

T
X qþ a

w

� �
ewT

� PIe
a
2

1� b
w

� �
; ð9Þ

@2P1ðT; qÞ
@T2 ¼ �2

T3 A� X qþ a
w

� � 1
w
ðewT � 1Þ

� �

� 1
T2 ð2�wTÞX qþ a

w

� �
ewT ; ð10Þ

@P1ðT; qÞ
@q

¼ PIe
b
w
þ X

1
w

ewT � 1
� 	1

T
; ð11Þ

and

@2P1ðT; qÞ
@q2 ¼ 0: ð12Þ

Consequently, the Hessian matrix of P1(T,q) is

@2P1
@T2

@2P1
@T@q

@2P1
@q@T

@2P1
@q2

0
@

1
A ¼ @2P1

@T2
@2P1
@T@q

@2P1
@q@T 0

0
@

1
A ¼ � @P1

@T@q

� �2

< 0: ð13Þ

Since the Hessian matrix is negative, we cannot find an optimal in-
ner-point solution (T⁄,q⁄). In fact, P1(T,q) is a continuous and differ-
entiable function on a compact set, hence it has a global maximum.
Consequently, the maximum profit must be at the boundary of the
feasible region and the following cases should be examined:(1)
T = 0, (2) Q = U (i.e., Case A below), (3) q = 0 (i.e., Case B below)
and (4) T ¼min M; 1

w ln wU
a þ 1
� 	
 �

� B1. It is obvious that the profit
is zero for the first case. Therefore, we do not need to discuss this
case. While the last case follows because T should satisfy both the
constraints T 6M and qþ a

w

� 	
ewT � a

w 6 U at q = 0. Then we will
prove that under specific conditions only one of the Cases A and B
should be examined. From @P1ðT;qÞ

@q ¼ PIe b
wþ X 1

w ðewT � 1Þ 1
T as in (11),

if X P 0 then @P1ðT;qÞ
@q > 0 for every T so that P1(T,q) is maximized

at Q = U and the optimal solution is given by Case A. If X < 0 then
there are values for T so that @P1ðT;qÞ

@q < 0 and values for T so
that @P1ðT;qÞ

@q > 0. We can easily confirm that: if @P1ðB1 ;qÞ
@q ¼

PIe b
wþ X 1

w ðewB1 � 1Þ 1
B1
> 0 then the optimal solution is given by
Case A. Otherwise (if @P1ðB1 ;qÞ
@q ¼ PIe b

wþ X 1
w ðewB1 � 1Þ 1

B1
< 0), the

optimal solution is given by Case B. Note that if B1 ¼ 1
w ln wU

a þ 1
� 	

then the candidate maximizer (i.e., q ¼ 0; T ¼ 1
w ln wU

a þ 1
� 	

) follows
either from Case A or B as both the constraints q = 0 and Q = U hold.
Summarizing, if @P1(T,q)/@q > 0, then P1(T,q) is a strictly increasing
function of q. To make q as large as possible, we set Q = U because of
q < Q 6 U. Otherwise, if @ P1(T,q)/@q 6 0, then P1(T,q) is a decreas-
ing function of q, and is maximized at q = 0. As a result, only the
cases (A) Q = U, (B) q = 0 should be examined, which also are mutu-
ally exclusive.

In addition, by using Taylor’s series approximation to the right-
hand side of (11), we obtain the following result:

@P1ðT; qÞ
@q

¼ PIe
b
w
þ X

1
w
ðewT � 1Þ1

T

� ðP � cÞbþ PbIeM � h� ch; ð14Þ

A simple economic interpretation of (14) is as follows. For building
up an additional unit of inventory, (P � c)b is the profit from sales,
PbIeM represents the benefit from supplier’s trade credit, h is the in-
ventory holding cost excluding interest charges, and ch represents
the deterioration cost. As a result, if @P1 (T,q)/@q > 0, then building
up inventory is profitable. Otherwise (i.e., @P1(T,q)/@q 6 0), building
up inventory is not profitable.

Case A. Q = U

By setting Q = U in (4), we can solve for q.

q ¼ Ue�wT � a
w
ð1� e�wTÞ: ð15Þ

Substituting (15) into P1ðT; qÞ, we reduce the buyer’s annual total
profit function to a single decision variable T:

