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Abstract-An origin-destination (O-D) table that accurately portrays a study area’s travel pat- 
terns is a valuable element in the modeling and analysis used to support public transportation 
investment decisions. The probabilistic approach to O-D table estimation involves a heuristic 
enumeration of link choice probabilities. The parameter 8, which reflects the variation in path 
choices among tripmakers, has not been discussed in the context of O-D table estimation, nor has 
an efficient way been demonstrated to determine the associated link use probabilities. This paper 
presents a method for O-D table estimation in a stochastic network. The “OD,Theta” method can 
not only estimate the O-D table, it also estimates the 8 parameter in the same process. The pro- 
posed method is illustrated using a sample test network. Finally, the method is applied to a real 
network, with the results compared to those from some well-known O-D estimation software. 
Copyright 0 1996 Elsevier Science Ltd 

INTRODUCTION 

The accuracy of an origin-destination (O-D) table estimated from link counts is affected 
by many factors, including the accuracy of the link counts and the assumed route choice 
behavior of the tripmakers. There are three main ways to approach this problem, all of 
which are based on explicit trip-making behavior. 

The Gravity Model assumes that each trip interchange value is based on the level of 
productions and attractions at the trip origin and destination, and on a function that 
represents the spatial separation of each origin-destination pair. Because trip impedance 
between each O-D pair affects the level of the trip production and attraction, the main 
drawback of the gravity model is that it cannot handle with accuracy external-external 
(or ‘through’) trips (Willumsen, 1981). 

A second approach uses mathematical programming techniques associated with equili- 
brium traffic assignment methods to estimate a trip matrix in a congested network. Based 
on the user equilibrium condition, Nguyen (1977) developed a bi-level programming 
structure to derive O-D tables from traffic counts via two models. By ‘bi-level program- 
ming problem’, we mean using two separate but interdependent optimization models to 
solve the problem iteratively. The major disadvantage of this approach is that a bi-level 
programming structure would pose computational difficulties for a large network. 

The third approach, entropy maximization (EM) and information minimization (IM), 
can make full use of the information contained in the observed flows. Actually, EM and 
IM are two similar but distinct model types. EM assumes that observed link counts follow 
the multinomial distribution. This assumption provides the basis for modeling O-D trip 
patterns if no more information is known about the network flows. The IM model, how- 
ever, adjusts the EM’s distribution assumption if given information about the degree to 
which O-D trips use each of the links in the network. Unfortunately, the link use infor- 
mation is usually derived from an outdated or artificially fabricated trip table. 
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Models following the EM and IM philosophies are developed and analyzed in Van 
Zuylen and Willumsen (1980) and Beagan (1986) applied these methods on a small net- 
work. However, the input information is tedious and hard to generate in practice. A more 
recent version of The Highway Emulator (THE) (Bromage, 1988) has eased the input 
effort, but the underlying assumptions and the need to internally fabricate a ‘target’ trip 
table remain. 

Probabilistic O-D estimation approaches such as EM and IM involve a heuristic 
enumeration of link choice probabilities. Most previous optimization approaches have 
neglected: (a) the fact that not all drivers will have perfect information on path travel 
costs; and (b) how sensitive drivers’ choices of paths are among reasonable candidate 
paths. By incorporating the assumption that the logit model describes driver route 
choice, the underspecified nature of this problem is resolved. This paper addresses net- 
works that have stochastic characteristics (i.e. travelers’ perceptions of link costs vary) 
and extends the O-D estimation model to include the 0 route choice parameter at the 
same time. 

NOTATION 

A : set of links 
K : set of possible paths 
N : set of nodes 
0 : stochastic assignment dispersion parameter 

{(r&I : set of O-D pairs V r,s E N 

6” = 1 if link a is on path k between r and s 
ak 1 0 otherwise 

c, : observed travel cost on link a 

cp = C(ca4s) : kth path travel cost from r to s 

Pr : parobability of selecting path k from r to s 
P rsa : probability of choosing link a on all possible paths from r to s 

T, : target trip interchange value from r to s, if available 

4 rs : O-D flow from r to s 
pbs . 

