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In this paper, we establish an economic production quantity model for a manufacturer (or wholesaler)
with defective items when its supplier offers an up-stream trade credit M while it in turn provides its
buyers (or retailers) a down-stream trade credit N. The proposed model is in a general framework that
includes numerous previous models as special cases. In contrast to the traditional differential calculus
approach, we use a simple-to-understand and easy-to-apply arithmetic–geometric inequality method
to find the optimal solution. Furthermore, we provide some theoretical results to characterize the optimal
solution. Finally, several numerical examples are presented to illustrate the proposed model and the opti-
mal solution.
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1. Introduction

In the classical inventory economic order quantity (EOQ) model,
it is implicitly assumed that a buyer must pay for the purchased
items immediately upon receiving the items. However, in practice,
a seller frequently offers his/her buyers a delay of payment for set-
tling the amount owed to him/her. Usually, there is no interest
charge if the outstanding amount is paid within the permissible
delay period. However, if the payment is not paid in full by the
end of the permissible delay period, then interest is charged on
the outstanding amount. The permissible delay in payment pro-
duces two benefits to the seller: (1) it attracts new buyers who
may consider it to be a type of price reduction, and (2) it may be
applied as an alternative to price discount because it does not pro-
voke competitors to reduce their prices and thus introduce lasting
price reductions. On the other hand, the policy of granting credit
terms adds an additional dimension of default risk to the seller be-
cause the longer the permissible delay, the higher the default risk.

During the past two decades, many researchers have studied
various inventory models with trade credit financing. Goyal
(1985) was the first proponent for developing an economic order
quantity (EOQ) model under the conditions of permissible delay
in payments. Aggarwal and Jaggi (1995) extended Goyal’s model
to allow for deteriorating items. Then Jamal, Sarker, and Wang
(1997) further generalized Aggarwal and Jaggi’s model to allow
for shortages. Teng (2002) amended Goyal’s model by incorporat-
ing the fact that unit price is significantly higher than unit cost.
Huang (2003) extended Goyal’s model to a supply chain in which
the supplier offers the wholesaler the permissible delay period M
(i.e., the upstream trade credit), and the wholesaler in turn pro-
vides the trade credit period N (with N < M) to its retailers (i.e.,
the downstream trade credit). Teng and Goyal (2007) amended
Huang’s model by complementing his shortcomings. Liao (2008)
extended Huang’s model to analyze the impact of the two-level
trade credit financing on an economic production quantity (EPQ)
model for deteriorating items. Soni and Shah (2008) presented an
inventory model with a stock-dependent demand under progres-
sive payment scheme. Teng (2009a) established optimal ordering
policies for a retailer who offers distinct trade credits to its good
and bad credit customers. Teng and Chang (2009) developed opti-
mal manufacturer’s replenishment policies under two levels of
trade credit financing. Kreng and Tan (2010) studied optimal
replenishment decisions under two-level trade credit policy
depending on the order quantity. Teng, Krommyda, Skouri, and
Lou (2011) extended the model by Soni and Shah (2008) to allow
for: a nonzero ending-inventory, a profit-maximization objective,
a limited warehouse’s capacity and deteriorating items. Many re-
lated articles can be found in Chang, Teng, and Goyal (2008),
Chang, Teng, and Chern (2010), Goyal, Teng, and Chang (2007),
Huang (2004, 2007), Huang and Hsu (2008), Ouyang, Chang, and
Shum (2012), Shinn and Hwang (2003), Skouri, Konstantaras,
Papachristos, and Teng (2011), Yang, Ouyang, Wu, and Yen
(2011), Yang, Pan, Ouyang, and Teng (2012), and their references.