P1ðTÞ ¼ Pð1þ IeMÞa 1� b
w

� �
þ ha

w
þ PIe

b
w

U þ a
w

� �
e�wT

� PIe
a
2

1� b
w

� �
T þ X U þ a

w

� � 1
w
ð1� e�wTÞ1

T
� A

T
: ð16Þ

The first-order condition for a maximum is:

dP1ðTÞ
dT

¼ e�wT

T2

�PIeb Uþ a
w

� 	
T2 � PIe a

2 1� b
w

� 	
T2ewT

þ A� X Uþ a
w

� 	
1
w

� 	
ewT þX Uþ a

w

� 	
1
wþX Uþ a

w

� 	
T

" #
¼ 0 ð17Þ
Theorem 1. Let T = T1.1 be the solution of (17).
(a) Eq. (17) has a unique solution.
(b) If ðP � cÞb� PbIe

w � h� ch > 0 (i.e., @P1(T,q)/oq > 0) and T1.1 6

M, then T1.1 is the global maximum point of P1(T).
Proof. See Appendix A. h

If T1.1 6M, then we set T�1:1 ¼ T1:1. Substituting T1.1 into (15) we
have

q1:1 ¼ Ue�wT1:1 � a
w
ð1� e�wT1:1 Þ and set q�1:1 ¼ q1:1: ð18Þ

Otherwise, we set T�1:1 ¼ M, and

q�1:1 ¼ Ue�wM � a
w
ð1� e�wMÞ: ð19Þ

Consequently, T�1:1; q
�
1:1

� 	
is the optimal solution to Case A. A sim-

ple economic interpretation of Theorem 1 is as follows. If
oP1(T,q)/@q > 0, then building up inventory is profitable. Therefore,
we should display stocks to the maximum allowable amount of U
units in a supermarket without leaving a negative impression on
buyers.
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Case B. q = 0

Substituting q = 0 into (5), we get

P1ðTÞ ¼ Pð1þ IeMÞa 1� b
w

� �
þ ha

w
þ PIe

ab
w2

� PIe
a
2

1� b
w

� �
T þ X

a
w2 ðe

wT�1Þ1
T
� A

T
: ð20Þ

The first-order condition for a maximum is:

@P1ðTÞ
@T

¼ 1
T2 A�X

a
w2 ðe

wT �1ÞþX
a
w

ewT T�PIe
a
2

1� b
w

� �
T2

� �
¼0:

ð21Þ
Theorem 2. Let T = T1.2 be the solution of (21).

(a) Eq. (21) has a unique solution.
(b) If X < 0 (i.e., @P1(T,q)/oq 6 0) and T1.2 6 B1, then T1.2 is the

global maximum point of P1(T).
Proof. See Appendix B. h

If T1.2 6 B1 then we set T�1:2 ¼ T1:2. Otherwise, we set T1.2 = B1.
Consequently, ðT�1:2;0Þ is the optimal solution to Case B. A simple
economic interpretation of Theorem 2 is as follows. If @P1(T,q)/
@q 6 0, then building up inventory is not profitable. Therefore,
we should not keep the ending inventory positive, which implies
that q = 0. We then discuss the next subsection, in which the max-
imization of P2(T,q) is necessary only if B1 = M.

4.2. Maximizing P2(T,q)

For the second subsection, the problem to be solved is:

max
ðT;qÞ

P2ðT; qÞ

subject to M < T 6 N;

qþ a
w

� 	
ewT � a

w 6 U; and
q P 0:

Taking the first- and the second-order derivatives of P2(T,q) with
respect to T and q, we obtain:

@P2ðT; qÞ
@T

¼ 1
T2 X þ PIe

b
w
� cIc1

� �
e�wM

� �

� qþ a
w

� � 1
w
ðwT � 1ÞewT

� 1
T2

"
PIe 1� b

w

� �� �
aM2

2
� cIc1

aM
w
� A

�ðPb� cw� h� cIc1Þ qþ a
w

� � 1
w

#
; ð22Þ

@2P2ðT; qÞ
@T2 ¼ 1

T3 PIe
b
w
ðMw� 1Þ þ PIe

b
w
� cIc1

� �
e�wM

�

þ Pb� cw� hÞ qþ a
w

� � 1
w
ðw2T2 � 2wT þ 2ÞewT

� �

þ2
1
T3 PIe 1� b

w

� �� �
aM2

2
� cIc1

aM
w

"

�A� ðPb� cw� h� cIc1Þ qþ a
w

� � 1
w

#
; ð23Þ
@P2ðT;qÞ
@q

¼ Xþ PIe
b
w
� cIc1

� �
e�wM

� �
1
w

ewT 1
T
�ðPb� cw�h� cIc1Þ

1
w

1
T

¼ XðewT �1ÞþPbIeMþ PIe
b
w
� cIc1

� �
ðewðT�MÞ �1Þ

� 
1

wT

ð24Þ

and

@2P2ðT; qÞ
@q2 ¼ 0: ð25Þ

As in Section 4.1, the Hessian matrix of P2ðT; qÞ is negative and
hence we search for a maximum on the boundary, which is either
Q = U (i.e., oP2(T,q)/@q > 0) or q = 0 (i.e., oP2(T,q)/@q 6 0). Let us dis-
cuss them separately below.

