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In this article, we generalize Lev and Weiss’s (1990) finite horizon economic order quan-
tity (EOQ) model with cost change to the inventory system with deterioration. Supplier
announces some or all of cost parameters may change after a decided time. Depending
on whether the inventory is depleted at the time of the last opportunity to purchase
before some or all of the cost parameters may change, there are two types of inventory
models to be discussed. The main objective of this paper is to identify the optimal order-
ing policy of the inventory system by comparing the minimum cost of the two types of
models. We suggest a finite horizon EOQ model to combine the above two types and
propose a theorem that can quickly identify the optimal policy of the suggested model.
In considering temporary price discount problem and discrete-time EOQ problem, in
general, there are integer operators in mathematical models, but our approach offers a
closed-form solution to these kinds of problems. Numerical examples are presented to
demonstrate the results of the proposed properties and theorem.

Keywords: Inventory; EOQ; deterioration; cost change; finite horizon.

1. Introduction

The determination of economic order quantity (EOQ) is a popular issue in sup-
ply chain management. Inventory theory literature contains many interesting EOQ
models. The traditional EOQ inventory model assumes that the inventory parame-
ters (e.g., per unit cost, demand rate, setup cost or holding cost) are constant during
the sale period. In reality, there are many reasons for a supplier to change some or
all of cost parameters to buyers. If the supplier announces an increase in product or
raw material costs, the buyer generally responds to the price-increase by engaging
in forward-buying. They purchase a lot before the price increases. Naddor (1966)
developed an EOQ inventory model that addressed the situation when there is an
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689

A
si

a 
Pa

c.
 J

. O
pe

r.
 R

es
. 2

01
1.

28
:6

89
-7

04
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

A
M

K
A

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

http://dx.doi.org/10.1142/S0217595911003314


December 10, 2011 14:22 WSPC/S0217-5959 APJOR 00331.tex

690 H.-J. Chang & W.-F. Lin

announced price increase. Schwarz (1972) discussed a finite horizon EOQ model,
where the costs of the model were static and the optimal number of orders for a
finite horizon needed to be determined. Lev and Weiss (1990) considered the case
where the cost parameters may change, and the horizon length may be finite as well
as infinite. They suggested some methods to solve the inventory problem, but there
are many calculation steps in their algorithms and there are infeasible solutions in
their results. Gascon (1995) indicated that the lower and upper bounds on order
number in Lev and Weiss’s (1990) Type 2 model do not guarantee feasibility of the
solution. Luo and Huang (2003) showed that some of the results in Lev and Weiss
(1990) are not necessarily optimal. If the length of the finite horizon is deterministic,
the same size order number can be decided by Schwarz’s (1972) result. But in Lev
and Weiss (1990), the length of the finite horizon after special order is unknown
and it is dependent on order number. The obtained order number may fail to be
the solution of the minimum sum of costs.

A common situation of cost parameter change is when suppliers offer temporary
reduction in selling price to buyers. Buyers typically respond by placing a special
order for a large lot. Tersine (1994) proposed a temporary price discount model,
where the optimal ordering policy is obtained by maximizing the difference between
regular EOQ cost and special order quantity cost during the sale period. Martin
(1994) revealed that Tersine’s (1994) representation of average inventory in the
total cost is flawed, and suggested the true representation of average inventory.
Wee and Yu (1997) assumed that the items deteriorated exponentially with time
when temporary price discount purchase occurs at the regular and non-regular
replenishment time. The above articles solve the temporary price discount problems
by numeric method instead of closed form solution. Since there are integer operators
in their objective functions, it is hard to solve this kind of problem. The related
analysis on inventory systems of these problems have been performed by Abad
(2003), Saker and Al Kindi (2006), Hsu and Yu (2009), C’ardenas-Barr’on (2009a,
2009b), C’ardenas-Barr’on et al. (2010), etc.

