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Abstract: In the past few years, with the development of information technology and the focus
on information security, many studies have gradually been aimed at data hiding technology. The
embedding and extraction algorithms are mainly used by the technology to hide the data that requires
secret transmission into a multimedia carrier so that the data transmission cannot be realized to
achieve secure communication. Among them, reversible data hiding (RDH) is a technology for the
applications that demand the secret data extraction as well as the original carrier recovery without
distortion, such as remote medical diagnosis or military secret transmission. In this work, we
hypothesize that the RDH performance can be enhanced by a more accurate pixel value predictor. We
propose a new RDH scheme of prediction-error expansion (PEE) based on a multilayer perceptron,
which is an extensively used artificial neural network in plenty of applications. The scheme utilizes
the correlation between image pixel values and their adjacent pixels to obtain a well-trained multilayer
perceptron so that we are capable of achieving more accurate pixel prediction results. Our data
mapping method based on the three-dimensional prediction-error histogram modification uses all
eight octants in the three-dimensional space for secret data embedding. The experimental results of
our RDH scheme show that the embedding capacity greatly increases and the image quality is still
well maintained.

Keywords: reversible data hiding; three-dimensional prediction-error histogram modification; multi-
layer perceptron

1. Introduction
1.1. Background

With the rapid development of information technology, the internet has been ubiqui-
tous in the world. Thanks to the development of optical communication systems (see [1] for
more discussions), people can easily communicate with each other and share multimedia
messages, including texts, sound, images, videos, etc. Obviously, the internet provides
much more impact on human society than any other medium, while at the same time,
issues regarding information security have received considerable and critical attention.

Data hiding is an available technique to deal with secure communication so that the
secure data is imperceptibly embedded without drawing attention [2]. The multimedia
is used as a cover carrier to hide secret data which will be transmitted in the internet.
Reversible data hiding (RDH) not only guarantees the safe transmission of data content
but also recovers the hidden data as well as the cover images [3,4]. However, most of these
RDH algorithms bring permanent distortions to the original carrier during the embedding
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process, and these distortions are unacceptable in certain applications [5]. In order to
achieve information hiding and distortion-free recovery of the original carrier, distortion-
free reversible data hiding is considered [4]. This technique enables the receiver to both
extract the embedded data correctly and acquire the original carrier without distortion.
Generally, RDH is a fragile hiding technology, which is different from digital watermarking.
When implementing the RDH mothod, the distortion that occurs during the transmission
of the carrier should be avoided. According to the embedding method, the existing image
RDH algorithm can be divided into spatial domain, transform domain, and encryption
domain RDH scheme [6]. In this paper, we focus on RDH of spatial domain. Its embedding
and extraction frameworks are shown in Figure 1. In the embedding side, the sender
embeds secret data into the cover image by a reversible embedding algorithm. In the
extraction side, the receiver extracts the secret data embedded in the stego-image by a
reversible extraction algorithm and achieves distortion-free recovery image exactly the
same as the original image. The performance of RDH algorithm depends on two conflicting
factors as trade-offs: the embedding distortion between the cover image and the stego-
image and the embedding capacity (EC). For the former factor, PSNR (peak-to-noise-ratio)
is widely used (refer to [7] for more discussion). A higher PSNR value means that the
stego-image is more similar to the original one. For the latter factor, EC stands for the
number of bits which can be embedded into the cover image. Therefore, we favor an RDH
algorithm which brings higher EC and lower PSNR, while a trade-off of them is usually
considered to fit specific applications [6].

Figure 1. The embedding and extraction frameworks of the spatial domain RDH.

1.2. Prediction-Error Expansion

In this subsection, we introduce the RDH paradigm we mainly follow: the prediction-
error expansion (PEE) approach, which was first proposed by Thodi and Rodriguez [8]. PEE
is a kind of histogram-shifting technique for which histograms of the feature elements (e.g.,
pixel values, errors between cover pixel values and their predicted values) are shifted to
prepare vacant positions for embedding the secret bits. Since the most frequent feature
elements determines the EC, and moreover, peaks of the prediction-error histograms usually
center at zero, PEE has the advantage over the other histogram-shifting techniques in the
spatial domain, especially for the cover image with flat pixel value histogram [9].

PEE can exploit spatial redundancy in the image. The correlation of local neighborhood
of each pixel is taken into consideration. Following a certain order of scanning the original
image, a predictor is used to make prediction of each pixel. Denote by x̂ the predicted
value of a pixel x. The prediction-error of x is defined as ex = x− x̂. One can expand the
prediction-error ex to be e∗x = f (ex, m) for some shifting operation f and a to-be-embedded
bit m ∈ {0, 1}. When the context is clear, we omit the parameter m in f to make formula
concise. In the stego-image this pixel will be x̃ = x̂ + e∗x. As illustrated in [5],

e∗x =


ex + m, if ex = 0
ex −m, if ex = −1
ex + 1, if ex > 0
ex − 1, if ex < −1

,
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where m ∈ {0, 1} is a to-be-embedded bit. At pixel x at which ex ∈ {0,−1}, a secret bit
is embedded, while for pixel x at which ex /∈ {0,−1}, the pixel value is shifted by 1 or
−1. With prediction-errors at hand, the prediction-error histogram (PEH) can be created as
h(a) = |{i : ei = a}| for each prediction-error a. Specifically, PEE can be implemented as
histogram modification of the PEH, that is, expanding the bins of −1 and 0 and shifting the
other bins to create space to ensure the reversibility. Such a paradigm has been extended to
2D-PEH (e.g., [10]), where the PEH is defined by h2(a, b) = |i : (e2i−1, e2i) = (a, b)|, and also
3D-PEH (e.g., [5]), where the PEH is defined as h3(a, b, c) = |i : (e3i−2, e3i−1, e3i) = (a, b, c)|.
Here we have f : Z3 7→ P(Z3) to be a mapping which realizes RDH, where P(A) denotes
the power set of a set A, such that f (p) represents the set of marked prediction-errors
for a prediction-error p (e.g., p = (e3i−2, e3i−1, e3i) for some i). As long as f (p) 6= ∅
for any prediction-error p and f (p) ∩ f (q) = ∅ for every two prediction-errors p and
q, the reversibility of the mapping can be guaranteed. PEE has attracted considerable
attention [5,8–27] since it can maintain low embedding distortion while at the same time
provide sufficiently large payload in terms of high EC.

1.3. Our Contribution

As the illustrating example of PEE shows, EC depends on the prediction accuracy of
the pixels. When PEE is applied, the data bits are embedded only when the prediction-error
is −1 or 0. Hence, we have the following hypothesis.

Hypothesis 1. As the prediction accuracy is improved, the performance of the PEE techniques for
RDH is enhanced.

In this paper, we devote our efforts in validating this hypothesis. Specifically, we
aim at improving the prediction accuracy in PEE using deep an artificial neural network (ANN),
which has been developed rapidly and extensively studied in the past decade. We propose a novel
method based on a multilayer perceptron (MLP), which is a well-known ANN consisting of
multiple sequential fully connected layers and providing nonlinear mapping between input
data and output data with nonlinear activation functions. Moreover, we consider eight
octants in the three-dimensional space for embedding, which makes better use of space (c.f. [5]
which considers only the first octant for the embedding). We conduct experiments by
applying our proposed method on six test images, including Lena, Baboon, Boat, Peppers,
Airplane (F-16), and House. The experimental results well support our hypothesis. The EC
greatly increases and is 1.9–9.8 times of previous methods. On the other hand, the image
quality is still well maintained in terms of low PSNR, which is competitive compared with
previous work.