Case A. Q = U

From Section 4.1, we get q as in (15). Substituting (15) into (6),
we simplify P2(T,q) into a single decision variable function of T as
follows:

P2ðTÞ ¼ Pa 1� b
w

� �
þ ha

w
þ cIc1

a
w
þ A1

1
T
� A2e�wT 1

T
; ð26Þ

where

A1 ¼
"

X þ PIe
b
w
� cIc1

� �
e�wM

� �
U þ a

w

� � 1
w

þ PIe 1� b
w

� �
aM2

2
� cIc1

aM
w
� A

#
; ð27Þ

and

A2 ¼ ðPb� cw� h� cIc1Þ U þ a
w

� � 1
w
: ð28Þ

The first-order condition for a maximum is:

@P2ðTÞ
@T

¼ 1
T2 A2ðwT þ 1Þe�wT � A1
� �

¼ 0: ð29Þ
Theorem 3. Let T2.1 be the solution of (29). If A2 > A1 > 0, then we
have:

(a) Eq. (29) has a unique solution.
(b) If M < T2.1 < N then T1.2 is the global maximum point of P2(T).
Proof. See Appendix C. h

If M < T2.1 < N, we set T�2:1 ¼ T2:1, and then by substituting T2.1

into (15) we get q�2:1 ¼ qðT2:1Þ. If T2.1 < M, then we set T�2:1 ¼ M
and get q�2:1 ¼ qðMÞ from (15). If T2.1 > N, then we set T�2:1 ¼ N and
get q�2:1 ¼ qðNÞ from (15). If the conditions for a maximum do not
hold, then we set

T�2:1 ¼
M if P2ðM; qðMÞÞ > P2ðN; qðNÞÞ;
N if P2ðM; qðMÞÞ 6 P2ðN; qðNÞÞ

�

and then obtain q�2:1 accordingly. Consequently, T�2:1; q
�
2:1

� 	
is the

optimal solution to P2(T,q) for the case in which Q = U.

Corollary 1. If (29) has a solution, then this is the global maximum
point of P2(T) if X > 0 and PIe b

w� cIc1 > 0.
Proof. It is trivial that X > 0 and PIe b
w� cIc1 > 0 imply A2 > 0. h
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Case B. q = 0

Substituting q = 0 into (6), we obtain

P2ðTÞ ¼ Pa 1� b
w

� �
þ ha

w
þ cIc1

a
w
þ A3ewT 1

T
þ A4

1
T
; ð30Þ

where

A3 ¼ X þ PIe
b
w
� cIc1

� �
e�wM

� �
a

w2 ; ð31Þ

and

A4 ¼ PIe 1� b
w

� �� �
aM2

2
� cIc1

aM
w
� A� ðPb� cw� h� cIc1Þ

a
w2 :

ð32Þ

The first-order condition for a maximum is:

@P2ðTÞ
@T

¼ 1
T2 A3ðwT � 1ÞewT � A4
� �

¼ 0: ð33Þ
Theorem 4. Let T2.2 be the solution of (33). If A4 < A3 < 0, then we
get:

(a) Eq. (33) has a unique solution.
(b) If M < T2.2 < B2, where B2 ¼min N; 1

w ln wU
a þ 1
� 	
 �

then T2.2 is
the global maximum point of P2(T).
Proof. See Appendix D. h

If M < T2.2 < B2, then we set T�2:2 ¼ T2:2. If T2.2 6M, then we set
T�2:2 ¼ M. If T2.2 P B2, then we set T�2:2 ¼ B2. If the conditions for a
maximum do not hold, then we set

T�2:2 ¼
M if P2ðM;0Þ > P2ðB2;0Þ;
B2 if P2ðM;0Þ 6 P2ðB2;0Þ:

�

Consequently, T�2:2;0
� 	

is the optimal solution to P2(T,q) for the case
in which q = 0.

Corollary 2. If (33) has a solution, then this is the global maximum
point of P2(T) if X < 0 and PIe b

w� cIc1 < 0.
Proof. It is clear that X < 0 and PIe b

w� cIc1 < 0 imply A3 < 0. h

We then discuss the last subsection, in which the maximization
of P3(T,q) is necessary only if B2 = N.