Since many products like machine parts are not continuously divisible, some
authors have investigated the EOQ problems when the lot size should be an integer
quantity. Kovalev and Ng (2008) proposed a model where the planning horizon is
finite and demand is constant during discrete time periods. They minimized the
objective function to one variable and developed an algorithm to find the optimal
number of orders, which takes O(log n) time. Li (2009) modified Kovalev and Ng’s
(2008) method and presented a solution method which can determine the opti-
mal solution without need of such a search. Garćıa-Laguna et al. (2010) presented
methods to obtain the solutions of the EOQ and EPQ models when the lot sizes are
integer variables to be determined. The suggested approach allows obtaining a rule
to discriminate between the situations in which the optimal solution is unique and
when there are two solutions. The related analysis on classical EOQ model with
integer variable quantity problems have been performed by Bertazzi and Speranza
(2005), Lodree (2007), Ng et al. (2009), etc.
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We present an EOQ model for deteriorating inventory with cost changes over
a finite horizon and suggest an easy approach to solve the models with integer
operators. The remainder of this paper is organized as follows. In the next section,
we describe the notation and assumptions, which are used throughout this paper. In
Sec. 3, we describe the mathematical models and suggest properties and theorem to
determine the optimal ordering policy. Numerical examples are provided in Sec. 4
to support our proposed theorem. Conclusions are given in the last section.

2. Notation and Assumptions

In developing the inventory model to determine the optimal ordering policy, the
following notation and assumptions are used.

Notation:

�� : Integer operator, integer value equal to or greater than its argument
�� : Integer operator, integer value equal to or less than its argument
Q : Inventory level of the system
θ : Constant deterioration rate

D : Constant demand rate
Ai : Ordering cost per order in period i(i = 1, 2)
Pi : Per unit cost for items brought into stock in period i(i = 1, 2)
hi : Per unit per cycle holding cost rate for all items brought into stock

in period i(i = 1, 2)
T : Time of the last opportunity to purchase before some or all of the cost

parameters may change
H : Horizon length in type 1 and type 2 models
T ′ : Horizon length in type 3 model
ni : Number of o equal order sizes in the interval [0, T ) for type

i(i = 1, 2) model
K : Number of order size QK in type 3 model
Ts : Depletion time which corresponds to order size Qs in type 1 model
Te : Depletion time which corresponds to order size QK in type 3 model
te : Depletion time which corresponds to order size Qm in type 3 model

FS 1(Te) : Total cost of type 1 model
FS 2(Te) : Total cost of type 2 model
TC (Te) : Total cost of type 3 model

F1(n, m) : Average cost of type 1 model in Lev and Weiss (1990)
∗ : The superscript representing optimal value

Assumptions:

(1) The initial inventory is zero and that delivery is instantaneous.
(2) Shortages are not allowed.
(3) The demand rate is constant and deterministic.
(4) There is no constraint in space or capacity.
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(5) The time horizon length is finite.
(6) The holding cost is charged against the purchase price.

3. Mathematical Model

In this article, the mathematical models of the inventory problem with constant
deterioration rate and constant demand rate are discussed. In general, an inventory
level Q of the system with constant deterioration rate θ and constant demand rate
D at time t over period τ can be described by the following equation:

dQ(t)/dt + θQ(t) = −D 0 ≤ t ≤ τ (1)

The solution of the above equation with boundary condition Q(τ) = 0 is

Q(t) = D[exp θ(τ − t) − 1]/θ 0 ≤ t ≤ τ (2)

The initial inventory at t = 0 is

Q(0) = D[exp(θτ) − 1]/θ (3)

Ordering cost is A per order, purchasing price is P per unit and holding cost rate is
h per unit per cycle. The total cost during the cycle is composed of ordering cost,
purchasing cost and holding cost, that is

TC (τ) = A + PQ(0) + h

∫ τ

0

Q(t)dt (4)

TC (τ) = A + PD[exp(θτ) − 1]/θ + hD[exp(θτ) − θτ − 1]/θ2 (5)

For θτ � 1, using Taylor series approximation, exp(θτ) ≈ 1 + θτ + θ2τ2/2. The
approximate total inventory cost is

TC (τ) = A + PDτ + D(Pθ + h)τ2/2 (6)

The total finite time horizon H is partitioned into two periods. Period 1 is the
interval [0, T ] and period 2 is the interval (T, H ], where T is the time of the last
opportunity to purchase before some or all of the cost parameters may change. In
period 1, items for ordering cost is A1 per order, purchasing price is P1 per unit and
holding cost rate is h1 per unit per cycle. In period 2, items for ordering cost is A2

per order, purchasing price is P2 per unit and holding cost rate is h2 per unit per
cycle. Initial and final inventories are both zero. In order to describe the behavior of
optimal policy in the intervals [0, T ) and (T, H ], the following property investigates
the consecutive order cycles in the interval [0, T ) and (T, H ].