Remark 1. Our MLP consists of layers of nodes. The nodes between consecutive layers are fully
connected by weighted edges. Each node receives input from nodes on the previous layer and sends
output by passing the aggregated input to a nonlinear activation function. It has been shown that the
well-trained MLP can be used to approximate any smooth and measurable function [28]. The MLP
has been proven to be an effective alternative to more traditional statistical techniques [29]. Recently,
the MLP has been widely used in many different fields of research (e.g., see [30–34] for more details).
Our proposed method applies MLP to the pixel prediction phase of prediction-error histogram
modification. We train the MLP network and use it to derive more accurate pixel prediction. Unlike
other statistical techniques, the MLP makes no prior assumptions on the data distribution and can
be accurately applied even when new or unseen data appear. These features of the MLP make it an
attractive alternative when developing numerical models and choosing between statistical methods.

2. Related Work and Comparisons between the Methods

Shi et al. [6] reviewed the recent advances on RDH in the past two decades, including
various RDH schemes in image spatial domain, RDH for compressed images, robust RDH
which aims at recovering hidden message from the lossily compressed image, RDH for
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encrypted images and RDH for video and audio. The RDH in image spatial domain is the
most investigated subject and strongly related to this paper. We summarize progresses on
this subject as below.

1. Lossless compression-based methods.
Most early RDH was implemented based on lossless compression [35–42]. Partial
space is released by lossless compressing a feature set of the original image, and the
data is embedded using the released space to achieve RDH. The performance of this
method depends on the lossless compression algorithm used and the selection of
compressed feature sets. The experimental results suggest that the algorithm based
on lossless compression will result in greater distortion and poorer embedding effect
than the subsequent RDH method.

2. Integer-transform-based methods.
Integer-transform-based methods can be seen in [36,39,41]. In this type of method,
the original image is initially divided, so that multiple adjacent pixels can form an
embedding unit. Subsequently, the secret information is embedded into each unit
using integer transform. However, this type of method usually uses the average value
of a pixel block to predict each pixel in the block, so that the image redundancy cannot
be well utilized. Moreover, its algorithm cannot control the maximum modification
range of each pixel so that the embedded distortion cannot be controlled effectively.
Due to two defects mentioned above, the embedding performance of the integer
transform-based methods is limited. The performance of this type of method has
been significantly improved compared to the lossless compression-based methods;
however, it still cannot achieve good embedding performance.

3. Two-phase embedding with location maps.
There are RDH schemes proceeds with two-phases (e.g., [43–45]) using location maps
which map each pixel to a certain value and also ensure the reversibility of the cover
image. In [44], Malik et al. considered even-valued and odd-valued pixels separately
and embed the secret data bit for each pixel of the cover image by changing its value
by at most 1. Their work improves previous complementary embedding strategy
by Chang and Kieu [43] which uses vertical embedding and horizontal embedding
separately in two phases. Kumar et al. considered even-valued and odd-valued pixels
with location maps as well while the cover image is divided into non-overlapping 2-by-
2 blocks of pixels and the secret bits are converted into 2-bit segments and embedded
into the blocks by increasing or decreasing the pixel value of the corresponding block
by at most 1. Since the second phase embedding has the affect as complement of the
first phase embedding, this kind of approach persist the stego-image’s quality while
doubling the EC.

4. Histogram modification-based methods.
In this type of method, the original image is mapped to space with a lower dimension
at the beginning by using the redundancy of the image. Then generate a histogram
by counting the distribution of the low-dimensional space. Finally, the reversible
embedding is realized by modifying the histogram. The earliest method having a
great impact is proposed by Ni et al. in 2006 [46]. In this method, the secret data
is embedded into the pixels with the highest frequency in the image histogram by
expanding the histogram. The stego-image with this method maintains high image
quality, but the embedding rate is low. Therefore, Lee et al. [47] improved the method
of [46], which uses the image difference histogram that the shape rule is similar to
Laplace distribution. The histogram of the method experiences a very high peak
and rapidly dropping; therefore, it can have a better embedding capacity while
maintaining image quality.
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2.1. Further Discussion on Histograph Modification-Based Approaches

The method of Ni et al. [46] constitutes a rough framework and foundation for RDH
based on histogram modification, and hence has been further developed in the follow-
up research [5,8–27,30,48–51], In these studies, a histogram is first generated from the
prediction error of pixels, and then it is modified by expansion or shifting to achieve
reversible embedding. Currently, such methods, modifying the prediction error histogram
(PEH), are collectively perceived as prediction error expansion (PEE). RDH based on
histogram modification has the following two advantages:

• Using histograms, especially PEHs, can effectively utilize image redundancy.
• Modifying the histogram by expansion or shifting can control the maximum modifica-

tion range of each pixel and the embedding distortion effectively.

From the above points of view, the methods based on histogram modification, espe-
cially PEE based on PEH modification, have better embedding performance than other
methods. Therefore, we focus on histogram generation and three-dimensional histogram
modification. Note that the current RDH methods based on histogram modification mainly
include the following aspects:

• Generation method of histogram.
Combined with PEE, the methods of this research direction mainly aim to generate a
sharp and rapidly dropping PEH by using better image prediction methods, e.g., the
methods of [12,13,19,20,23,24].

• Modification method of histogram.
Different from the early expansion methods [8,9,16,24] using a peak in histogram,
several authors [15,25–27] proposed methods to expand the histogram by adaptively
selecting with the frequency of pixels in the image histogram. These methods can
significantly reduce the embedding distortion of PEE.

• Selection of embedding location.
This type of method firstly selects the image area that is more suitable for reversible
embedding (usually smooth areas), and then uses the selected area as a new carrier
for RDH. The effect of these methods are remarkable. Combining with PEE can
effectively reduce the embedding distortion of PEE. Its idea was first proposed by
Kamstra et al. [18], and many subsequent works have also applied this method as an
auxiliary means to further optimize the embedding performance.

• High-dimensional histogram modification.
Several authors [10,21] proposed the methods based on high-dimensional histogram
modification. They map high-dimensional redundant features of images to two-
dimensional space, and then modify the two-dimensional histogram to achieve re-
versible embedding. In recent works [5,14,17], the methods based on three-dimensional
or high-dimensional histogram modification are proposed. By mapping the redun-
dant features of the image to a higher-dimensional space, the embedding capacity
is increased and the image quality is maintained. This type of method can greatly
improve the embedding performance of existing PEE algorithms.

• Multi-histogram modification.
In [11,22], the reversible embedding methods based on using multi-histograms are
proposed. Compared with the method of using a single histogram, the use of mul-
tiple histograms has greater flexibility and can further improve the performance of
PEE algorithms.

• PEH for color images.
In [51], Zhan et al. applied 3D-PEH to color images. Their approach is to predict the
pixel values of each RGB channel of a color image and establish the 3D prediction-error
histogram. Their results yield low distortion for color images.

Below we summarize two recent progress on the other perspectives on the histogram
modification-based methods.



Appl. Sci. 2022, 12, 2502 6 of 23

• Histogram-shifting-imitated technique based on human visual system (HVS).
Kumar et al. take human visual system into consideration [52] and improves previous
work using histogram-shifting-imitated reversible data hiding method in [53]. Since
human eyes are more sensitive to the changes in lower intensity pixels than higher
ones, this approach divide the intensity levels into four groups of equal size and embed
less bits in the low intensity pixels for less conceived distortion of the stego-image so
that the visual imperceptibility is improved.