4.3. Maximizing P3(T,q)

For the third and last subsection, the problem to be solved is:

maxðT;qÞ P3ðT; qÞ
subject to N 6 T;

qþ a
w

� 	
ewT � a

w 6 U; and
q P 0:

Hence, the resulted feasible region is a compact set.
The first- and the second-order derivatives of P3(T,q) with

respect to T and q are:

@P3ðT; qÞ
@T

¼ 1
T2 X þ PIe

b
w
� cIc1

� �
e�wM þ cðIc1 � Ic2Þe�wN

� �

� qþ a
w

� � 1
w
ðwT � 1ÞewT � 1

T2 PIe 1� b
w

� �� ��

� aM2

2
� A� ðPb� cw� h� cIc2Þ qþ a

w

� � 1
w

þ cðIc1 � Ic2Þ
a
w

N � cIc1
a
w

M
�
; ð34Þ
@P3ðT; qÞ
@q

¼ X þ PIe
b
w
� cIc1

� �
e�wM þ cðIc1 � Ic2Þe�wN

� �

� 1
w

ewT 1
T
� ðPb� cw� h� cIc2Þ

1
w

1
T

¼ XðewT � 1Þ þ PbIeM þ PIe
b
w
� cIc1

� �
ðewðT�MÞ � 1Þ

�

þ cIc1 � cIc2ÞðewðT�NÞ � 1Þ
� 

1
wT

; ð35Þ

@2P3ðT; qÞ
@T2 ¼ 1

T3 X þ PIe
b
w
� cIc1

� �
e�wM þ cðIc1 � Ic2Þe�wN

� �

� qþ a
w

� � 1
w

w2T2 � 2wT þ 2
� �

ewT

þ 2
T3 PIe 1� b

w

� �� �
aM2

2
� A� ðPb� cw� h� cIc2

"

� qþ a
w

� � 1
w
þ cðIc1 � Ic2Þ

a
w

N � cIc1
a
w

M

#
ð36Þ

and

@2P3ðT; qÞ
@q2 ¼ 0: ð37Þ

As in Sections 4.1 and 4.2 the Hessian matrix is negative and hence
we search for a maximum on the boundary, which is either Q = U
(i.e., oP3(T,q)/@q > 0) or q = 0 (i.e., oP3(T,q)/@q 6 0). Again, we dis-
cuss these two cases separately.

Case A. Q = U

It is clear that q is the same as in (15). Substituting (15) into (7),
we simplify P3ðT; qÞ into a single decision variable function of T.

P3ðTÞ ¼ Pa 1� b
w

� �
þ ha

w
þ cIc2

a
w
þ A5

1
T
� A6e�wT 1

T
; ð38Þ

where

A5 ¼ X þ PIe
b
w
� cIc1

� �
e�wM þ cðIc1 � Ic2Þe�wN

� �
U þ a

w

� � 1
w

þ PIe 1� b
w

� �
aM2

2
� Aþ cðIc1 � Ic2Þ

a
w

N � cIc1
a
w

M

ð39Þ
and

A6 ¼ ðPb� cw� h� cIc2Þ U þ a
w

� � 1
w
: ð40Þ

The first-order condition for a maximum is:

@P3ðTÞ
@T

¼ 1
T2 ½A6ðwT þ 1Þe�wT � A5� ¼ 0: ð41Þ
Theorem 5. Let T3.1 be the solution of (41). If A6 > A5 > 0, then we
obtain:

(a) Eq. (41) has a unique solution.
(b) If T3.1 > N then T3.1 is the global maximum point of P3(T).
Proof. The proof of this theorem is similar to that of Theorem 3
noting the similarity of Eqs. (29) and (41). Also it is worthwhile
to note that A5 < A1 and A6 < A2. h

If T3.1 > N, we set T�3:1 ¼ T3:1, and then substitute T3.1 into (15) to
get q�3:1 ¼ qðT3:1Þ. If T3.1 6 N or if the conditions for a maximum do
not hold, then we set T�3:1 ¼ N and get q�3:1 ¼ qðNÞ from (15). Conse-
quently, T�3:1; q

�
3:1

� 	
is the optimal solution for the case in which Q = U.
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Corollary 3. If (41) has a solution, then this is the global maximum
point of P3(T) if X > 0 and PIe b

w� cIc2 > 0.
Proof. It is obvious that X > 0 and PIe b
w� cIc2 > 0 imply A6 > 0. h
Case B. q = 0

Substituting q = 0 into (7), we have

P3ðTÞ ¼ Pa 1� b
w

� �
þ ha

w
þ cIc2

a
w
þ A7ewT 1

T
þ A8

1
T
; ð42Þ

where

A7 ¼ X þ PIe
b
w
� cIc1

� �
e�wM þ cðIc1 � Ic2Þe�wN

� �
a

w2 ; ð43Þ

and

A8 ¼ PIe 1� b
w

� �
aM2

2
� A� ðPb� cw� h� cIc2Þ

a
w2

þ cðIc1 � Ic2Þ
a
w

N � cIc1
a
w

M: ð44Þ

The first-order condition for a maximum is:

@P3ðTÞ
@T

¼ 1
T2 ½A7ðwT � 1ÞewT � A8� ¼ 0: ð45Þ
Theorem 6. Let T3.2 be the solution of (45). If A8 < A7 < 0, then we
get:

(a) Eq. (45) has a unique solution.
(b) If N 6 T3.2 6 B3, where B3 ¼ 1

w ln wU
a þ 1
� 	

, then T3.2 is the glo-
bal maximum point of P3(T).
Table 1
Proof. The proof is similar to that of Theorem 4 observing the sim-
ilarity of Eqs. (33) and (45). Also it is worthwhile to note that
A7 < A3 and A8 < A4. h

If N 6 T3.2 6 B3, we set T�3:2 ¼ T3:2. If T3.2 6 N, then we set
T�3:2 ¼ N. If T3.2 P B3, then we set T�3:2 ¼ B3. If the conditions for a
maximum do not hold, then we set

T�3:2 ¼
N if P3ðN;0Þ > P3ðB3; 0Þ;
B3 if P3ðN;0Þ 6 P3ðB3;0Þ:

�
:

Consequently, T�3:2;0
� 	

is the optimal solution for the case in which
q = 0.

Corollary 4. If (45) has a solution, then this is the global maximum
point of P3(T) if X < 0 and PIe b

w� cIc2 < 0.

Case 1 (T 6M).

Set Q = U Q = U = 500 T = M = 0.047 q = 380.87 P = 20755.6
Set q = 0 Q = 50.65 T = M = 0.047 q = 0 P = 6631.78
Proof. It is trivial that X < 0 and PIe b

w� cIc2 < 0 imply A7 < 0. h
Table 3
Case 3 (T P N).

Set Q = U Q = U = 500 T = N = 0.082 q = 302.18 P = 20701
Set q = 0 Q = U = 500 T = 0.29 q = 0 P = 15925.3

Table 2
Case 2 (M < T < N).

Set Q = U Q = U = 500 T = 0.06 q = 349.34 P = 20899.5
Set q = 0 Q = 95.44 T = N = 0.082 q = 0 P = 9140.39
5. Numerical examples and comparisons

In Example 1, we use the same parametric values as in Soni and
Shah (2008) for a linear-form stock dependent demand. However,
we extend their model from non-deteriorating items (i.e., h = 0) to
deteriorating items (i.e., h = 0.05). Then, in Example 2 we show that
the total profit, based on the optimal solution to minimize the an-
nual total cost in a system with a stock-dependent demand rate, is
significantly less than that to maximize the total annual profit. Fi-
nally, in Example 3 we study the effect of relaxing the assumption
of a zero ending inventory for a power-form stock-dependent
demand.
Example 1. Let a = 1000, h = 0.05, b = 3.5, A = 200, c = 20, P = 30,
h = 0.2, Ie = 12%, Ic1 = 13%, Ic2 = 18%, M = 17/365, N = 30/365 and
U = 500 in appropriate units. By using the above procedure, we
obtain the computational results as shown in Tables 1–3. Conse-
quently, we obtain the optimal solution as follows:

ðT�; q�Þ ¼ ð0:06;349:34Þ; and PðT�; q�Þ ¼ 20899:5:

If we impose q = 0 as in Soni and Shah (2008), then we know from
Tables 1–3 with q = 0 that the optimal solution would be

ðT�; q�Þ ¼ ð0:29;0Þ; and PðT�; q�Þ ¼ 15925:3:

Now, it is obvious that to impose a zero ending inventory in an
inventory system with a stock-dependent demand rate will lose
profit significantly. In fact, we know from (14) that

ðP � cÞbþ PbIeM � h� ch ¼ ð30� 20Þ3:5þ ð30Þð3:5Þð0:12Þ
� ð17=365Þ � 0:2� ð20Þð0:05Þ

¼ 34:38685 > 0:

Hence, building up inventory is profitable, which in turn implies the
optimal solution is in the case of Q = U.
Example 2. To compare our results with those in Soni and Shah
(2008), we set h = 0 here, and let the rest of the parameters to be
the same as in Example 1. Likewise, we obtain the optimal solution
as follows:

ðT�; q�Þ ¼ ð0:06;352:27Þ; and PðT�; q�Þ ¼ 21343:2:

In contrast, their optimal solution to minimize the retailer’s annual
total cost is

ðT�; q�Þ ¼ ð0:18;0Þ; and PðT�; q�Þ ¼ 12654:3:

Again, it is clear that the retailer’s annual total profit based on their
optimal solution to minimize the annual total cost in a system with
a stock-dependent demand rate does not induce to an optimal
profit.
Example 3. We study the effect of relaxing the assumption of a
zero ending inventory in a power-form stock-dependent demand
as shown in Soni and Shah (2009). Let a = 1000, h = 0.05, b = 0.1,
A = 200, c = 20, P = 30, h = 0.2, Ie = 12%, Ic1 = 13%, Ic2 = 18%, M = 17/
365, N = 30/365 and U = 500 in appropriate units. By using the
same procedure, we obtain the computational results as shown
in Tables 4–6. Consequently, the optimal solution is as follows:

ðT�; q�Þ ¼ ð0:207;131:984Þ and PðT�; q�Þ ¼ 15661:4:



Table 8
Sensitivity analysis.