Property 1. The optimal policy for the consecutive order cycles are equal as orders
are placed in the intervals [0, T ) and (T, H ], respectively.

Proof of property 1 is given in the Appendix.
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time
T

t1 t1 Ts t2 t2

H

Q1

Qs

Q2

Inventory Level

m1 ordersn1 orders

Fig. 1. Inventory is depleted at time T (Type 1 model).

Depending on whether the inventory is depleted at time T or not, there are two
possible types of inventory models to be discussed. Type 1 model: the inventory is
depleted at time T , as shown in Fig. 1, where T is the time of the last opportunity
to purchase before some or all of the cost parameters may change. At time T , the
buyer takes a special order. Type 2 model: the inventory is not depleted at time T ,
as shown in Fig. 2. Because the inventory is not depleted at time T , there is no
chance to take a special order at time T .

From property 1, it implies that the optimal policy for the consecutive order
sizes are equal as orders are placed in the intervals [0, T ) and (T, H ], respec-
tively. For Type 1 model, the optimal policy is to place n1 equal order sizes
Q1 = D[exp(θT/n1) − 1]/θ in the interval [0, T ), then to place a special order
of size Qs = D[exp(θTs)− 1]/θ at time T and, finally, to place m1 equal order sizes
Q2 = D{exp[θ(H − T − Ts)/m1] − 1}/θ in the interval (T + Ts, H ]. For Type 2
model, the optimal policy is to place n2 equal order sizes Q3 = D[exp(θt3) − 1]/θ

before T and then m2 equal orders of size Q4 = D{exp[θ(H −nt3)/m2]−1}/θ after
T . The following property describes the optimal order number n1 in the interval
[0, T ) for Type 1 model.

time
T

t3 t3 t4 t4

H

Q3

Q4

Inventory Level

m2 ordersn2 orders

t4

Fig. 2. Inventory is not depleted at time T (Type 2 model).
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Property 2. There are n1 consecutive orders placed within the interval [0, T ), and
the inventory is zero at time T . Let

x = −1
2

+

√
1
4

+
(P1θ + h1)DT 2

2A1
(7)

If x is not an integer, the optimal order number n∗
1 for the minimum cost within the

interval [0, T ) is n∗
1 = �x�. Otherwise, both n∗

1 = �x� and n∗
1 = �x� + 1 are optimal

integer solutions of n1 consecutive orders.

Proof of property 2 is given in the Appendix.
For Type 2 model, the optimal order number n∗

2 for the minimum cost within
the interval [0, T ) is given by Theorem 2 proposed in Lev and Weiss (1990). That
is, n∗

2 = n∗
1 or n∗

2 = n∗
1 + 1. Type 2 model must satisfy the condition (n∗

2 − 1)t1 <

T < n∗
2t1.

Now we propose a general Type 3 model as shown in Fig. 3, which can be applied
to both Type 1 and Type 2 models. For Type 3 model, the finite horizon of length is
T ′, the optimal policy is to place K equal order sizes QK and place m equal order
sizes Qm in the interval [0, T ′] . Te is the depletion time which corresponds to order
size QK and te is the depletion time which corresponds to order size Qm.