• Pixel Value Ordering (PVO).
Li et al. [20] proposed the pixel value ordering (PVO) technique which is an advance-
ment of PEE. When the cover images are divided into blocks, PVO first sorts pixel
values in each block and then computes minimum, maximum, second-minimum and
second maximum pixels which are used for data embedding depending on the mini-
mum and maximum prediction errors in the blocks. PVO changes the pixel values
only by at most 1; hence, it generates high quality stego-images. Kaur et al. [54]
propose RDH technique using PVO and pairwise PEE to improve EC while retain the
quality of the stego image. The embedding strategy is performed in two-phases on
three-pixel blocks. Pixels are traversed in a zig-zag way and then sorted based on their
rhombus means. The key of PVO for increasing EC is that smaller prediction errors
are derived after pixels are sorted. Kaur et al. [55] also considered RDH based on PVO
for roughly texture images. For more thorough survey on RDH approaches based on
PVO can refer to the survey in [54].

2.2. Comparisons and Highlight of Our Approach

According to above discussions, we list the general comparisons of RDH methods in
Table 1. As for the histogram modification-based framework which has attracted much
attention and is strongly related to our work and covers the PEE paradigm we mainly follow,
we highlight in Table 2 our proposed approach by comparisons with other approaches of
this type, such as Ni et al. [46], Lee et al. [47], Li et al. [21], and Cai et al. [5], using average
experimental results for six gray-scale images. As Table 2 shows, the embedding capacity
of our method is much more than the four other methods, while the image quality is a bit
sacrificed due to slightly larger image distortion, though it is tolerable since the PSNR is
still close to 50dB. Our results reveal that, due to much better prediction accuracy of pixel
values, our method is capable of achieving high embedding capacity while suffering only
slight image distortion.

Table 1. General comparison of RDH methods. ×: poor; ∆: unable to control effectively/limited;
◦: good; }: even better.

RDH Method Types Image Quality Embedding Capacity

Lossless-compression × ×
Integer-transform ∆ ∆

Two-phased embedding+location maps ◦ ◦
Histogram modification ◦ }

Table 2. Comparisons of histogram modification-based RDH methods. The image quality is measured
by average PSNR (dB) when maximum embedding capacity is attained. Average embedding capacity
are measured in bits.

Methods Characteristics Image Quality (PSNR (dB)) Embedding Capacity (bits)

Ni et al. [46] first histogram modification/baseline 53.04 4923.67
Lee et al. [47] image-difference histogram 51.75 9729.00
Li et al. [21] 2D-PEH modification 51.07 24,612.50
Cai et al. [5] 3D-PEH modification (1st octant) 63.72 9444.17

Our method 3D-PEH + MLP Prediction (8 octants) 48.55 48,344.17
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3. The Proposed Approach

In this section, we introduce our reversible data hiding scheme based on 3D-PEH
modification and a MLP as the pixel value predictor. As the hypothesis in Section 1 states,
we expect the performance of such a RDH scheme can be greatly enhanced by an accurate
MLP predictor. The characteristics of the correlation between the image pixel value and
the neighboring pixels is used, so that the accuracy of pixel prediction can be hopefully
improved due to a better trained MLP model. This then leads to increased embedding
capacity. Overall, our proposed method includes four parts: the pre-processing phase, the
training and prediction phase, the embedding and shifting phase, and the extraction and
recovery phase. The flowchart of the proposed method is shown in Figure 2. We specify
the four phases in the following subsections.

Figure 2. The flowchart of our method.

3.1. The Pre-Processing Phase

The pixel values of the cover image will be modified by +1 or −1 when the secret
data embed based on 3D-PEH. Therefore, in order to avoid the overflow and underflow,
the cover image will be pre-processed. Amend the pixel with value 0 to 1, and the pixel
with value 255 to 254. Meanwhile, a location map is created to record these modified pixel
positions. The location map is a binary sequence, which can be losslessly compressed
to reduce its size. Then the secret data and the compressed location map are combined
(hereinafter referred to as secret data); thereby, the pre-processing phase has been completed.
After that, they will be embedded in the pre-processed cover image together.

3.2. The Training and Prediction Phase

The PEE method aims at the correlations between the pixels to derive accurate pre-
dictions where the prediction-errors are modified separately. However, the traditional
PEE method uses the same algorithm to predict pixels for all images. This results in poor
prediction accuracy and the prediction error increases as the image is relatively complex.
Therefore, our proposed method, which leverages the power of trained MLP model, can
predict the pixels of the cover image and significantly reduces the prediction-error so that
the embedding capacity can be hopefully increased.

In the MLP training stage, except for pixels located in borders, the pixels are scanned
from left to right and top to bottom to derive the cover sequence (y1, . . . , yn). Consider the
four-neighbor tuple (xtop, xbottom, xleft, xright} of a given pixel yi, shown in the left part of
the Figure 3. The four-neighbor tuple is used as input data of the neural network, and the
desired output value is yi.

The structure of an MLP neural network has one input layer, two hidden layers, and one
output layer, as shown in Figure 3. The input of four-neighbor tuples (xtop, xbottom, xleft, xright)
from the cover image is fed into the input layer of the MLP. Between the input and output
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layers, there have 100 and 200 neurons in two hidden layers, respectively. After the information
income is processed by the network, the output layer of the neural network provides one
output ỹi as the predicted value by the MLP, and the corresponding yi in the cover image is
used as reference data. We use the mean squared error (MSE) as the loss function which is
calculated by taking the average squared difference between the predicted pixel value and the
reference pixel value. The MSE function is defined as the Equation (1). Apparently, there is no
prediction errors if and only if the MSE value is 0.

MSE =
1
N
·

N

∑
i=1

(ỹi − yi)
2. (1)

Here, N is the number of data points, ỹi is the value returned by the model, and yi is
the actual value for data point. Based on those input and reference data, the MLP network
is then trained with the loss function such that the edge weights of the MLP are optimized
to best associate given neighborhoods with the reference pixel values.

Figure 3. The structure of our MLP neural network.

3.3. The Embedding and Shifting Phase

After the training and prediction phase is completed, the scheme enters the embedding
and shifting phase. In order to embed the binary secret data in the cover image, the three-
dimensional PEH (3D-PEH) modification is used for embedding and shifting. However, in
the previous work on 3D-PEH modification, only the points located in the first octant of the
three-dimensional coordinate system are modified. This way of hiding secrets did not make
use of most of the space in the three-dimensional coordinate system for embedding; hence,
the embeddable pixels are relatively less and a less embedding capacity of images is made.
Instead, our proposed method embed secret data in eight octants of the three-dimensional
space, so that we possibly exploit much more space than previous approaches.

We adopt rhombus prediction and double-layered embedding, the same as the way
used in [5,24], for the implementation of the proposed method to generate non-overlapping
prediction-error triple (ex, ey, ez) = (e3i−2, e3i−1, e3i) for feasible i (i.e., each pixel in the triple
has four neighboring pixels). A 3D-PEH is generated by counting each non-overlapping
prediction error triple, and the data embedding is realized by the obtained 3D-PEH modifi-
cation using the designed reversible mapping. The data embedding procedure is briefly
described as follows.

First, adopt double-layered embedding to divide the cover image into two sets denoted
as “star”and “dot”(as shown in Figure 4a). The star and dot sets are embedded with half of
the secret data, separately. Except for the pixels located in borders, the pixels of the star
or dot set are scanned from left to right and top to bottom to derive the cover sequence
(p1, . . . , pn). The scan orders for star and dot pixels are shown in Figure 4b,c.
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Figure 4. (a) Star/dot pixels partition. (b) Scan order for star pixels. (c) Scan order for dot pixels.