Parameter Percentage of
changes (%)

T q Percentage of profit
changes

U �50 0.082(=N) 115.45 �0.35
�25 0.07 230.05 �0.18
+25 0.052 471.58 0.18
+50 0.047(=M) 592.77 0.37

M �50 0.067 333.6 �0.02
�25 0.064 340.98 �0.01
+25 0.059(=M) 352.28 0.01
+50 0.067 334.82 0.02

N �25 0.06 349.34 0
+25 0.06 349.34 0
+50 0.06 349.34 0

Ie �50 0.061 346.67 �0.004
�25 0.06 348 �0.002
+25 0.06 350.7 0.002
+50 0.059 352.07 0.004

Ic1 �50 0.065 339.09 0.006
�25 0.063 344.01 0.003
+25 0.058 355.13 �0.002
+50 0.055 361.46 �0.004

Ic2 �50 0.058 354.67 0
�25 0.058 354.67 0
+25 0.058 354.67 0
+50 0.058 354.67 0
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If we impose q = 0 as in Soni and Shah (2009), then from Tables 4–6
(for q = 0) the optimal solution is:

ðT�; q�Þ ¼ ð0:29;0Þ; and PðT�; q�Þ ¼ 15268:3:

Again, this example indicates that to impose a zero ending inven-
tory in an inventory system with a power-form inventory level –
dependent demand function, causes a loss in profit.

With a power-form stock-dependent demand, there is dimin-
ishing return in demand with respect to inventory level. Hence,
the optimal order quantity Q is not always at the maximum inven-
tory U. To show this, we study the sensitivity analysis on the opti-
mal order quantity Q with respect to a, as shown in Table 7. Table 7
reveals that a higher value of a causes higher values of q, Q, and P
while a lower value of T.

6. Sensitivity analysis

By using the same data as in Example 1, we study the effect of
the changes in a single parameter (i.e., keeping the other parame-
ters constant) on the optimal solution (T⁄,q⁄) as shown in Table 8.
Table 8 reveals that (1) an increase in U or Ie causes a decrease in T⁄

while an increase in both q⁄and
Q
ðT�; q�Þ, (2) an increase in Ic1

causes a decrease in both T⁄ and
Q
ðT�; q�Þ but an increase in q⁄,

and (3) the changes in M, N, or Ic2 seems not to affect any of T⁄,
q⁄, and

Q
ðT�; q�Þ.

7. Conclusions

Recently, Soni and Shah (2008, 2009) first formulated two inter-
esting and relevant inventory models in which the demand rate is
either a linear function or a power function of the stock level under
a supplier’s progressive payment scheme. In this paper, we have
extended their model to allow for: (1) an ending-inventory to be
non-zero, (2) a profit-maximization model, (3) a maximum inven-
tory ceiling, and (4) deteriorating items. Then we have provided
the sufficient conditions for the existence and uniqueness of the
optimal solution. In addition, we have explained the economic
Table 4
Case 1 (T 6M).

Set Q = U Q = U = 500 T = M = 0.047 q = 413.03 P = 13758
Set q = 0 Q = 63.56 T = M = 0.047 q = 0 P = 9421.3

Table 5
Case 2 (M < T < N).

Set Q = U Q = U = 500 T = N = 0.082 q = 347.84 P = 15018.5
Set q = 0 Q = 119.57 T = N = 0.082 q = 0 P = 12068.3

Table 6
Case 3 (T P N).

Set Q = U Q = U = 500 T = 0.207 q = 131.984 P = 15661.4
Set q = 0 Q = U = 500 T = 0.29 q = 0 P = 15268.3

Table 7
The optimal solution for different values of a.

a Optimal T, q and Q Optimal P

100 T = 0.96, q = 0.80099, Q = 147.608 974.207
300 T = 0.62, q = 16.8078, Q = 326.193 3897.4
500 T = 0.498, q = 49.34, Q = 484.147 7147.18

1000 T = 0.207, q = 131.984, Q = U = 500 15661.4
interpretations of the theoretical results. Furthermore, we have
used the same numerical example as in Soni and Shah (2008) to
show that (a) by imposing on the ending inventory to be zero, or
(b) by minimizing the annual total cost in an inventory model with
a stock-dependent demand rate does not provide an optimal profit.
Finally, we have studied the sensitivity analysis of a single param-
eter on the effect of the optimal solution.