Recently, Kreng and Tan (2011) proposed the optimal replenish-
ment decisions to the manufacturer (or wholesaler) with finite
replenishment rate and imperfect product quality in a supply
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chain, in which the manufacturer receives an up-stream trade
credit M from its supplier while provides its retailers a down-
stream trade credit N with N < M. They then developed four theo-
retical results. However, they ignored the fact that the manufac-
turer offers his/her retailers a permissible delay period N, and,
hence, the manufacturer receives sales revenue from N to T + N,
not from 0 to T as shown in their model. In this paper, we not only
extend their EPQ model to complement the above mentioned
shortcomings but also relax some dispensable assumptions of
N < M and others. In our view the permissible delay period N of-
fered by the manufacturer is independent of the permissible delay
period M offered by the supplier. The manufacturer must choose an
appropriate value of N based on the prevalent market conditions.
In many situations manufacturers may be forced to offer a permis-
sible delay period to their retailers while receiving no permissible
delay period (M = 0) from their suppliers. As a result, the proposed
model here is in a general framework that includes numerous pre-
vious models such as Goyal (1985), Teng (2002), Huang (2003),
Teng and Goyal (2007), Liao (2008), Chang, Teng, and Chern
(2010), and Kreng and Tan (2011) as special cases.

The rest of this paper is organized as follows. In Section 2, we
first define the assumptions and notation used throughout the en-
tire paper, and then establish the manufacturer annual total profit
in a supply chain with both up-stream and down-stream trade
credits. To maximize the annual total profit for the manufacturer,
we use a simple-to-understand and easy-to-apply arithmetic–
geometric inequality method to obtain the optimal solution,
instead of the traditional differential calculus approach in Section 3.
Furthermore, some theoretical results are established to obtain the
optimal solution. In Section 4, several numerical examples are pro-
vided to illustrate the theoretical results and managerial insights.
Finally, the conclusions and suggestions for the future research
are given in Section 5.

2. Mathematical formulation

For simplicity, we use the following notation and assumptions
throughout the entire paper. Then we establish the mathematical
model.

2.1. Notation
D
 the demand rate per year

P
 the production rate per year, P P D

A
 the ordering (or set-up) cost per order (lot)

q
 1� D

P P 0, the fraction of no production

c
 the unit purchasing price

d
 the screening cost per unit

p
 the percentage of defective items (which consists of

imperfect items and scrap items) in a lot

q
 the percentage of scrap items in defective items

T
 the replenishment cycle time in years

Q
 the production lot size in units per cycle, which is DT/

(1 � p) because Q � pQ = DT

s
 the unit selling price of good items, s P c

v
 the unit price of imperfect items, v < c

cs
 the unit disposal cost for scrap items

h
 the unit stock holding cost per item per year excluding

interest charges

Ie
 the interest earned per dollar per year

Ik
 the interest charged per dollar in stocks per year by

the supplier

M
 the manufacturer’s trade credit period offered by a
supplier in years

N
 the customer’s trade credit period offered by a

manufacturer in years

TP(T)
 the annual total profit, which is a function of T

T⁄
 the optimal replenishment cycle time of TP(T)

TP(T⁄)
 the optimal annual total profit.
2.2. Assumptions

1. The manufacturer’s annual production rate P is higher than
the annual demand rate D, which is known and constant.
In order to satisfy the demand, it is necessary to assume that
(1 � p)P > D (i.e., p < 1 � D/P = q).

2. In today’s time-based competition, we may assume without
loss of generality (WLOG) that shortages are not allowed.

3. During the credit period M, the manufacturer’s sales revenue
is deposited in an interest bearing account with the rate of Ie.
At the end of the supplier’s permissible delay M, the manu-
facturer keeps the profit from sales revenue, pays the rest
to the supplier, and starts paying for the interest charges
on the unpaid balance to the supplier with the rate of Ik.

4. Under modern automatic screening machines and electronic
control systems, we may assume WLOG that a 100% screen-
ing process is sufficiently quick to inspect all items such that
items are inspected faster than produced. In short, the pro-
duction period and the screening process are expected to
end simultaneously.

5. Each production lot Q has defective rate of p. Those pQ defec-
tive items in each cycle comprise (1 � q) pQ imperfect (or re-
workable) items and q pQ scrap (or unworkable) items. The
scrap items must be removed from inventory at the end of
the screening process at a disposal cost cs per unit. Re-work-
able items are sold in a single batch at a discount price v per
unit at the end of the cycle.

6. Time horizon is infinite.

Now, we are ready to establish the EPQ model with defective
items under a supply chain with up-stream and down-stream
trade credits.