Then, the 4-neighbor pixels of each pi are introduced to the trained MLP to obtain its
predicted value p̂i. The predicted value is used to determine the prediction-error sequence
(e1, . . . , en), and the sequence is divided into the prediction-error triples ex, ey, ez. The
prediction-error ei can be obtained as

ei = pi − p̂i. (2)

Lastly, modify each prediction-error triple (ex, ey, ez) to be (e∗x, e∗y , e∗z ) and get ( p̃x, p̃y,
p̃z) = ( p̂x + e∗x, p̂y + e∗y , p̂z + e∗z ) to embed data based on the 3D-PEH in the method shown
in Tables 3–5. The 3D-PEH mapping method is divided into seven types: Type A to Type G.

Table 3. Type A–C of the marked values of prediction-error triple (ex, ey, ez) and cover pixel triple
px, py, pz in different types of the proposed method with embedding as the data embedding operations
on (ex, ey, ez).

Type (ex, ey, ez) Secret Bits EC (bits) (e∗x , e∗y , e∗z ) (p̃x, p̃y, p̃z)

A (ex, ey, ez) = (0, 0, 0)

[0], [0], [0]
[0], [0], [1]
[0], [1], [0]
[0], [1], [1]
[1], [0], [0]
[1], [0], [1]

3

(0, 0, 0)
(0, 0, 1)
(0, 1, 0)
(0,−1, 0)
(1, 0, 0)
(0, 0,−1)

(px, py, pz)
(px, py, pz + 1)
(px, py + 1, pz)
(px, py − 1, pz)
(px + 1, py, pz)
(px, py, pz − 1)

A (ex, ey, ez) = (0, 0, 0) [1], [1] 2 (−1, 0, 0) (px − 1, py, pz)

B (ex, ey, ez) = (±1,±1,±1)
[0]
[1] 1

(±1,±1,±1)
(±2,±2,±2)

(px, py, pz)
(px ± 1, py ± 1, pz ± 1)

C ex 6= 0, (ey, ez) = (0, 0) [1], [1], [1] 3 (ex ± 1,−1, 0) (px ± 1, py − 1, pz)

C ex 6= 0, (ey, ez) = (0, 0)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

2

(ex ± 1, 0, 0)
(ex ± 1, 0, 1)
(ex ± 1, 1, 0)
(ex ± 1, 0,−1)

(px ± 1, py, pz)
(px ± 1, py, pz + 1)
(px ± 1, py + 1, pz)
(px ± 1, py, pz − 1)

C ey 6= 0, (ex, ez) = (0, 0) [1], [1], [1] 3 (−1, ey ± 1, 0) (px − 1, py ± 1, pz)

C ey 6= 0, (ex, ez) = (0, 0)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

2

(0, ey ± 1, 0)
(0, ey ± 1, 1)
(1, ey ± 1, 0)
(0, ey ± 1,−1)

(px, py ± 1, pz)
(px, py ± 1, pz + 1)
(px ± 1, py ± 1, pz)
(px, py ± 1, pz − 1)

C ez 6= 0, (ex, ey) = (0, 0) [1], [1], [1] 3 (−1, 0, ez ± 1) (px − 1, py, pz ± 1)

C ez 6= 0, (ex, ey) = (0, 0)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

2

(0, 0, ez ± 1)
(0, 1, ez ± 1)
(1, 0, ez ± 1)
(0,−1, ez ± 1)

(px, py, pz ± 1)
(px, py + 1, pz ± 1)
(px + 1, py, pz ± 1)
(px, py − 1, pz ± 1)
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Table 4. Type D–F of the marked values of prediction-error triple (ex, ey, ez) and cover pixel triple
px, py, pz in different types of the proposed method with embedding as the data embedding operations
on (ex, ey, ez).

Type (ex, ey, ez) Secret Bits EC (bits) (e∗x , e∗y , e∗z ) (p̃x, p̃y, p̃z)

D (ex, ey, ez) = (0,±1,±1)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

2

(0,±1,±1)
(0,±2,±2)
(1,±2,±2)
(−1,±2,±2)

(px, py, pz)
(px, py ± 1, pz ± 1)

(px + 1, py ± 1, pz ± 1)
(px − 1, py ± 1, pz ± 1)

D (ex, ey, ez) = (±1, 0,±1)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

2

(±1, 0,±1)
(±2, 0,±2)
(±2, 1,±2)
(±2,−1,±2)

(px, py, pz)
(px ± 1, py ± 1, pz)

(px ± 1, py ± 1, pz + 1)
(px ± 1, py − 1, pz ± 1)

D (ex, ey, ez) = (±1,±1, 0)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

2

(±1,±1, 0)
(±2,±2, 0)
(±2,±2, 1)
(±2,±2,−1)

(px, py, pz)
(px ± 1, py ± 1, pz)

(px ± 1, py ± 1, pz + 1)
(px ± 1, py ± 1, pz − 1)

E ex = 0, ey, ez /∈ {0,±1} [0], [0]
[0], [1] 2

(0, ey ± 1, ez ± 1)
(1, ey ± 1, ez ± 1)

(px, py ± 1, pz ± 1)
(px + 1, py ± 1, pz ± 1)

E ex = 0, ey, ez /∈ {0,±1} [1] 1 (−1, ey ± 1, ez ± 1) (px − 1, py ± 1, pz ± 1)

E ey = 0, ex, ez /∈ {0,±1} [0], [0]
[0], [1] 2

(ex ± 1, 0, ez ± 1)
(ex ± 1, 1, ez ± 1)

(px ± 1, py, pz ± 1)
(px ± 1, py + 1, pz ± 1)

E ey = 0, ex, ez /∈ {0,±1} [1] 1 (ex ± 1,−1, ez ± 1) (px ± 1, py − 1, pz ± 1)

E ez = 0, ex, ey /∈ {0,±1} [0], [0]
[0], [1] 2

(ex ± 1, ey ± 1, 0)
(ex ± 1, ey ± 1, 1)

(px ± 1, py ± 1, pz)
(px ± 1, py ± 1, pz + 1)

E ez = 0, ex, ey /∈ {0,±1} [1] 1 (ex ± 1, ey ± 1,−1) (px ± 1, py ± 1, pz − 1)

F |ex| > 1, (ey, ez) = (±1,±1)
[0]
[1] 1

(ex ± 1,±1,±1)
(ex ± 1,±2,±2)

(px ± 1, py, pz)
(px ± 1, py ± 1, pz ± 1)

F |ey| > 1, (ex, ez) = (±1,±1)
[0]
[1] 1

(±1, ey ± 1,±1)
(±2, ey ± 1,±2)

(px, py ± 1, pz)
(px ± 1, py ± 1, pz ± 1)

F |ez| > 1, (ex, ey) = (±1,±1)
[0]
[1] 1

(±1,±1, ez ± 1)
(±2,±2, ez ± 1)

(px, py, pz ± 1)
(px ± 1, py ± 1, pz ± 1)

Table 5. Type G of the marked values of prediction-error triple (ex, ey, ez) and cover pixel triple
px, py, pz in different types of the proposed method with shifting as the data embedding operations
on (ex, ey, ez).