While this research generalizes the inventory model by Soni
and Shah (2008), further investigation can be conducted in a num-
ber of directions. For instance, we may extend the proposed model
to allow for partial backlogging, poor-quality products, one time
discount, and others. Also, we could consider the effects of inflation
rate, defective rate, and inspection rate on the problem. Finally, we
should study the supply chain coordination between the supplier
and the retailer.
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Appendix A. Proof of Theorem 1

(a) From (17), we set

FðTÞ ¼ �PIeb U þ a
w

� 	
T2 þ X U þ a

w

� 	
T þ X U þ a

w

� 	
1
w ; and

GðTÞ ¼ PIe a
2 1� b

w

� 	
T2 þ X U þ a

w

� 	
1
w� A

� 	h i
ewT :

If there exists a unique T > 0 such that F(T) = G(T), then (17) has a
unique solution. Taking the first and second derivatives of F(T),
we get
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F 0ðTÞ ¼ �2PIebðU þ a
wÞT þ XðU þ a

wÞ; and
F 00ðTÞ ¼ �2PIeb U þ a

w

� 	
< 0:

Hence F(T) is a strictly concave function. Similarly, we have

G0ðTÞ ¼ ðc1wT2 þ 2c1T þ c2ÞewT ; and

G00ðTÞ ¼ ðc1w2T2 þ 4c1wT þ 2c1 þwc2ÞewT

where c1 ¼ PIe a
2 1� b

w

� 	
> 0 and c2 ¼ X U þ a

w

� 	
1
w� A

� 	
w.

If 0 < c1 < wc2, then G0(T) > 0(G0(T) > 0 if 4c2
1 � 4c1wc2 < 0 or

equivalently 0 < c1 < wc2). Otherwise, if c1 P wc2, then G00(T) > 0.
Therefore, G(T) is either an increasing function or a strictly convex
function in T. In addition, we know

Fð0Þ ¼ X U þ a
w

� � 1
w
> Gð0Þ ¼ X U þ a

w

� � 1
w
� A ¼ c2

w
; while Fð1Þ

< Gð1Þ:

Consequently, there exists a unique T such that F(T) = G(T), hence
dP1(T)/dT = 0 has a unique solution.

(b) If T = T1.1 is the solution to dP1(T)/dT = 0, the second-order
derivative of P1(T) at this point is:

d2P1ðTÞ
dT2

�����
T¼T1:1

¼ PIeb U þ a
w

� �
e�wT1:1 w� 2

T

� �
� 1

T1:1
PIea 1� b

w

� �

� X U þ a
w

� �
w

e�wT1:1

T1:1
< 0

provided that ðP � cÞb� PbIe
w � h� ch > 0 which implies that X > 0.

The case of Q = U (i.e., oP1(T,q)/@q > 0) and the case of q = 0 (i.e.,
oP1(T,q)/@q 6 0) are mutually exclusive. Consequently, if oP1(T,q)/
oq > 0, then the optimal solution obtained under the condition of
oP1(T,q)/@q > 0 is clearly more profitable than the solution ob-
tained under the condition of oP1(T,q)/@q 6 0. Hence, we have
proved that T1.1 is the unique global maximum point of P1(T,q).

Appendix B. Proof of Theorem 2

(a) By using (21), we let

FðTÞ ¼ �PIe a
2 ð1� b

wÞT
2 þ X a

w2 þ A; and

GðTÞ ¼ X a
w ewT 1

w� T
� 	

:

If there exists a unique T > 0 such that F(T) = G(T), then (21) has a
unique solution. Since F 0ðTÞ ¼ �PIe a

2 1� b
w

� 	
T < 0; FðTÞ is a strictly

decreasing function for T > 0.
In contrast, G0(T) = �XaewTT. If oP1(T,q)/@q 6 0, then we know

from (11) that X < 0 and thus G(T) is a strictly increasing function
for T > 0. Furthermore, Fð0Þ ¼ X a

w2 þ A > Gð0Þ ¼ X a
w2 while

F(1) < F(0) < G(1). Consequently, there exists a unique T such that
F(T) = G(T), hence dP1(T)/dT = 0 has a unique solution.

(b) If T ¼ T1:2 is the solution to dP1(T)/dT = 0, the second-order
derivative of P1(T) at this point is:

d2P1ðTÞ
dT2

�����
T¼T1:2

¼ 1
T

XaewT � PIea 1� b
w

� �� �
< 0; if X 6 0:

The case of Q = U (i.e., oP1(T,q)/@q > 0) and the case of q = 0 (i.e.,
oP1(T,q)/@q 6 0) are mutually exclusive. Consequently, if oP1(T,q)/
oq 6 0, then the optimal solution obtained under the condition of
oP1(T,q)/@q 6 0 is clearly more profitable than the solution ob-
tained under the condition of oP1(T,q)/@q > 0. Hence, we have
proved that is the unique global maximum point of P1(T,q).
Appendix C. Proof of Theorem 3

(a) Let us set F(T) = A2(wT + 1)e�wT � A1, then dP2ðTÞ=dT ¼
0 () FðTÞ ¼ 0. To examine if the equation dP2(T)/dT = 0 has a
solution we examine the behavior of function F(T).