2.3. The mathematical model

The manufacturer’s annual total profit consists of the following
elements:

1. Procurement cost per year = AþcQ
T ¼ A

T þ cD
1�p,

2. Screening cost per year = dQ
T ¼ dD

1�p,

3. Disposal cost per year = csqpQ
T ¼ csqp D

1�p,

4. Holding cost per year ¼ h
T ðP�DÞ Q2

2P2þ ðP�DÞQP�qpQþð1�qÞpQ
� �n

T � Q
P

� ��
2g ¼ hD2T

2ð1�pÞ2
q
P þ q� pqþ ð1� qÞp½ � 1�p

D � 1
P

� �� �
� kDT;

5. Revenue received from good items per year = sD, and
6. Revenue received from repaired items per year = vð1�qÞpQ

T ¼
vð1�qÞpD

1�p .

Since p < 1� D=P ¼ q from Assumption 1, we know that the
constant k ¼ hD

2ð1�pÞ2
q
P þ ½q� pqþ ð1� qÞp� 1�p

D � 1
P

� �� �
is positive.

In addition, the manufacturer’s interests payable and charged
are derived as follows. According to the values of N and M, there
are two possible cases: (1) N < M, and (2) N P M. Let us discuss
the case in which N < M first, and then the other case.
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2.3.1. Case 1: N < M
The manufacturer buys all parts at time zero and must pay the

purchasing cost at time M. Based on the values of M (i.e., the time
at which the manufacturer must pay the supplier to avoid interest
charge) and T + N (i.e., the time at which the manufacturer receives
the payment from the last customer), the manufacturer has only
two possible sub-cases to compute the capital opportunity costs.
If T þ N P M, then the manufacturer cannot receive the last pay-
ment by M, and thus must finance all items sold after M � N (i.e.,
the manufacturer receives those payments after M, and finances
them at time M). On the other hand, if T þ N < M, then the manu-
facturer can receive all payments by M, and thus there is no inter-
est charged involved. However, Kreng and Tan (2011) ignored the
fact that the manufacturer receives revenue from N to T + N, not
from 0 to T. Consequently, they misclassified the interests payable
and earned into the following four cases: (1) T 6 N 6 M, (2)
N 6 T 6 M, (3) N 6 M 6 T 6 PMð1� pÞ=D, and (4) N 6 M 6
PMð1� pÞ=D 6 T . Now, let us use proper classification to discuss
the detailed formulation in each sub-case.

2.3.2. Sub-case 1-1: M 6 T + N
In this sub-case, the manufacturer pays off all units sold by

M � N at time M, keeps the profits, and starts paying for the inter-
est payable on the items sold after M � N. The graphical represen-
tation of this sub-case is shown in Fig. 1. However, the
manufacturer cannot payoff the supplier by M because its supplier
credit period M is shorter than its customer last payment time
T + N. Hence, the manufacturer must finance all items sold after
time M � N at an interest charged Ik per dollar per year. The man-
ufacturer makes DT good items and pQ defective items per cycle.
Based on Assumption 5, we get the interest payable on pQ defective
items from time M through T per cycle is

cIkðpQÞðT �MÞ ¼ cIkp DT
1�p ðT �MÞ if T � M;

0 if T < M:

"
ð1Þ

The interest payable on DT good items per cycle is cIk multiplied by
the area of the triangle EBC as shown in Fig. 1 given by

cIk
DðT þ N �MÞ2

2

" #
: ð2Þ

Therefore, if M 6 T þ N then the interest payable per cycle is

cIkD p
1�p TðT �MÞ þ ðTþN�MÞ2

2

h i
if T P M;

cIkD ðTþN�MÞ2
2 if T < M:

2
4 ð3Þ

Notice that Kreng and Tan (2011) did not recognize that the last
customer buys good items at time T, and pays the manufacturer
0      

Cumulative revenue for good items 

Interest payable 

Interest earned 

N M                              T T+N

E B

C

Fig. 1. M 6 T þ N.
at time T + N due to its customer trade credit period N. Conse-
quently, they obtained the inappropriate interest payable per cycle
as

cIk
DðT �MÞ2

2

" #
;

and

cIk ðP � DÞ Q 2

2P2 þ ðP � DÞQ
P
� qpQ þ ð1� qÞpQ

	 