,&t 
. observed link volume on link a 

a : estimated link volume on link a from the model 

METHODOLOGY 

The formulation 

Given a set of link flows and link travel costs, estimating the best O-D table and 8 
parameter can be interpreted as reversing the stochastic logit network loading process 
(Sheffi, 1985) so that the assigned link flows from the estimated O-D table and 0 para- 
meter are close to the observed flows. Consequently, we can formulate the O-D table and 
0 parameter estimation as minimizing the difference between modeled and observed 
flows, and solve the problem by using a stochastic logit assignment approach and non- 
linear programming techniques. The formulation is as follows. 

L(qr’, 0) =Min c [ c q” . (c Pr . 6:) - _x,0bs12 

a F-s k 

St. 

qrs 2 0. 

(1) 

Because all variables must be non-negative, the optimal solution will be located either 
at the boundary point or in the interior of the feasible region, as shown in Fig. 1. 
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(a) (b) 

Fig. I. Optimality in constrained cases. 

The mathematical forms of Fig. l(a) and (b) are: 

V(x) = () 
x’X- (2) 

The above formulation can be interpreted as Primal and Dual problems in Linear 
Programming and converted to a Linear Complementarity Problem (LCP) (Bazaraa & 
Shetty, 1979). To make this conversion, eqn (1) is modified as follows. 

L = Min c [ c q” . (c Fl .6z) - xzbs]* - c c wrs . qrs 
II ,s k I s 

(3) 

where qrs and 8 are decision variables and 

Also, w” is the dual variable of O-D flow, 4”. 
From the optimality conditions in eqns (2), we get the following problem: 

e = 0 + 2 c [ c(Pp5;) . (C qrs. ~(p;sb$) - Xp)] - wrs = 0 V(r,s) (4) 
0 k IS k 

dL .- wrs dw’S 
= 0 -_) W’S . qrs = 0. 

wrs >_ 0 

qrs 2 0 

Using linear algebra, this formulation can be restated as: 

W-M.q=b 

w*q=o 

WLO 

q10 

where 
W: 
M: 

vector of dual variable of q” 
positive definite Hessian matrix of the objective function 

(5) 
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vector of O-D flow to be estimated 
vector of right hand side 

b = c P,,, . (-xibS). 
a 

The formulation above is actually a LCP that is guaranteed to terminate in a finite 
number of steps with either an optimal or unbounded solution (Bazaraa & Shetty, 1979; 
Evans, 1971). In 1968, Lemke introduced a revised simplex method to solve this problem, 
but restricted both entering and leaving variables to be complementary to each other. 

Solving the problem by using the derivative of the objective function with respect to 0 
can accelerate convergence, but carries with it greater computational effort in path 
searching. To avoid path enumeration and to estimate both 0 and an O-D table, we 
separate the search procedures for the optimal solution into two stages. The first stage 
applies a logit-based assignment model combined with Lemke’s LCP algorithm to esti- 
mate the O-D table. Solutions from the first stage then act as an input to the second stage 
-the maximum likelihood method-to get the parameter 0. Iterations are repeated until 
the the first derivative of the maximum likelihood value approaches zero. 

In 1974, Robillard showed how maximum likelihood could be used to estimate the 
parameters in the multipath assignment method introduced by Dial in 1971 (Dial, 197 1; 
Sheffi, 1985). Robillard used a link-based approach in applying the maximum likelihood 
method, but the search method he applied was deficient. Because a maximum likelihood 
formulation is an unconstrained problem, to calibrate a 0 parameter is to find the con- 
vergent point when the value of the first derivative of the objective function vanishes. 
However, Robillard estimated these first derivative function values by introducing two 
initial 0 parameters. If the signs of the two initial first derivative function values are the 
same, then the estimated interval of OS will be expanded by 10%. Otherwise, a binary 
search is used to locate the points for the next iteration. 

Because the local optimal point is located where the first derivative vanishes, if the signs 
of the first derivatives of the objective function associated with two points, 0, and Q2, are 
opposite, then the optimal solution Q* exists between Qi and OZ. Fisk (1977) suggested a 
path-based approach to formulate the 0 calibration problem using the maximum like- 
lihood method, in which the optimal solution can be searched more efficiently. Her search 
effort used the Hessian matrix-the second derivative of the objective function. However, 
the preliminary task of calculating each path probability can be costly, so Fisk’s approach 
becomes impractical when the network is large and has multiple paths. 