Comparing Type 3 model with Type 1 model (We take K = 1, Te = Ts and
te = t2), the time during 0 and T ′ in Type 3 model is the same as the time during
T and H in Type 1 model. Comparing Type 3 model with Type 2 model (We take
K = n∗

2, Te = t3 and te = t4), the time during 0 and T ′ in Type 3 model is the
same as the time during 0 and H in Type 2 model. In the interval [0, KTe), items
for ordering cost is A1 per order, purchasing price is P1 per unit and holding cost
rate is h1 per unit per cycle. In the interval [KTe, T

′], items for ordering cost is A2

per order, purchasing price is P2 per unit and holding cost rate is h2 per unit per
cycle. If K is given, the total cost of Type 3 model is

TC (Te, m) = K[A1 + P1DTe + D(P1θ + h1)T 2
e /2] + mA2 + P2D(T ′ − KTe)

+ D(P2θ + h2)(T ′ − KTe)2/2m if m > 0 (8)

time

Te Te te te

T ′

QK

Qm

Inventory Level

m ordersK orders

Fig. 3. Graphical representation of the Type 3 model.
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TC (Te) = K[A1 + P1DTe + D(P1θ + h1)T 2
e /2] if m = 0 (9)

Let

y = −1
2

+

√
1
4

+
(p2θ + h2)D(T ′ − KTe)2

2A2
(10)

Because the inventory is zero at T ′, from property 2, the relation of Te and m is
m = �y� for y is not an integer number. Otherwise, m = �y� and m = �y�+ 1 for y

is an integer number. For m > 0, TC (Te, m) reduces to

TC (Te) = K[A1 + P1DTe +
1
2
D(P1θ + h1)T 2

e ] + P2D(T ′ − KTe)

+


−

1
2

+

√
1
4

+
(p2θ + h2)D(T ′ − KTe)2

2A2


A2

+
D(P2θ + h2)(T ′ − KTe)2

2�− 1
2 +

√
1
4 + (p2θ+h2)D(T ′−KTe)2

2A2
�

(11)

Since the time during 0 and T ′ in Type 3 model is the same as the time during T

and H in Type 1 model, applying Type 3 model to Type 1 model in the interval
[T, H ] and taking K = 1, the total cost FS1(Te) for Type 1 model in the interval
[0, H ] is

FS 1(Te) = n∗
1A1 + P1DT + D(P1θ + h1)T 2/2n∗

1 + TC (Te) (12)

Applying Type 3 model to Type 2 model, taking K = n∗
2, the total cost FS 2(Te) for

Type 2 model is

FS 2(Te) = TC (Te) (13)

Type 2 model must satisfy the condition (K−1)Te < T < KTe. Comparing FS 1(Te)
with FS 2(Te), we can decide the optimal ordering policy of the inventory system.
We propose some properties below that can help us find quickly the minimum value
of total cost TC (Te).

Property 3. TC (Te) is a continuous piecewise quadratic function of Te.

Proof of proposition 3 is given in the Appendix.

Property 4. m is a positive integer. In order to check the property of TC (Te), let

tm = [T ′ −
√

2A2[(m + 1/2)2 − 1/4]/D(P2θ + h2)]/K

S+(m) = 2A2(P1θ + h1)2m3 + 2A2(P1θ + h1)[2(P2θ + h2)K − (P1θ + h1)]m2

+ (P2θ + h2){2A2K[(P2θ + h2)K − 2(P1θ + h1)]

−D[(P1θ + h1)T ′ − K(P2 − P1)]2}m − 2A2(P2θ + h2)2K2 (14)
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S−(m) = 2A2(P1θ + h1)2m3 + 2A2(P1θ + h1)[2(P2θ + h2)K + (P1θ + h1)]m2

+ (P2θ + h2){2A2K[(P2θ + h2)K + 2(P1θ + h1)]

−D[(P1θ + h1)T ′ − K(P2 − P1)]2}m + 2A2(P2θ + h2)2K2 (15)

The intersection region of S+(m) < 0 and S−(m) > 0 is mR < m < mL.

(i) If m < �mR�, TC (Te) is an increasing function of Te within the interval
[tm, tm−1).

(ii) If m > �mL�, TC (Te) is a decreasing function of Te within the interval
[tm, tm−1).

(iii) If �mR� ≤ m ≤ �mL�, TC (Te) is a convex function of Te within the interval
[tm, tm−1).