Type (ex, ey, ez) Secret Bits EC (bits) (e∗x , e∗y , e∗z ) (p̃x, p̃y, p̃z)

G
ex, ey, ez 6= 0,

and
(ex, ey, ez) /∈ TypeB, F

– – (ex±1, ey±1, ez±1) (px±1, py±1, pz±1)

Figure 5 visualizes the mapping how the secret data are embedded. The goal of such
visualization is to provide an intuitive way to verify the reversibility of the our proposed
method. First of all, there are seven types of embedding in the proposed method, the
mapping relationship of Type A, B, ..., and G can be visualized as shown in Figure 5. An
arrow with the starting point x to the end point y represents the data x transforms to the
data y in this mapping. That is, the prediction-error groups ex, ey, ez and the cover pixel
groups px, py, pz are modified by type A to type F according to the condition of the secret
which will be embedded. For example, Type A could hide data by transforming (0, 0, 0) into
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0,−1, 0), (1, 0, 0), (0, 0,−1), and (−1, 0, 0). Therefore, Figure 5a
shows the six arrows which starts from (0, 0, 0) to the destinations (0, 0, 0), (0, 0, 1), (0, 1, 0),
(0,−1, 0), (1, 0, 0), (0, 0,−1), and (−1, 0, 0), respectively. Therefore, one can check if the
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mapping for data hiding is revertible by checking if one point in the mapping diagram can
be reached by multiple points.

(a) Type-A (b) Type-B

(c) Type-C (d) Type-D

(e) Type-E (f) Type-F

Figure 5. Cont.
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(g) Type-G

Figure 5. The 3D-PEH mappings for the proposed scheme.

After the embedding and shifting phase, the stego-image embedded with secret data
will be obtained. Then, the stego-image and the trained MLP model are sent to the receiver
side through the communication channel.

Example 1. Consider the cover image P = {210, 99, 131, 65, 72, 162, 17, 19, 25, 161,
25, 71, 86, 95, 47}, the secret bits S = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0}, and the prediction error
E = {0, 0, 0, 0, 0, 0, 1, 1,−1, 1, 0, 0, 0, 1, 0}.
• Step 1:

1. Get the three bits from E = {0, 0, 0, 0, 0, 0, 1, 1,−1, 1, 0, 0, 0, 1, 0}: (ex, ey, ez) = (0, 0, 0).
This is a Type-A case.

2. Get three bits from S = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0} if the first two bits are [0], [0]. Since
the secret bits are [0], [0], [0], we have (e∗x, e∗y , e∗z ) = (0, 0, 0).

3. Get three units from P = {210, 99, 131, 65, 72, 162, 17, 19, 25, 161, 25, 71, 86, 95, 47}
and derive ( p̃x, p̃y, p̃z) = (210, 99, 131) + (0, 0, 0) = (210, 99, 131).

The results of this step are E∗ = {0, 0, 0, . . .} and p̃x = {210, 99, 131, . . .}.
• Step 2:

1. Get three bits from E = {0, 0, 0, 0, 0, 0, 1, 1,−1, 1, 0, 0, 0, 1, 0}: (ex, ey, ez) = (0, 0, 0).
This is a Type-A case.

2. Get two bits from S = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0}. Since the secret bits are [1], [1], we
have (e∗x, e∗y , e∗z ) = (−1, 0, 0).

3. Get three units from P = {210, 99, 131, 65, 72, 162, 17, 19, 25, 161, 25, 71, 86, 95, 47}.
and derive ( p̃x, p̃y, p̃z) = (65, 72, 162) + (−1, 0, 0) = (64, 72, 162).

The results of this step are E∗ = {0, 0, 0,−1, 0, 0, . . .} and p̃x = {210, 99, 131, 64, 72, 162, . . .}.
• Step 3:

1. Get three bits from E = {0, 0, 0, 0, 0, 0, 1, 1,−1, 1, 0, 0, 0, 1, 0}: (ex, ey, ez) = (1, 1,−1).
This is a Type-B case.

2. Get one bit from S = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0}. Since the secret bit is [0], we have
(e∗x, e∗y , e∗z ) = (1, 1,−1).

3. Get three units from P = {210, 99, 131, 65, 72, 162, 17, 19, 25, 161, 25, 71, 86, 95, 47}
and derive ( p̃x, p̃y, p̃z)= (17, 19, 25) + (0, 0, 0) = (17, 19, 25).

The results of this step are E∗ = {0, 0, 0,−1, 0, 0, 1, 1,−1, . . .} and p̃x = {210, 99, 131, 64,
72, 162, 17, 19, 25, . . .}.



Appl. Sci. 2022, 12, 2502 13 of 23

• Step 4:

1. Get three bits from E = {0, 0, 0, 0, 0, 0, 1, 1,−1, 1, 0, 0, 0, 1, 0}: (ex, ey, ez) = (1, 0, 0).
This is a Type-C case.

2. Get three bits from S = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0} if the secret bits are [1], [1], [1]. Since
the secret bit is [1], [1], [1], we have (e∗x, e∗y , e∗z ) = (2,−1, 0).

3. Get three units from P = {210, 99, 131, 65, 72, 162, 17, 19, 25, 161, 25, 71, 86, 95, 47}.
and derive ( p̃x, p̃y, p̃z) = (161, 25, 71) + (1,−1, 0) = (162, 24, 71)

The results of this step are E∗ = {0, 0, 0,−1, 0, 0, 1, 1,−1, 2,−1, 0, . . .} and p̃x = {210, 99, 131,
64, 72, 162, 17, 19, 25, 162, 24, 71, . . .}.

• Step 5:

1. Get three bits from E = {0, 0, 0, 0, 0, 0, 1, 1,−1, 1, 0, 0, 0, 1, 0}: (ex, ey, ez) = (0, 1, 0).
This is a Type-C case.

2. Get two bits from S = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0} if the secret bits are not [1], [1], [1].
Since the secret bit is [1], [0], we have (e∗x, e∗y , e∗z ) = (1, 2, 0).

3. Get three units from P = {210, 99, 131, 65, 72, 162, 17, 19, 25, 161, 25, 71, 86, 95, 47}.
and derive ( p̃x, p̃y, p̃z) = (86, 95, 47) + (1, 1, 0) = (87, 96, 47).

The results of this step are E∗ = {0, 0, 0,−1, 0, 0, 1, 1,−1, 2,−1, 0, 1, 2, 0} and p̃x = {210, 99,
131, 64, 72, 162, 17, 19, 25, 87, 96, 47}.

3.4. The Extraction and Recovery Phase

Through the communication channel, the stego-image and the trained MLP model
are received. Next, we consider the secret data extraction from the stego-image and the
stego-image recovery. The scheme then enters the extraction and recovery phase.

In the extraction and recovery stage, the procedure of the secret data extraction and
the stego-image recovery is similar to the procedure of embedding and shifting. The secret
data extraction process is briefly described as follows.

First, rhombus prediction and double-layered embedding is adopted to divide the
stego-image into two sets denoted as “star”and “dot” (as shown in Figure 4a), and half of
the secret data will be extracted from the star and dot sets, respectively. Except for the pixels
located in borders, the pixels of the star or dot set are scanned from top-left to bottom-right
to derive the stego sequence (p′1, . . . , p′n).

Then, the 4-neighbor dots of each p′i are introduced to the trained MLP to obtain its
predicted value p̂′i. The predicted value is used to determine the prediction-error sequence
(e′1, . . . , e′n), and the sequence is divided into the prediction-error triples (e′x, e′y, e′z). The
prediction-error e′i can be obtained as

e′i = p′i − p̂′ i.

Finally, each recovered triple (p′x, p′y, p′z) is extracted based on the 3D-PEH as the
method shown in Table 6–8. The 3D-PEH recovery method is divided into seven types:
Type A′ to Type G′. Besides, (e′x, e′y, e′z) should be the prediction-errors between the “marked
pixels” (in the stego-image) and the prediction of the “marked pixels”. When the prediction-
error e′i is 1, the recovered value is pi = p′i − 1, and when the prediction-error e′i is −1, the
recovered value is pi = p′i + 1.