Two-stage calibration for 0 
Let x, : flow on link a 

and 

wheref;: flow on path k from r to s, and other notation is as before. 
The maximum likelihood method then can be formulated as: 

where 
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Let 

L(0) = lnX(~~}, 0) = CCC In(T). 

rs k 

Because 

E(c;;‘) = c cr P; 
k 

and 
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(7) 

(8) 

(9) 

this is an unconstrained optimization problem. The stationary point can be obtained when 
the first derivative is zero: 

From (8) 

(10) 

From (9) 

aw 
a. = -y{C[cy . P,,, . qrsl - [I c:” .x:1) 

i-s u ‘i 

In eqn (lo), the first derivative of the maximum likelihood function contains only link 
variables. However, estimating the second derivative of the objective function, $& 
requires path enumeration, which makes this approach ineffective. To avoid directly 
computing the second derivative of the objective function, the secant method (Haggerty, 
1972, pp. 53-54) approximates the second derivative value by using the slope of two first 
derivatives of the objective function. Starting at two initial values, the next point then can 
be obtained as shown in Fig. 2. 

Based on this two-stage line search strategy, a convergent solution will be obtained by 
iterative applications of the LCP algorithm and the maximum likelihood method. There- 
fore, the optimal solution of an O-D table, as well as the 0 parameter, can be found. For 
this reason, we shall refer to the proposed method as the ‘OD.Theta’ approach. 
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aL(o) 
ao 

Fig. 2. Line search by the Secant Method. 

SOLUTION ALGORITHM 

To estimate an O-D table and to calibrate a 0 parameter in a stochastic network, the 
steps in the proposed ODeTheta approach are as follows. 

1. 

2. 

3. 
4. 

5. 

6. 
7. 

8. 
9. 

Let RUN = 0, where RUN is the number of iterations so far. Start with two initial 
0 values, say, 01 and 02. Let 0 = 01. If tripmakers will not accept distinctly inferior 

paths, the possible range of 0 values will be between zero and some positive number. 
Determine all-to-all shortest paths (Minieka, 1978). A flow pattern in a real trans- 
portation network involves multiple O-D pairs. In an uncongested stochastic net- 
work, the all-to-all shortest path information is especially useful for the logit 
assignment model. This is because the defined route choice set involves a comparison 
at each intermediate node to determine whether the next sequential node is closer to 
the destination and farther away from the origin node. Such a sequence of nodes 
comprises a ‘reasonable’ route. (Sheffi, 1985, p. 288) 
RUN = RUN + 1 
Traffic assignment by the logit model. To formulate the objective function using least 
squared error requires the link use probabilities from each O-D pair. The logit 
model as implemented by Dial’s algorithm (Dial, 1971; Sheffi, 1985) establishes the 
framework for estimating these P,,, values, which appear in eqns (5) and eqns (10). 
Least squared error formulation. Develop the least squared error objective function 
as in eqn (1) and convert the least squared form into a LCP standard form. In the 
converted formulation, only the O-D variables q’” are decision variables. 
Use the LCP algorithm to solve for the O-D table. 
Calculate Root Mean Square 

RMSE= \j”l%;““‘; 

where N is the number of links with observed link counts and a E set of links with 
counts. Check the first derivative of the likelihood function and calculate RMSE. If 
the values are within acceptable error or RUN reaches the maximum allowed num- 
ber of iterations, STOP; otherwise, go to next step. 
If RUN = 1, then let 0 = O2 and go to Step 3; otherwise, go to next step. 
Find a new 01 by the Secant Method. Of the two old OS, keep the one with the lower 
absolute first derivative value as Q2, and go to Step 3. 

The only input data are the observed link counts and link costs; the decision variables 
are the O-D table entries and the 0 parameter. 

SAMPLE TESTS 

In this section, a network used by Robillard (1974) and Fisk (1977) (see Fig. 3) is 
employed to demonstrate the estimation of both 0 and an O-D table. If the first two 



Estimation of a trip table 293 

link travel cost 
(observed flow) 

Fig. 3. Robillard Network 

iterations are not counted, the convergent solutions using bi-level programming are as 
shown in Fig. 4. 