Proof of proposition 4 is given in the Appendix.
Proposition 4 implies that TC (Te) has a local minimum value within the interval

[tm, tm−1) in the range �mR� ≤ m ≤ �mL�. From Eq. (A.6), let dTC (Te)/dTe = 0,
the local minimum value within the interval [tm, tm−1) for a given m is located at

Te(m) =
m(P2 − P1) + (P2θ + h2)T ′

m(P1θ + h1) + (P2θ + h2)K
(16)

Taking Te(m) into TC (Te), the minimum total cost of Type 3 model is

TM (m) =
−m(P1 − P2)2K + [2K(P1 − P2) + (P1θ + h1)T ′](P2θ + h2)T ′

[m(P1θ + h1) + K(P2θ + h2)]
D

2

+ P2DT ′ + KA1 + mA2 (17)

Now we propose Theorem 1 that can quickly and directly find the global mini-
mum total cost TC (Te) in Type 3 model.

Theorem 1. The minimum total cost of TC (Te) is TM (m), as shown in Eq. (17),
m is a non-negative integer. Te is the depletion time corresponds to order sizes QK ,

as shown in Eq. (16). S+(m) and S−(m) are defined in property 4. The intersection
region of S+(m) < 0 and S−(m) > 0 is mR < m < mL. Let

z = −
[
1
2

+
K(P2θ + h2)
(P1θ + h1)

]
+

√
1
4

+
D(P2θ + h2)[K(P2 − P1) − (P1θ + h1)T ′]2

2(P1θ + h1)2A2

When z is not an integer, taking m∗ = �z�. Otherwise, taking m∗ = �z� and
m∗ = �z�+ 1.

(i) If m∗ ≤ �mR�, the minimum value of TC (Te) can be founded by TM (�mR�),
and Te = Te(�mR�).

(ii) If m∗ ≥ �mL�, the minimum value of TC (Te) can be founded by TM (�mL�)
and Te = Te(�mL�).
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(iii) If �mR� < m∗ < �mL�, the minimum value of TC (Te) can be founded by
TM (m∗) and Te = Te(m∗).

Proof of Theorem 1 is given in the Appendix.
Theorem 1 reveals that: (1) If m∗ ≤ �mR�, the optimal policy for type 3 is to

place K equal order sizes QK and place �mR� equal order sizes Qm in the interval
[0, T ′]. The minimum total cost of TC (Te) is TM (�mR�) and the depletion time
corresponds to order sizes QK is Te(�mR�). (2) If m∗ ≥ �mL�, the optimal policy for
type 3 is to place K equal order sizes QK and place �mL� equal order sizes Qm in the
interval [0, T ′]. The minimum total cost of TC (Te) is TM (�mL�) and the depletion
time corresponds to order sizes QK is Te(�mL�). (3) If �mR� < m∗ < �mL�, the
optimal policy for type 3 is to place K equal order sizes QK and place m∗ equal
order sizes Qm in the interval [0, T ′]. The minimum total cost of TC (Te) is TM (m∗)
and the depletion time corresponds to order sizes QK is Te(m∗).

Applying Theorem 1 to Type 1 model, we take n∗
1 by property 2 and K = 1 ,

the total cost of Type 1 is

FS 1(Te) = n∗
1A1 + P1DT + D(P1θ + h1)T 2/2n∗

1 + TC (Te)

Applying Theorem 1 to Type 2 model, we take K = n∗
1 or K = n∗

1 + 1, the total
cost of Type 2 model is

FS 2(Te) = TC (Te)

Type 2 model must satisfy the condition (K−1)Te < T < KTe. Taking the minimum
total cost of the two type models, we can decide the optimal ordering policy of the
inventory system. If the deterioration rate θ = 0, this is the special case of Lev and
Weiss (1990) finite horizon model.