The secret data bits are extracted by type A′ to type G′ according to the condition of
the prediction-error group and the stego pixel group (p′x, p′y, p′z) is recovered to the recover
pixel groups that have the same pixel values as the cover pixel groups (px, py, pz) . In
addition, the type G′ has no embedded data bits, so only recover the stego pixel groups to
the recover pixel groups without secret data extraction.
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Table 6. Type A′–C′ of the The extracted secret bits and the recovered values of prediction-error triple
(e′x, e′y, e′z) and stego pixel triple (p′x, p′y, p′z) in different types of the proposed method with embedding
as the data embedding operations on (e′x, e′y, e′z).

Type (e′x, e′y, e′z) Extracted Secret Bits (ex, ey, ez) (px, py, pz)

A′

(e′x, e′y, e′z) = (0, 0, 0)
(e′x, e′y, e′z) = (0, 0, 1)
(e′x, e′y, e′z) = (0, 1, 0)
(e′x, e′y, e′z) = (0,−1, 0)
(e′x, e′y, e′z) = (1, 0, 0)
(e′x, e′y, e′z) = (0, 0,−1)
(e′x, e′y, e′z) = (0,−1, 0)

[0], [0], [0]
[0], [0], [1]
[0], [1], [0]
[0], [1], [1]
[1], [0], [0]
[1], [0], [1]
[1], [1]

(0, 0, 0)

(p′x, p′y, p′z)
(p′x, p′y, p′z − 1)
(p′x, p′y − 1, p′z)
(p′x, p′y + 1, p′z)
(p′x − 1, p′y, p′z)
(p′x, p′y, p′z + 1)
(p′x, p′y + 1, p′z + 1)

B′
(e′x, e′y, e′z) = (±1,±1,±1)
(e′x, e′y, e′z) = (±2,±2,±2)

[0]
[1] (±1,±1,±1)

(p′x, p′y, p′z)
(p′x ± 1, p′y ± 1, p′z ± 1)

C′

|e′x| > 1, (e′y, e′z) = (−1, 0)
|e′x| > 1, (e′y, e′z) = (0, 0)
|e′x| > 1, (e′y, e′z) = (0, 1)
|e′x| > 1, (e′y, e′z) = (1, 0)
|e′x| > 1, (e′y, e′z) = (0,−1)

[1], [1], [1]
[0], [0]
[0], [1]
[1], [0]
[1], [1]

(e′x ± 1, 0, 0)

(p′x ± 1, p′y + 1, p′z)
(p′x ± 1, p′y, p′z)
(p′x ± 1, p′y, p′z − 1)
(p′x ± 1, p′y − 1, p′z)
(p′x ± 1, p′y, p′z + 1)

C′

|e′y| > 1, (e′x, e′z) = (−1, 0)
|e′y| > 1, (e′x, e′z) = (0, 0)
|e′y| > 1, (e′x, e′z) = (0, 1)
|e′y| > 1, (e′x, e′z) = (1, 0)
|e′y| > 1, (e′x, e′z) = (0,−1)

[1], [1], [1]
[0], [0]
[0], [1]
[1], [0]
[1], [1]

(0, e′y ± 1, 0)

(p′x + 1, p′y ± 1, p′z)
(p′x, p′y ± 1, p′z)
(p′x, p′y ± 1, p′z − 1)
(p′x − 1, p′y ± 1, p′z)
(p′x, p′y ± 1, p′z + 1)

C′

|e′z| > 1, (e′x, e′y) = (−1, 0)
|e′z| > 1, (e′x, e′y) = (0, 0)
|e′z| > 1, (e′x, e′y) = (0, 1)
|e′z| > 1, (e′x, e′y) = (1, 0)
|e′z| > 1, (e′x, e′y) = (0,−1)

[1], [1], [1]
[0], [0]
[0], [1]
[1], [0]
[1], [1]

(0, 0, e′z ± 1)

(p′x + 1, p′y, p′z ± 1)
(p′x, p′y, p′z ± 1)
(p′x, p′y − 1, p′z ± 1)
(p′x − 1, p′y, p′z ± 1)
(p′x, p′y + 1, p′z ± 1)

Table 7. Type D′–F′ of the the extracted secret bits and the recovered values of prediction-error triple
(e′x, e′y, e′z) and stego pixel triple (p′x, p′y, p′z) in different types of the proposed method with embedding
as the data embedding operations on (e′x, e′y, e′z).

Type (e′x, e′y, e′z) Extracted Secret Bits (ex, ey, ez) (px, py, pz)

D′

(e′x, e′y, e′z) = (0,±1,±1)
(e′x, e′y, e′z) = (0,±2,±2)
(e′x, e′y, e′z) = (1,±2,±2)
(e′x, e′y, e′z) = (−1,±2,±2)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

(0,±1,±1)

(p′x, p′y, p′z)
(p′x, p′y ± 1, p′z ± 1)
(p′x − 1, p′y ± 1, p′z ± 1)
(p′x + 1, p′y ± 1, p′z ± 1)

D′

(e′x, e′y, e′z) = (±1, 0,±1)
(e′x, e′y, e′z) = (±2, 0,±2)
(e′x, e′y, e′z) = (±2, 1,±2)
(e′x, e′y, e′z) = (±2,−1,±2)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

(±1, 0,±1)

(p′x, p′y, p′z)
(p′x ± 1, p′y, p′z ± 1)
(p′x ± 1, p′y − 1, p′z ± 1)
(p′x ± 1, p′y + 1, p′z ± 1)

D′

(e′x, e′y, e′z) = (±1,±1, 0)
(e′x, e′y, e′z) = (±2,±2, 0)
(e′x, e′y, e′z) = (±2,±2, 1)
(e′x, e′y, e′z) = (±2,±2,−1)

[0], [0]
[0], [1]
[1], [0]
[1], [1]

(±1,±1, 0)

(p′x, p′y, p′z)
(p′x ± 1, p′y ± 1, p′z)
(p′x ± 1, p′y ± 1, p′z − 1)
(p′x ± 1, p′y ± 1, p′z + 1)

E′
e′x = 0, |e′y| > 1
e′x = 1, |e′z| > 1
e′x = −1, (e′y, e′z) 6= (±2,±2)

[0], [0]
[0], [1]
[1]

(0, e′y ± 1, e′z ± 1)
(p′x, p′y ± 1, p′z ± 1)
(p′x − 1, p′y ± 1, p′z ± 1)
(p′x, p′y ± 1, p′z ± 1)
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Table 7. Cont.

Type (e′x, e′y, e′z) Extracted Secret Bits (ex, ey, ez) (px, py, pz)

E′
e′y = 0, |e′x| > 1
e′y = 1, |e′y| > 1
e′y = −1, (e′x, e′z) 6= (±2,±2)

[0], [0]
[0], [1]
[1]

(e′x ± 1, 0, e′z ± 1)
(p′x ± 1, p′y, p′z ± 1)
(p′x ± 1, p′y − 1, p′z ± 1)
(p′x ± 1, p′y + 1, p′z ± 1)

E′
e′z = 0, |e′x| > 1
e′z = 1, |e′y| > 1
e′z = −1, (e′x, e′y) 6= (±2,±2)

[0], [0]
[0], [1]
[1]

(e′x ± 1, e′y ± 1, 0)
(p′x ± 1, p′y ± 1, p′z)
(p′x ± 1, p′y ± 1, p′z − 1)
(p′x ± 1, p′y ± 1, p′z + 1)

F′
|e′x| > 2, (e′y, e′z) = (±1,±1)
|e′x| > 2, (e′y, e′z) = (±2,±2)

[0]
[1] (e′x ± 1,±1,±1)

(p′x ± 1, p′y, p′z)
(p′x ± 1, p′y ± 1, p′z ± 1)

F′
|e′y| > 2, (e′x, e′z) = (±1,±1)
|e′y| > 2, (e′x, e′z) = (±2,±2)

[0]
[1] (±1, e′y ± 1,±1)

(p′x, p′y ± 1, p′z)
(p′x ± 1, p′y ± 1, p′z ± 1)

F′
|e′z| > 2, (e′x, e′y) = (±1,±1)
|e′z| > 2, (e′x, e′y) = (±2,±2)

[0]
[1] (±1,±1, e′z ± 1)

(p′x, p′y, p′z ± 1)
(p′x ± 1, p′y ± 1, p′z ± 1)

Table 8. Type G′ of the The extracted secret bits and the recovered values of prediction-error triple
(e′x, e′y, e′z) and stego pixel triple p′x, p′y, p′z in different types of the proposed method with no embedded
data bit on (e′x, e′y, e′z).