The final results are 0 = 1.35 (which matches the value found by both Robillard and 
Fisk) and the O-D matrix shown in Table 1. 

The results not only verify that an O-D table and a 0 parameter can be estimated at 
the same time, but they also demonstrate that the OD.Theta algorithm matches the 
observed link volumes closely. 

The next example will show that errors in an O-D table and in a 0 estimation can be 
caused by adopting a poor tripmaker path choice rule. The “hypothetical observed link 
counts” in Fig. 3 were obtained from a logit assignment using the input data-an O-D 
table and, a 8 parameter-and the assumption that tripmakers only choose ‘reasonable’ 
routes. By employing the same path choice rules, reversing the network loading proce- 
dures to estimate both an O-D table and a 8 parameter should duplicate the original 
conditions. However, in a real network, drivers may not always restrict their choices to 
‘reasonable’ paths. If this ‘reasonable path’ rule is followed, the possible paths from ori- 
gins 1 and 2 to destination 9 in Fig. 3 will never include link (2,3). This is because, from 
node 2, the shortest path travel cost to the destination is 3 units. If drivers choose node 3 
from node 2 as their next node, the shortest path travel cost to the destination from node 
3 is still 3 units, which is not closer to the destination. Therefore, the ‘reasonable path’ 

( l&l : Maximum Likelihood Method) 
ae 

0.060 , I 

0.042 - 

0.036 - 

0.030 - 

0.024 - 

0.018 - 

0.012 - 

0.006 - 

0 I I 
; 2 3 4 S 

Number of Iterations 

Fig. 4. Convergent OD,Theta solutions for Robillard Network 

12 

8 

6 
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Table I Multiple estimation result (0 = I .35) 

Origin 
Destination 

8 9 

I 500 199 
2 0 300 

Flow 

Link .Ps .P’ 

(12) 230 230.42 

(134) 239 238.69 

(l,5) 230 230.42 

(2,3) 0 0 

(2,5) 530 530.39 

(376) 0 0 

(4.5) 60 59.55 

(437) 179 179.13 

(56) 158 157.91 

(538) 505 504.56 

(539) I58 157.91 

(639) I58 157.91 

(738) 179 179.13 

(g>9) I84 183.55 

rule excludes paths l-2-3-6-9 and 2-3-6-9 from consideration, even though their total path 
costs are only one unit greater than some of the ‘reasonable’ paths. This is likely to make 
the logit assignment flow pattern less dispersed than the actual pattern. 

If we redefine ‘reasonable’ paths as those whose sequence of nodes merely take trip- 
makers further away from their origin nodes, then the estimation results for Fig. 3 get 
worse. (See Fig. 5 and Table 2.) 0 = 1.926, which produces a flow pattern with an aver- 
age RMSE x 13 trips per link (vs nearly zero in Table 1). After changing the ‘reasonable 
path’ rule, some travelers now use link (2,3) to reach destination 9 from origin 1 or 2. In 

0.160 

0.096 

0.080 

0.064 

0.048 

0.032 

0.016 

0 

Solutions of Algorithm 
(Modified Choice Set) 

. . 
*.* 

!..._ . ’ RMSE i 

I : I 
I I I I I I I 
; 2 j 4 ; 6 7 8 

24 

20 

16 

8 

4 

0 

Number of Iterations 

Fig. 5. Convergent solutions by changed choice set. 
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Table 2. Multiple estimation result after changed choice set 
(0 = 1.926) 

Origin 
Destination 

8 9 

I 512 I85 
2 0 312 

Link Xobs 

Flow 

pt 

(172) 230 239.27 

(134) 239 221.39 

(l>5) 230 235.73 

(2,3) 0 17.98 

(2,5) 530 532.8 

(336) 0 17.98 

(475) 60 34.35 

(427) 179 187.04 

(5,6) 158 151.26 

(5>8) 505 500.36 

(5>9) 158 151.26 

(6>9) 158 169.24 

(7,8) 179 187.04 

(899) I84 175.6 

both Figs 4 and 5, the compatible convergence behavior of the RMSE and first partial 
derivative values can be observed, although the RMSE plot levels out more quickly. In 
addition, some tests indicated that the derivative values are not as stable as the RMSE 
values, as the iterations continue toward the stopping criteria. 