4. Numerical Examples

We use the same cost parameters of Lev and Weiss (1990) except θ = 0.001/year to
illustrate the properties and theorem we proposed: D = 120 units/year, A1 = A2 =
80/order, P1 = 100/unit, P2 = 101/unit, h1 = 12/unit/year, h2 = 13.2/unit/year,
T = 0.5 year, H varies from 1 to 3 years. Figures 4 and 5 show the diagram of
TC (Te) and TM (m) respectively when H equals to 1.5. From properties 4, the
intersection of S+(m) < 0 and S−(m) > 0 is 0.90 < m < 2.55. In Fig. 4, TC (Te)
is a convex function of Te in the range 0 ≤ m ≤ 1 and 1 ≤ m ≤ 2, and TC (Te)is a
decreasing function of Te when m > 2. In Fig. 5, owing to m∗ = 2, �mR� = 0 and
�mL� = 2, TM (m) decreases as integer m increases in the range �mR� ≤ m ≤ �mL�.
From theorem 1, we an get n∗

1 = 2, t1 = 0.25, m∗
1 = 2, Ts = 0.39 and total cost is

FS 1(Te) = 18810.8 for Type 1 model. Also we get n∗
2 = 2, t3 = 0.42, m∗

2 = 2, and
total cost is FS 2(Te) = 18815.0 for Type 2 model. Comparing Type 1 model with
Type 2 model, the optimal ordering policy is Type 1 model.

Table 1 shows the optimal ordering policy of Type 1 and Type 2 models for a
finite horizon that varies from 1 to 3 years. If we take θ = 0, there is no deterioration,
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Fig. 4. Diagram of TC (Te) when H = 1.5.

m

12600

12700

12800

12900

13000

TM (m)

0 1 2

Fig. 5. Diagram of TM (m) when H = 1.5.

this is the special case of Lev and Weiss (1990) finite horizon model. Considering
the average cost of their model, we modify some results of their Type 1 model in
Table 2. When the finite horizon of length H equals to 12, 18 and 21, the optimal
policy in decision-making is Type 1 model rather than Type 2 model.

Luo and Huang (2003) extend Lev and Weiss’s (1990) expressions of the opti-
mal order number. Applying our suggested Type 3 model and using the same cost
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Table 1. Total cost and optimal policy of Type 1 and Type 2 models for different
finite horizons.

D = 120 units/year, A1 = A2 = 80/order, P1 = 100/unit, Optimal
P2 = 101/unit, h1 = 12/unit/year, h2 = 13.2/unit/year, policy

T = 0.5 year, θ = 0.001/year

Type 1 policy Type 2 policy

H n∗
1 m∗

1 Ts FS1(Te) n∗
2 m∗

2 t3 FS2(Te)

1.0 2 0 0.5 12512.3 2 1 0.36 12519.3 1
13/12 2 1 0.33 13567.2 2 1 0.39 13564.7 2
1.5 2 2 0.39 18810.8 2 2 0.42 18815.0 1
2.0 2 3 0.44 25113.1 2 4 0.39 25120.1 1
2.5 2 5 0.40 31414.3 2 5 0.42 31419.4 1
3.0 2 6 0.43 37717.0 2 7 0.40 37723.3 1

Table 2. Average cost and optimal policy of Type 1 model in Lev and Weiss.

D = 10unit/month, A1 = A2 = 80/order,

P1 = 100/unit, P2 = 101/unit, h1 = 1/unit/month,
h2 = 1.01/unit/month, T = 6month

Lev and Weiss’s origin results Lev and Weiss’s modified results

H n m Ts F1(n, m) n m Ts F1(n, m)

12 2 1 3.51 1043.98 2 0 6 1042.50
17 2 1 6.02 1045.07 2 2 4.36 1044.87
18 2 1 6.52 1046.05 2 2 4.69 1044.89

21 2 2 5.69 1045.89 2 3 4.53 1045.80
25 2 3 5.53 1046.52 2 4 4.63 1046.46
29 2 4 5.43 1046.99 2 5 4.70 1046.95
33 2 5 5.36 1047.36 2 6 4.75 1047.33

Table 3. Comparing Luo and Huang’s result to our result.

D = 12units/year, H = 2.25 year, T = 0.25 year,
A1 = 10/order, A2 = 50/order, P1 = 2/unit,

P2 = 12/unit, h1 = 60/unit/year,
h2 = 600/unit/year, θ = 0

n m Ts FS1(Te)

Luo and Huang 2 6 1.31 1381.5
Our method 2 6 1.31 1381.5

parameters of Luo and Huang (2003), we obtain the same total cost and optimal
policy of Luo and Huang’s (2003) Type 1 model. The results are shown in Table 3.