F 0ðTÞ ¼ �A2w2Te�wT and Fð0Þ ¼ A2 � A1:

So, if A2 > 0 and A2 > A1 > 0, dP2(T)/dT = 0 has a unique solution.
(b) If T = T2.1 is the solution to dP2(T)/dT = 0, the second-order

derivative of P2(T) at this point is:

d2P2ðTÞ
dT2

�����
T¼T2:1

¼ � A2

T2:1
w2e�wT2:1 < 0; if A2 > 0:

Hence T2.1 is the global maximum point.
In any other case dP2(T)/dT = 0 has no solution or it has a solu-

tion which is not a global maximum. Since A1, A2 > 0 implies that
oP2(T,q)/@q > 0, and T2.1 is the unique global maximum point of
P2(T,q).

Appendix D. Proof of Theorem 4

(a) Let us set F(T) = A3(wT � 1)ewT � A4, then from dP2(T)/dT = 0
we get F(T) = 0. To examine if the equation dP2(T)/dT = 0 has a solu-
tion we examine the behavior of function F(T). Since
F0(T) = w2A3ewTT and F(0) = A3 � A4, if A3 < 0 and A3 � A4 > 0,
dP2(T)/dT = 0 has a unique solution.(b) If T = T2.2 is the solution to
dP2(T)/dT = 0, the second-order derivative of P2(T) at this point is:

d2P2ðTÞ
dT2

�����
T¼T2:2

¼ w2

T
ewT A3 < 0; if A3 < 0:

Hence T2.2 is the global maximum point.
Note that dP2(T)/dT = 0 has always at least one solution exclud-

ing the case A4 > �A3.

References

Baker, R.C., Urban, T.L., 1988. A deterministic inventory system with an inventory
level dependent demand rate. Journal of the Operational Research Society 39,
823–831.

Chang, C.T., Teng, J.T., Goyal, S.K., 2010. Optimal replenishment policies for non-
instantaneous deteriorating items with stock-dependent demand. International
Journal of Production Economics 123, 62–68.

Goyal, S.K., 1985. Economic order quantity under conditions of permissible delay in
payments. Journal of the Operational Research Society 36, 335–338.

Goyal, S.K., Teng, J.T., Chang, C.T., 2007. Optimal ordering policies when the supplier
provides a progressive interest scheme. European Journal of Operational
Research 179, 404–413.

Levin, R.I., McLaughlin, C.P., Lamone, R.P., Kottas, J.F., 1972. Productions/Operations
Management: Contemporary Policy for Managing Operating Systems. McGraw-
Hill, New York, p. 373.

Mandal, B.N., Phaujder, S., 1989. An inventory model for deteriorating items and
stock-dependent consumption rate. Journal of the Operational Research Society
40, 483–488.

Silver, E.A., Peterson, R., 1982. Decision Systems for Inventory Management and
Production Planning, 2nd ed. Wiley, New York.

Soni, H., Shah, N.H., 2008. Optimal ordering policy for stock-dependent demand
under progressive payment scheme. European Journal of Operational Research
184, 91–100.

Soni, H., Shah, N.H., 2009. Ordering policy for stock-dependent demand rate under
progressive payment scheme. International Journal of Systems Science 40, 81–
89.

Urban, T.L., 1992. An inventory model with an inventory-level-dependent demand
rate and relaxed terminal conditions. Journal of the Operational Research
Society 43, 721–724.

Yang, H.L., Teng, J.T., Chern, M.S., 2010. An inventory model under inflation for
deteriorating items with stock-dependent consumption rate and partial
backlogging shortages. International Journal of Production Economics 123, 8–
19.


	A comprehensive extension of optimal ordering policy for stock-dependent  demand under progressive payment scheme
	1 Introduction
	2 Assumptions and notation
	3 Mathematical models
	3.1 T?M
	3.2 M<T<N
	3.3 T⩾N

	4 Optimal solution
	4.1 Maximizing Π1(T,q)
	4.2 Maximizing Π2(T,q)
	4.3 Maximizing Π3(T,q)

	5 Numerical examples and comparisons
	6 Sensitivity analysis
	7 Conclusions
	Acknowledgements
	Appendix A Proof of Theorem 1
	Appendix B Proof of Theorem 2
	Appendix C Proof of Theorem 3
	Appendix D Proof of Theorem 4
	References