T � Q

P

� �,
2

(

� ðP � DÞM2=2

)
; ð4Þ

which are different from (3).
On the other hand, the manufacturer starts selling good items at

time 0, but getting the money at time N. Consequently, the manu-
facturer accumulates revenue in an account that earns Ie per dollar
per year starting from N through M. Therefore, the interest earned
on good items per cycle is sIe multiplied by the area of the triangle
NME as shown in Fig. 1. In addition, if T < M, then imperfect
ð1� qÞpQ items is sold at T and earned interest from time T
through M. Hence, the interest earned per cycle is given by

sIeD ðM�NÞ2
2 if T P M;

sIeD ðM�NÞ2
2 þ vIeð1� qÞpQðM � TÞ if T < M:

2
4 ð5Þ

Notice that Kreng and Tan (2011) ignored the fact that the manufac-
turer starts getting the revenue at time N, not at time 0 as shown in
their model. As a result, they obtained the following inappropriate
interest earned as

sIeDðM2�N2Þ
2 if T � M;

sIeDð2MT�T2�N2Þ
2 þ vIeð1� qÞpQðM � TÞ if T < M:

2
4 ð6Þ

Dividing (3) and (5) by T, and simplifying terms, we yield the annual
total profit for the manufacturer as

TP1�1aðTÞ ¼ sþ vð1� qÞp� ðc þ dþ csqpÞ
1� p

þ cIk
M

1� p
� N

� �	 

D

� kþ cIk
p

1� p
þ 1

2

� �	 

DT

� 2A� ðsIe � cIkÞDðM � NÞ2

2T
if T � M: ð7Þ

TP1�1bðTÞ ¼ sþ vð1� qÞp� ðc þ dþ csqpÞ
1� p

þ cIkðM � NÞ
	

þ vIeð1� qÞM p
1� p



D� kþ cIk

2
þ vIeð1� qÞ p

1� p

	 


� DT � 2A� ðsIe � cIkÞDðM � NÞ2

2T
if T < M: ð8Þ
2.3.3. Sub-case 1-2:M > T + N
In this sub-case, the manufacturer receives the total revenue at

time T + N, and is able to pay the supplier the total purchase cost at
time M. Since the customer last payment time T + N is shorter than
the supplier credit period M, the manufacturer faces no interest
charged. The interest earned on imperfect ð1� qÞpQ items from
time T through M is vIeð1� qÞpQðM � TÞ per cycle. However, the
interest earned on DT good items per cycle is sIe multiplied by
the area of the trapezoid on the interval [N,M] as shown in
Fig. 2.. As a result, the interest earned per year is given by

vIe

T
ð1� qÞpQðM � TÞ þ sIe

T
DT2

2
þ DTðM � T � NÞ

" #
: ð9Þ
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Interest earned 

Interest earned 

N T T+N M

EC

Fig. 2. M > T þ N.
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Using (9) and simplifying terms, we obtain the annual total profit
for the manufacturer as

TP1�2ðTÞ¼ sþvð1�qÞp�ðcþdþ csqpÞ
1�p

þ sIeðM�NÞþvIeð1�qÞM p
1�p

	 

D

� kþ sIe

2
þvIeð1�qÞ p

1�p

	 

DT�A

T
:

ð10Þ
2.3.4. Case 2: N P M
In this case, the customer’s trade credit period N is equal to or

larger than the supplier credit period M. Consequently, there is
no interest earned on DT good items. In addition, the manufacturer
must finance all DT good items at time M at an interest charged Ik

per dollar per year, and start to payoff the loan after time N. Hence,
the interest payable on good items per cycle is cIk multiplied by the
area of the trapezoid on the interval [M,T + N], as shown in Fig. 3.
Therefore, the interest payable on DT good items per year is given
by

cIk

T
ðN �MÞDT þ DT2

2

" #
: ð11Þ

The interest payable on pQ defective items per cycle is the same
as in (1). Therefore, if N P M then the interest payable per year is

cIkD p
1�p ðT �MÞ þ ðN �MÞ þ T

2

h i
if T � M;

cIkDðN �M þ T
2Þ if T < M:

2
4 ð12Þ

However, if T < M, then imperfect ð1� qÞpQ items is sold at T
and starts to earn interest from time T through M. Hence, the inter-
est earned on imperfect items per year is given by
Cumulative revenue for good items 

Interest payable

Interest payable            

M N T T+N

D A

Fig. 3. N P M.
0 if T � M;

vIeð1� qÞpQðM � TÞ=T if T < M:

	
ð13Þ

Therefore, we obtain the annual total profit for the manufacturer as

TP2aðTÞ ¼ sþ vð1� qÞp� ðc þ dþ csqpÞ
1� p

þ cIk
M

1� p
� N

� �	 

D

� kþ cIk
p

1� p
þ 1

2

� �	 

DT � A

T
if T � M: ð14Þ

TP2bðTÞ¼ sþvð1�qÞp�ðcþdþcsqpÞ
1�p

þcIkðM�NÞþvIeð1�qÞM p
1�p

	 

D

� kþcIk

2
þvIeð1�qÞ p

1�p

	 

DT�A

T
if T<M: ð15Þ
3. Optimal solution

For simplicity, we apply an arithmetic–geometric inequality
method to obtain the optimal solution, such as in Cárdenas-Barrón
(2011) and Teng (2009b). As we know, the arithmetic mean is al-
ways greater than or equal to the geometric mean. In short, for
any two real positive numbers, say a and b, we have

aþ b
2
�

ffiffiffiffiffiffi
ab
p

: ð16Þ

The equation holds only if a ¼ b. For Sub-case 1-1a: M 6 T þ N and
M 6 T , to maximize TP1�1aðTÞ in (7) is equivalent to minimize

kþ cIk
p

1�pþ 1
2

� �h i
DT þ 2A�ðsIe�cIkÞDðM�NÞ2

2T .

If 2A� ðsIe � cIpÞDðM � NÞ2 6 0, then it is obvious that T�1�1a ¼ 0
and TP1�1aðT�1�1aÞ ¼ 0. On the other hand, if 2A� ðsIe � cIpÞ
DðM � NÞ2 > 0, and kþ cIk

p
1�pþ 1

2

� �h i
DT ¼ 2A�ðsIe�cIkÞDðM�NÞ2

2T > 0,

then by applying the above mentioned arithmetic–geometric
inequality in (16), we know that the optimal replenishment cycle
time is

T�1�1a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A� ðsIe � cIkÞDðM � NÞ2

2D kþ cIk
p

1�pþ 1
2

� �h i
vuut ; ð17Þ

and the optimal annual total profit is

TP1�1aðT�1�1aÞ¼ sþvð1�qÞp�ðcþdþ csqpÞ
1�p

þ cIk
M

1�p
�N

� �	 

D

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D kþcIk

p
1�p

þ1
2

� �	 

2A�ðsIe� cIkÞDðM�NÞ2
h is

: ð18Þ

For Sub-case 1-1b: M 6 T þ N and M > T , by using the similar argu-
ment, we obtain the optimal replenishment cycle time as follows. If
2A� ðsIe � cIpÞD ðM � NÞ2 6 0, then T�1�1b ¼ 0 and TP1�1bðT�1�1b) = 0. If
2A� ðsIe � cIpÞDðM � NÞ2 > 0, then

T�1�1b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A� ðsIe � cIkÞDðM � NÞ2

2D kþ cIk
2 þ vIeð1� qÞ p

1�p

h i
vuut ; ð19Þ

and the optimal annual total profit as

TP1�1bðT�1�1bÞ¼ sþvð1�qÞp�ðcþdþcsqpÞ
1�p

þcIkðM�NÞþvIeð1�qÞM p
1�p

	 

D

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D kþcIk

2
þvIeð1�qÞ p

1�p

	 

2A�ðsIe�cIkÞDðM�NÞ2
h is

:

ð20Þ

Likewise, for Sub-case 1-2: M > T þ N, we get the optimal replen-
ishment cycle time as

T�1�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A
kþ sIe

2 þ vIeð1� qÞ p
1�p

s
; ð21Þ
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and the optimal annual total profit as

TP1�2ðT�1�2Þ¼ sþvð1�qÞp�ðcþdþcsqpÞ
1�p

þsIeðM�NÞþvIeð1�qÞM p
1�p

	 

D

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AD kþsIe

2
þvIeð1�qÞ p

1�p

	 
s
: ð22Þ

For Case 2a: N P M and T P M, we know that the optimal replen-
ishment cycle time is

T�2a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A

D kþ cIk
p

1�pþ 1
2

� �h i
vuut ð23Þ

and the optimal annual total profit is

TP2aðT�2aÞ ¼ sþ vð1� qÞp� ðc þ dþ csqpÞ
1� p

þ cIk
M

1� p
� N

� �	 

D

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AD kþ cIk

p
1� p

þ 1
2

� �	 
s
:

ð24Þ

Similarly, for Case 2b: N P M and T < M, the optimal replenish-
ment cycle time is

T�2b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A

D kþ cIk
2 þ vIeð1� qÞ p

1�p

h i
vuut ; ð25Þ

and the optimal annual total profit is

TP2bðT�2bÞ¼ sþvð1�qÞp�ðcþdþcsqpÞ
1�p

�cIkðN�MÞþvIeð1�qÞM p
1�p

	 

D

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AD kþcIk

2
þvIeð1�qÞ p

1�p

	 
s
:

ð26Þ

For simplicity, let

D ¼ A� kþ sIe

2
þ vIeð1� qÞ p

1� p

	 

DðM � NÞ2: ð27Þ

Thus, we have the following theoretical results.

Theorem 1. For N 6 M, we obtain:

1. If D P 0, then the optimal replenishment cycle time is either T�1�1a

as in (17) or T�1�1b as in (19).
2. If D < 0, then the optimal replenishment cycle time is either T�1�1a

as in (17) or T�1�2 as in (21).
Proof. For N 6 M, there are 3 possible distinct cases: (Case 1-1a)
M 6 T þ N and M 6 T, (Case 1-1b) M 6 T þ N and M > T, and (Case
1.2) M > T + N. Since M 6 T�1�1b þ N in Case 1-1b, we know from
(19) that if and only if

T�1�1b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A� ðsIe � cIkÞDðM � NÞ2

2D kþ cIk
2 þ vIeð1� qÞ p

1�p

h i
vuut P M � N;

then

D ¼ A� kþ sIe

2
þ vIeð1� qÞ p

1� p

	 

DðM � NÞ2 � 0: ð28Þ

Similarly, since M > T�1�2 þ N in Case 1.2, we know from (21) that if
and only if

T�1�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A
kþ sIe

2 þ vIeð1� qÞ p
1�p

s
< M � N
,then

D ¼ A� kþ sIe

2
þ vIeð1� qÞ p

1� p

	 

DðM � NÞ2 < 0: ð29Þ

The proof immediately follows by (28) and (29).
4. Numerical examples

To illustrate the above results, we provide the following numer-
ical examples.

Example 1. Let D = 1000 unit/year, P = 2000 unit/year, A = $100/
order, c = $20/unit, d = $1/unit, v = $10/unit, s = $60/unit,
cs = $5/unit, h = $5/unit/year, Ik = 0.05/year, Ie = 0.01/year, p = 0.1,
q = 0.5, M = 0.25 year, and N = 0.1 year. Since M = 0.25 > N = 0.1, we
have three possible solutions. We first calculate k ¼ hD

2ð1�pÞ2

q
P þ q� pqþ ð1� qÞp½ � 1�p

D � 1
P

� �n o
� 1:39; and then find T�1�1a in

(17), T�1�1b in (19), and T�1�2 in (21) separately as follows:

T�1�1a � 0:2286 satisfies M 6 T�1�1a þ N, but violates T�1�1a > M,
T�1�1b � 0:2349 satisfies M 6 T�1�1b þ N and T�1�1b < M, and
T�1�2 � 7:6822 violates M > T�1�2 þ N, respectively.