5. Conclusion

This article deals with an approach to decide the optimal ordering policy for deteri-
orating inventory when some or all of the cost parameters may change over a finite
horizon. We propose a closed-form solution to solve this problem. Because there are
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integer operators in some inventory models which have several local minima, it is
hard to find closed form solution for those models. A distinguishing feature of the
proposed approach is that it can be applied to solve this kind of problem, especially,
in temporary price discount problem and discrete-time EOQ problem.

By using the proposed theorem, we can obtain the minimum solutions more
easily and simply than the algorithm proposed by Lev and Weiss (1990). We also
modify some results of their Type 1 model and correct some optimal ordering policies
in decision-making.

The further advanced research will extend the proposed method to handle the
EOQ inventory model with shortage is allowed, either the shortage cost is fixed
backorder cost or linear backorder cost.
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Appendix

Proof of Property 1. Considering the deteriorating inventory system, suppose
there are n consecutive orders placed in the interval [0, T ). Each order cycle is ti,
i = 1, 2, . . . , n.

∑n
i=1 ti = t, t may be smaller, equal or larger than T . The total cost

of these n orders is

TC(ti) = nA1 + P1D

n∑
i=1

ti + D(P1θ + h1)
n∑

i=1

t2i /2

then

TC(ti) = nA1 + P1Dt + D(P1θ + h1)
n∑

i=1

t2i /2 (A.1)

From Chaucy–Scharz inequality, TC(ti) has minimum value in the condition
ti = t/n. Hence, the optimal policy for the order cycles are equal of n consecutive
orders placed in [0, T ). The proof can be applied equally to the consecutive order
cycles in the interval (T, H ].

Proof of Property 2. In the interval [0, T ], items for ordering cost is A1 per
order, purchasing price is P1 per unit and holding cost rate is h1 per unit per cycle.
Because the inventory is zero at T , the total cost of these n1 orders is

TC(n1) = n1A1 + P1DT + D(P1θ + h1)T 2/2n1 (A.2)

Since TC(n1) is a convex function over the set of the positive integer numbers, by
TC(n1 +1)−TC(n1) ≥ 0, let x = −0.5+

√
0.25 + (P1θ + h1)DT 2/2A1, we get the

optimal lower solution

n∗
1 = �x� (A.3)

Similarly, by TC(n1 − 1) − TC(n1) ≥ 0, we get the optimal upper solution

n∗
1 = �x + 1� (A.4)
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If x is not an integer number, the unique optimal solution for the minimum cost
within the interval [0, T ) is n∗

1 = �x� = �x + 1�. Otherwise, there are two optimal
solutions n∗

1 = �x� and n∗
1 = �x� + 1.

Proof of Property 3. Let tm = [T ′ −√
2A2[(m + 1/2)2 − 1/4]/D(P2θ + h2)]/K,

m is a positive integer. For tm ≤ Te < tm−1

TC(Te) = [(P1θ + h1) + K(P2θ + h2)m]KDT 2
e /2

+ [P1 − P2 − (P2θ + h2)T ′/m]KDTe

+ P2DT ′ + KA1 + mA2 + D(P2θ + h2)T ′2/2m (A.5)

dTC(Te)/dTe = [(P1θ + h1) + K(P2θ + h2)m]KDTe

− [P2 − P1 + (P2θ + h2)T ′/m]KD (A.6)

d2TC(Te)/dT 2
e = [(P1θ + h1) + K(P2θ + h2)m]KD > 0 (A.7)

Hence, TC(Te) is a quadratic function of Te within the interval [tm, tm−1). In addi-
tion

lim
α→0+

TC(tm+α) = (P1θ + h1)DT ′2/2K + P1DT ′ + KA1 + (2m + 1)A2

+ (P1θ + h1)A2m(m + 1)/[(P2θ + h2)K]

+ [P2 − P1 − (P1θ + h1)T ′K]
√

2A2D/(P2θ + h2)
√

m(m + 1)

(A.8)

lim
β→0+

TC(tm−β) = (P1θ + h1)DT ′2/2K + P1DT ′ + KA1 + (2m + 1)A2

+ (P1θ + h1)A2m(m + 1)/[(P2θ + h2)K]

+ [P2 − P1 − (P1θ + h1)T ′K]
√

2A2D/(P2θ + h2)
√

m(m + 1)

(A.9)

lim
α→0+

TC(tm+α) = lim
β→0+

TC(tm−β)

Therefore, TC(Te) is a continuous piecewise quadratic function of Te.