If we relax the ‘reasonable path’ definition as described above, more alternatives that 
are intuitively ‘reasonable’ can be considered and chosen. Link (2,3), although having 
no ‘observed’ link counts, is also modeled as being chosen by some travelers. Because 
the objective function is to minimize the least squared error, the model will decrease the 
path flow passing through link (2,3) to as close to zero as possible. This has the impact 
of increasing the flow on the other possible paths and increasing the value of the 8 
parameter. When compared with the results in Table 1, the final solution in Table 2 
underestimates the O-D flow from node 1 to node 9 and overestimates other O-D 
trips. 

There is no general criterion by which to determine which path choice rule is better. 
However, if some links with observed link counts have not been selected by a model, then 
analysts need to revise the route choice rules. 

Another small network, called Oct8X (see Fig. 6), was used for tests of the ‘OD.Theta’ 
approach and The Highway Emulator (THE). THE is a well-known software package 
that estimates O-D tables from link counts using the Maximum Entropy approach (Van 
Zuylen & Willumsen, 1980). THE’s O-D estimation algorithm makes the smallest possi- 
ble adjustments to an initial trip table in order to match the observed link volumes 
(Bromage, 1988). Results from THE on ‘Oct8X’ are listed in Table 3. 

For ‘Oct8X’, the OD.Theta approach finds the minimum RMSE when 8 = 0.413. (See 
Fig. 7.) The corresponding O-D table and link flows are summarized in Table 4. 

If we check the estimated and observed trip ends of each origin and destination, we find 
that THE underestimates trips from zone 1 by 46.5% and trips to zone 2 by 51.4%. The 
difference in these two cases is less than 8% when the OD.Theta approach is used. The 
total number of observed trip ends is 16,225. However, THE underestimates this total by 
about 20%, while the OD.Theta total is within 1%. On a network designed for completely 
different purposes, the proposed OD.Theta approach meets important performance cri- 
teria very well. 
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In the next section, a real data set for a network near the Purdue University campus will 
be tested and the results will be compared with those from THE. 

Fig. 6. Test network ‘OctSX’. 

Table 3. O-D table for 0&8X by THE 

0 
1 

D 

2 3 4 
Total 

1 0 142 2068 1482 3692 
2 888 0 908 363 2159 
3 1293 1605 0 5 2903 
4 2147 1775 227 0 4149 

Total 4328 3522 3203 1850 12903 

400 

300- 

RMSE I 

200- 

100 I I I I 
0 0.4 0.8 1.2 1.6 

Fig. 7. RMSE fit of Oct8X by OD.Theta. 



Estimation of a trip table 

Table 4. O-D table for Oct8X Fit by OD,Theta (0 - 0.413) 

297 

0 
I 

D 

2 3 4 
Total 

I 0 4051 2206 638 6895 
2 934 0 990 429 2353 
3 537 1285 0 642 2464 
4 2494 1907 I 0 4402 

Total 3965 7243 3197 1709 I6114 

Link 

Flow 

,@s P 

(l,5) 6900 6894.57 
(236) 2340 2358.07 
(3,7) 2435 2446.74 
(4>8) 4550 4390.34 
(591) 3960 3965.42 
(5,6) 3374 3325.53 
(5.7) 2509 2504.16 
(5>8) 1571 1730.12 
(6>2) 7250 7252.76 
(6.5) 880 858.59 
(6.7) II00 1071.68 
(639) 360 427.79 
(7,3) 3170 3180.25 
(775) 1285 1267.84 
(7>6) 1589 1574.49 
(834) 1845 1691.30 
(835) 2350 2504.23 
(836) 1898 2120.65 
(839) 388 232.08 
(936) 388 232.08 
(9>8) 360 427.79 