Type (e′x, e′y, e′z) Extracted Secret Bits (ex, ey, ez) (px, py, pz)

G′
|e′x| > 1, |e′y| > 1, |e′z| > 1,
(e′x, e′y, e′z) /∈ TypeB, F no embedded data bit (e′x ± 1, e′y ± 1, e′z ± 1) (p′x ± 1, p′y ± 1, p′z ± 1)

Through the extraction and recovery phase, the secret data and the recovered image
are obtained.

Example 2. Let P
′
= {210, 99, 131, 64, 72, 162, 17, 19, 25, 162, 24, 71, 87, 96, 47}, and E

′
= {0, 0, 0,

−1, 0, 0, 1, 1,−1, 2,−1, 0, 1, 2, 0}.
• Step 1:

1. Get the three bits from E
′
= {0, 0, 0,−1, 0, 0, 1, 1,−1, 2,−1, 0, 1, 2, 0}: (e′x, e

′
y, e

′
z) =

(0, 0, 0). This is a Type-A
′

case. The extracted secret bits are (0, 0, 0).
2. Get three bits from P

′
= {210, 99, 131, 64, 72, 162, 17, 19, 25, 162, 24, 71, 87, 96, 47}.

Then, we can derive (px, py, pz) = (210, 99, 131).

The results of this step are S = {0, 0, 0, . . .} and P = {210, 99, 131, . . .}.
• Step 2:

1. Get the three bits from E
′
= {0, 0, 0,−1, 0, 0, 1, 1,−1, 2,−1, 0, 1, 2, 0}: (e′x, e

′
y, e

′
z) =

(−1, 0, 0). This is a Type-A
′

case. The extracted secret bits are [1], [1].
2. Get three bits from P

′
= {210, 99, 131, 64, 72, 162, 17, 19, 25, 162, 24, 71, 87, 96, 47}.

Then, we can derive (px, py, pz) = (64 + 1, 72, 162) = (65, 72, 162).

The results of this step are S = {0, 0, 0, 1, 1, . . .} and P = {210, 99, 131, 65, 72, 162 . . .}.
• Step 3:

1. Get the three bits from E
′
= {0, 0, 0,−1, 0, 0, 1, 1,−1, 2,−1, 0, 1, 2, 0}: (e′x, e

′
y, e

′
z) =

(1, 1,−1). This is a Type-B
′

case. The extracted secret bits are [0].
2. Get three bits from P

′
= {210, 99, 131, 64, 72, 162, 17, 19, 25, 162, 24, 71, 87, 96, 47}.

Then, we can derive (px, py, pz) = (17, 19, 25).

The results of this step are S = {0, 0, 0, 1, 1, 0, . . .} and P = {210, 99, 131, 65, 72, 162, 17,
19, 25 . . .}.



Appl. Sci. 2022, 12, 2502 16 of 23

• Step 4:

1. Get the three bits from E
′
= {0, 0, 0,−1, 0, 0, 1, 1,−1, 2,−1, 0, 1, 2, 0}: (e′x, e

′
y, e

′
z) =

(2,−1, 0). This is a Type-C
′

case. The extracted secret bits are [1], [1], [1].
2. Get three bits from P

′
= {210, 99, 131, 64, 72, 162, 17, 19, 25, 162, 24, 71, 87, 96, 47}.

Then, we can derive (px, py, pz) = (162− 1, 24 + 1, 71) = (161, 25, 71).

The results of this step are S = {0, 0, 0, 1, 1, 0, 1, 1, 1, . . .} and P = {210, 99, 131, 65, 72,
162, 17, 19, 25, 161, 25, 71 . . .}.

• Step 5:

1. Get the three bits from E
′
= {0, 0, 0,−1, 0, 0, 1, 1,−1, 2,−1, 0, 1, 2, 0}: (e′x, e

′
y, e

′
z) =

(1, 2, 0). This is a Type-C
′

case. The extracted secret bits are [1], [0].
2. Get three bits from P

′
= {210, 99, 131, 64, 72, 162, 17, 19, 25, 162, 24, 71, 87, 96, 47}.

Then, we can derive (px, py, pz) = (87− 1, 96− 1, 47) = (86, 95, 47).

The results of this step are S = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0} and P = {210, 99, 131, 65, 72,
162, 17, 19, 25, 161, 25, 71, 86, 95, 47}.

4. Computational Complexity

Assume that the image has height M and width N respectively. In the pre-processing
phase (where a lossless compression is used for the location map; however, we can assume
that it can be done in time linearly in the number of pixels if we do not require the space
usage as small as possible), training-and-prediction phase, embedding-and-shifting phase
and extraction and recovery phase, the computational complexity is basically O(MN)
because there are O(MN) pixels to be scanned for a constant number of times. We remark
here that though the structure of the MLP neural network is fixed so that this part con-
tributes a constant factor in the complexity, such a constant factor hidden in the asymptotic
notation can actually be huge. More specifically, for each input data point (i.e., a set of four
pixels) fed to the input layer of the MLP neural network in one iteration, there are 100× 200
multiplications required to compute the activation of all the neurons.

5. Experimental Results

The experimental results are shown in this section. Six grayscale images of size 512-
by-512, including Lena, Baboon, Boat, Peppers, Airplane (F-16), and House, are used in
our experiments. The cover images and the stego-images which are embedded 10,000 bits
of secret data are shown in Figure 6 . In addition, the variations in image quality under
different embedding capacities are compared (as shown in Figure 7) . The most common
strategy to measure the image quality is the calculation of Peak Signal to Noise Ratio
(PSNR) function which is defined as

PSNR = 10 · log10

(
255 · 255

MSE

)
,

MSE =
1

MN
·

M

∑
i=1

N

∑
j=1

(xi,j − x′i,j)
2.

The results of the testing image (Lena) is presented in Figure 7. In addition, from
the line chart can be observed that when the embedding capacity is less than 60,000 bits,
the PSNR will decrease steadily. However, when the embedding capacity is more than
60,000 bits, PSNR will begin to decline relatively quickly.
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(a) Lena (b) Baboon

(c) Boat (d) Peppers

(e) Airplane (F-16) (f) House

Figure 6. The cover images and the stego-images (embed 10,000 bits).

(a) PSNR (db) (b) Embedding Capacity (bits)

Figure 7. PSNR (dB) and embedding capacity (bits) of the proposed scheme, for image Lena.

5.1. Performance Comparison between the Proposed Method and Baseline Approaches

In this subsection, the proposed method is compared with the previously mentioned
schemes. The compared results divide into two parts: maximum embedding capacity and
embedding capability in different embedding capacities. The comparison results show
that the proposed method has better embedding capacity, and the image qualities are still
maintained well.
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5.1.1. Maximum Embedding Capacity

We compared the embedding capacity and the image quality when the cover image
was embedded once from beginning to end. The comparison is between the proposed
method and the methods of Ni et al. [46], Lee et al. [47], Li et al. [21], and Cai et al. [5].
Shown in Table 9 is the comparison of maximum embedding capacity for six test images
between the proposed method and the other schemes . In addition, the Table 10 is the
comparison of PSNR for maximum embedding capacity between the proposed method
and the other schemes.