Proof of Property 4. From Eqs (A.5)–(A.7), TC(Te) is a quadratic function of
Te within the interval [tm, tm−1). If

Te(m) =
m(P2 − P1) + (P2θ + h2)T ′

m(P1θ + h1) + (P2θ + h2)K
(A.10)
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then dTC(Te)/dTe = 0. For a given m, if dTC(Te)/dTe > 0, it would be Te > Te(m).
The necessary condition for dTC(Te)/dTe > 0 within the interval [tm, tm−1) is
Te(m) < tm−1. By calculating, m is found by S+(m) < 0. If dTC(Te)/dTe < 0, it
would be Te < Te(m). The necessary condition for dTC(Te)/dTe < 0 within the
interval [tm, tm−1) is tm < Te(m). By calculating, m is found by S−(m) > 0. The
intersection region of S+(m) < 0 and S−(m) > 0 is mR < m < mL. Because m is
a integer, we take �mR� ≤ m ≤ �mL�. We conclude as follows: (i) If m < �mR�,
TC(Te) has dTC(Te)/dTe > 0 property, also d2TC(Te)/dT 2

e > 0, it makes sense
that TC(Te) is an increasing function of Te within the interval [tm, tm−1). (ii) If m

> �mL�, TC(Te) has dTC(Te)/dTe < 0 property, also d2TC(Te)/dT 2
e > 0, it makes

sense that TC(Te) is a decreasing function of Te within the interval [tm, tm−1). (iii)
If �mR� ≤ m ≤ �mL�, from Eq (A.6) and Eq (A.7), dTC(Te)/dTe is a continuous
function and has dTC(Te)/dTe = 0 property, also d2TC(Te)/dT 2

e > 0, it makes
sense that TC(Te) is a convex function of Te within the interval [tm, tm−1).

Proof of Theorem 1. Considering m as a continuous variable, from Eq (17)

dTM (m)
dm

= − [K(P2 − P1) − (P1θ + h1)T ′]2D(P2θ + h2)
2[m(P1θ + h1) + K(P2θ + h2)]2

+ A2 (A.11)

d2TM (m)
dm2

=
[K(P2 − P1) − (P1θ + h1)T ′]2D(P2θ + h2)(P1θ + h1)

[m(P1θ + h1) + K(P2θ + h2)]3
> 0 (A.12)

It can be seen that TM (m) is a convex function of m. This implies that TM (m) has
minimum value. Since m is an integer number, using the same proof of property 2,
let

z = −
[
1
2

+
K(P2θ + h2)
(P1θ + h1)

]
+

√
1
4

+
D(P2θ + h2)[K(P2 − P1) − (P1θ + h1)T ′]2

2(P1θ + h1)2A2

(A.13)

For z is not an integer, taking m∗ = �z�. Otherwise, taking m∗ = �z� and m∗ =
�z� + 1.

(i) If m∗ ≤ �mR�, owing TM (m − 1) ≤ TM (m) in the condition m ≥ m∗,
TM (m) increases as integer m increases in the range �mR� ≤ m ≤ �mL�. Hence,
TM (�mR�) is the minimum value of TM (m) in the range �mR� ≤ m ≤ �mL�.
(ii) If m∗ ≥ �mL�, owing TM (m − 1) ≥ TM (m) in the condition m ≤ m∗,
TM (m) decreases as integer m increases in the range �mR� ≤ m ≤ �mL�. Hence,
TM (�mL�) is the minimum value of TM (m) in the range �mR� ≤ m ≤ �mL�. (iii) If
�mR� < m∗ < �mL�, owing TM (m − 1) ≥ TM (m) in the condition m ≤ m∗ and
TM (m− 1) ≤ TM (m) in the condition m ≥ m∗, TM (m∗) is the minimum value of
TM (m) in the range �mR� ≤ m ≤ �mL�.
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