Consequently, the optimal replenishment time is
T�1�1b � 0:2349, and the optimal annual total profit from (8), (20)
is TP1�1bðT�1�1bÞ ¼ 36;626:40. To validate the correctness of Theo-
rem 1, we check

D ¼ A� kþ sIe

2
þ vIeð1� qÞ p

1� p

	 

D ðM � NÞ2 ¼ 100� 38:1250

¼ 61:8750 > 0;

which satisfies the condition in Part 1 of Theorem 1. The optimal
solution is the same as that stated in Part 1 of Theorem 1. Hence,
Theorem 1 is true in this example.
Example 2. For simplicity, we use the same data as in Example 1
except M = 0.2 years. Substituting k � 1:39 and the values of corre-
sponding parameters into (17), (19), and (21), we have the follow-
ing results:

T�1�1a � 0:2258 satisfies M 6 T�1�1a þ N and T�1�1a > M,
T�1�1b � 0:2320 satisfies M 6 T�1�1b þ N, but violates T�1�1b < M,
and
T�1�2 � 7:6822 violates M > T�1�2 þ N, respectively.

Consequently, the optimal replenishment time is
T�1�1a � 0:2258, and the optimal annual total profit from (7), (18)
is TP1�1bðT�1�1bÞ ¼ 36;591:97.
Example 3. For convenience, we use the same data as in Example
1 except M = 0.1 year, and N = 0.2 year. In this example, N = 0.2 >
M = 0.1. There are two possible cases as shown in (23) and (25).
Substituting k � 1:39 and the corresponding values of the parame-
ters into (23) and (25), we get the following results:

T�2a � 0:2235 satisfies T�2a > M, and
T�2b � 0:2297 violates T�2b < M, respectively.

Therefore, the optimal replenishment time is T�2a � 0:2235.



Table 1
Sensitivity analysis on parameters.

Parameter T⁄ TP (T⁄)

p = 0.1 0.2349 36,626.40
p = 0.2 0.2244 34,039.00
p = 0.3 0.2128 30,713.50
q = 0.5 0.2349 36,626.40
q = 0.4 0.2333 36,790.40
q = 0.3 0.2317 36,954.50
v = 10 0.2349 36,626.40
v = 14 0.3654 36,848.90
v = 18 0.5216 37,071.40
cs = 5 0.2349 36,626.40
cs = 7 0.2349 36,515.20
cs = 9 0.2349 36,404.10

1130 K.-R. Lou, L. Wang / Computers & Industrial Engineering 66 (2013) 1125–1130
Example 4. Using the same data as those in Example 1, we study
the sensitivity analysis on the optimal solution with respect to p, q,
v, and cs in appropriate unit. The computational results are shown
in Table 1.

The sensitivity analysis reveals that: (1) a higher value of p causes
lower values of T⁄, and TP(T⁄), (2) a higher value of q causes higher
values of T⁄ while a lower value of TP(T⁄), (3) a higher value of v
causes slightly lower values of T⁄, but a higher value of TP(T⁄), and
(4) a higher value of cs causes a lower value of TP(T⁄), meanwhile
T⁄ remains unchanged.

5. Conclusion

In this paper, we have proposed an EPQ model with up-stream
and down-stream trade credits in a general framework that in-
cludes numerous previous models such as Goyal (1985), Teng
(2002), Huang (2003), Teng and Goyal (2007), Liao (2008), Chang
et al. (2010), and Kreng and Tan (2011) as special cases. In order
to obtain the explicit closed-form solution without using tradi-
tional differential calculus, we have used a simple arithmetic–geo-
metric inequality method to obtain the optimal solution for the
manufacturer. In addition, we have established some theoretical
results to characterize the optimal solution. Finally, we have pro-
vided several numerical examples to illustrate the proposed model
and its optimal solution.

The research presented in this paper can be extended in several
ways. For instance, we may generalize the constant demand rate to
any non-decreasing demand rate. Also, we could extend the model
to allow for shortages. Finally, we can consider the effect of infla-
tion rates on the economic order quantity.
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