Table 9. Comparison of maximum embedding capacity (bits) for six test images between the proposed
method and the methods of Ni et al. [46], Lee et al. [47], Li et al. [21], and Cai et al. [5].

Image Ni et al. Lee et al. Li et al. Cai et al. Our Method

Lena 2785 10,139 24,255 7964 59,751
Baboon 2717 4069 9885 990 19,136

Boat 5796 7193 17,295 2923 37,938
Peppers 2753 8591 19,687 3040 35,402

Aiprplain (F-16) 8155 15,797 39,843 21,300 66,465
House 7336 12,585 36,710 20,448 71,373

Average 4923.67 9729.00 24,612.50 9444.17 48,344.17

From the results in Table 9, whether in a smooth image (like image Lena) or in a
complex image (like image Baboon), the proposed method has a better embedding capacity.

According to Table 10, the average PSNR of the stego-image among the previous
schemes [5,21,46,47] and the proposed method are 53.04 dB, 51.75 dB, 51.61 dB, 63.72 dB,
and 48.55 dB, respectively. Clearly, the larger the embedding capacity is, the lower the
quality of the image we get. Although the PSNR of the proposed method is lower than
other methods, the embedding capacity of it is much more than other methods. According
to the above results, when the cover image is only embedded once, our proposed method
can have the maximum embedding capacity and maintain good image quality.

Table 10. Comparison of PSNR (dB) between the proposed method and the methods of Ni et al. [46],
Lee et al. [47], Li et al. [21], and Cai et al. [5] for maximum embedding capacity.

Image Ni et al. Lee et al. Li et al. Cai et al. Our Method

Lena 53.70 51.72 51.60 62.16 48.64
Baboon 51.96 51.35 51.34 70.84 48.26

Boat 51.97 51.52 51.47 66.26 48.41
Peppers 52.49 51.60 51.51 65.92 48.39

Aiprplain (F-16) 54.21 52.16 51.90 58.27 48.75
House 53.91 52.14 51.83 58.86 48.84

Average 53.04 51.75 51.07 63.72 48.55

5.1.2. Embedding Capability in Different Embedding Capacities

In this section, the variations in image quality under different embedding capacities
between the proposed method and the methods of Ni et al. [46], Lee et al. [47], Li et al. [21],
and Cai et al. [5] are compared. The image quality comparison for six test images in
different embedding capacities between the proposed method and the other schemes are
shown in Tables 11–13 . In addition, the performance comparisons between the proposed
method and other related researches are shown in Figure 8 as line graphs.
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(a) Lena (b) Baboon

(c) Boat (d) Peppers

(e) Airplane (F-16) (f) House

Figure 8. Performance comparisons among the proposed method and other approaches on differ-
ent images.

Table 11. Comparison of PSNR (dB) between the proposed method and the methods of Ni et al. [46],
Lee et al. [47], Li et al. [21], and Cai et al. [5] for a capacity of 1000 bits.

Image Ni et al. Lee et al. Li et al. Cai et al. Our Method

Lena 53.75 63.17 66.84 71.30 69.62
Baboon 50.47 55.81 58.59 70.78 57.90

Boat 52.07 60.28 64.63 70.96 64.97
Peppers 50.14 61.14 64.93 70.94 63.61

Aiprplain (F-16) 54.46 63.29 66.68 71.28 66.21
House 54.11 67.52 72.41 72.32 68.51

Average 52.50 61.87 65.68 71.26 65.14
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Table 12. Comparison of PSNR (dB) between the proposed method and the methods of Ni et al. [46],
Lee et al. [47], Li et al. [21], and Cai et al. [5] for a capacity of 5,000 bits.

Image Ni et al. Lee et al. Li et al. Cai et al. Our Method

Lena 47.81 55.14 59.50 54.14 60.59
Baboon 44.41 47.23 53.89 – 52.52

Boat 51.99 52.98 56.55 – 57.27
Peppers 44.08 53.96 57.82 61.52 57.00

Airplane (F-16) 54.31 57.34 60.50 64.29 59.86
House 53.98 56.60 64.53 65.28 63.48

Average 49.43 53.88 58.80 63.81 58.45

Table 13. Comparison of PSNR (dB) between the proposed method and the methods of Ni et al. [46],
Lee et al. [47], Li et al. [21], and Cai et al. [5] for a capacity of 10,000 bits.

Image Ni et al. Lee et al. Li et al. Cai et al. Our Method

Lena – 51.79 55.90 60.32 57.15
Baboon – – 50.93 – 50.62

Boat 48.24 46.25 53.35 – 54.00
Peppers – 48.66 54.53 – 54.11

Airplane (F-16) 48.10 54.47 57.87 61.43 57.18
House 48.35 52.80 61.09 62.25 60.68

Average 48.23 50.79 55.61 61.33 55.62

5.2. Comparison between the Proposed Method and the Different Embedding Methods with
Different Octant Embed Number

In this subsection, the variations in image quality under different embedding capacities
between the proposed method and the different embedding methods are compared. The
different embedding methods are generated by reducing the octant embed number of the
3D-PEH in the proposed method. The comparison results are shown in Figure 9.

(a) Embedding capacity range: 10 to 100 (b) Embedding capacity range: 1000 to 10,000

(c) Embedding capacity range: 5000 to 50,000

Figure 9. PSNR with different embedding methods and capacity ranges for the image Lena.
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According to the above results, when the bits of embedded secret data are few, the
distortion of the image can be slightly reduced by embedding the secret in fewer octants.
Thus, the reducing effect is limited. Conversely, when the bits of embedded secret data is
larger, the better quality of the image can be kept by embedding secret in more octants of
the 3D-PEH. It can be expected that the more bits of embedded secret data, the larger gap
between different embedding methods occurs. Therefore, we consider embedding secret
data in eight octants in the proposed method.

6. Conclusions

Machine learning, especially deep learning, has made significant progress in many
research areas and applications such as visual recognition, image classification and image
processing, etc. However, to the best of our knowledge, no deep learning approaches have
been successfully applied to RDH schemes which require images to be completely restored
and secret information to be extracted. This motivates us to apply such approaches to RDH.
In this paper, we propose a reversible data hiding scheme based on three-dimensional
prediction-error histogram modification and MLP networks. We utilize a trained MLP
neural network to predict pixel values and combining with PEE to achieve RDH. In addition,
the proposed method of modifying the three-dimensional prediction-error histogram can
better utilize the space in the three-dimensional coordinates for data embedding. Evaluation
of the quality and embedding capacity of the stego-images shows that the proposed method
still maintains a good PSNR and increases the maximum embedding capacity which
is 1.9–9.8 times of previous methods. Nevertheless, the proposed method still has its
disadvantages. Specifically, training the neural network and predicting pixels bit-by-bit
are both time-consuming. Developing methods to enhance the efficiency of the proposed
method, such as reducing the training time and predicting multiple bits at once, deserves
to be further investigated in future works. Moreover, this work focused on proposing a
novel reversible data hiding scheme which trains multilayer perceptrons by utilizing the
correlation between image pixel values and their adjacent pixels so that the accurate pixel
predictions can be achieved. There should be a trade-off between the performance and
the fragility. For a future research direction, it is worthy to discuss the impact of fragility
caused by transmission errors.
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