TESTS ON A REAL NETWORK 

The Village Network 

The street system adjacent to Purdue University’s campus is highly congested during the 
AM and PM peak hours. There is heavy pedestrian traffic crossing the streets near campus, 
including a state highway. In an effort to improve traffic flow and increase pedestrian safety, 
this street network (in what is known as ‘The Village’) underwent significant changes on 13 
May 1991. The principal change was the conversion of four major arterial streets from 2- 
way to l-way operation. Figures 8 and 9 show the changes in detail. Data on link counts and 
turning movements were collected before and after the street network changes. In Septem- 
ber 1990 and September 1991, license plate surveys were conducted to estimate flow pat- 
terns within and through The Village. The Village network before 13 May 1991 (Fig. 8) is 
referred to as ‘VillNetl’; after that date (Fig. 9). it is called ‘VillNet2’. The O-D tables 
derived from the two license plate surveys are shown in Tables 5 and 6. 

VillNet 1, a network representation developed to test traffic assignment models, contains 
links that portray turning movements at each major intersection in some detail. Con- 
servation of flow at each node was achieved by using a maximum entropy method con- 
tained in THE. The O-D table subsequently estimated by THE is listed in Table 7. The 
total O-D flows are 6756, which is close to the total of 6651 that was estimated by the first 
license plate survey. 

Using the same data, a best fit O-D estimate for VillNetl was found by searching for 
the minimum RMSE while assigning O-D traffic flow by OD.Theta. The results are 
shown in Fig. 10 and in Table 8. 

The OD.Theta results show a 0 value of 0.255 for VillNet 1. A positive 0 value means 
that users are trying to choose their shortest paths; as 0 increases, the probability of 
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Table 5. O-D table for VillNet 1 from License Plate Survey 

D 
0 Total 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

I 0 14 96 
2 26 0 24 
3 75 2 0 
4 35 0 32 
5 55 I 51 
6 58 I 51 
7 59 I 54 
8 58 1 53 
9 146 33 293 
IO 670 26 219 
I1 20 0 19 
12 50 5 34 
13 31 6 64 
14 51 2 60 
15 33 0 30 

Total 1367 92 1080 

39 24 17 11 65 105 396 22 24 4 13 34 
2 1 1 0 3 49 34 2 1 0 I 8 

29 17 12 9 49 247 186 30 16 3 10 26 
0 4 2 2 9 27 50 4 4 0 2 5 

10 0 4 2 15 43 79 6 6 0 4 8 
10 6 0 2 15 44 82 6 6 0 4 8 
10 6 4 0 IS 46 84 6 6 0 4 8 
9 6 4 2 0 45 83 6 6 0 4 8 

55 32 23 15 90 0 184 44 31 4 20 36 
69 41 28 21 113 143 0 45 40 7 24 96 

4 2 2 0 6 16 29 0 1 0 0 3 
7 3 3 2 12 37 82 4 0 0 2 13 
8 4 4 2 14 41 59 7 4 0 2 7 
6 3 3 I 10 26 66 0 3 0 0 27 
6 2 2 2 9 27 48 4 2 0 2 0 

864 
152 
711 
176 
284 
293 
303 
285 

1006 
1542 

103 
254 
253 
258 
167 

264 151 109 71 425 896 1462 186 151 18 92 287 6651 

Table 6. O-D table for VillNet2 from License Plate Survey 

0 
D 

Total 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 
2 41 
3 313 
4 9 
5 64 
6 67 
7 50 
8 226 
9 81 
10 876 
II 40 
12 88 
13 62 
14 66 
15 2 

Total 1991 

12 60 11 0 4 2 210 86 480 9 6 0 0 11 
0 43 21 0 39 0 3 0 0 0 0 0 0 04 
I 0 26 13 7 I 35 243 188 12 14 11 0 104 
0 20 0 56 0 0 7 7 4 0 0 0 0 0 
1 187 34 0 0 0 29 43 18 0 3 0 0 0 
1 37 0 2 0 0 19 25 138 16 3 0 0 10 
1 80 25 0 0 6 19 0 35 IO 3 0 0 0 
0 19 17 0 0 0 0 30 11 0 0 0 0 0 
1 344 58 3 13 0 39 0 83 95 2 7 0 44 

46 84 30 I 36 1 44 235 0 23 22 8 0 13 
0 61 10 0 5 0 4 29 22 0 0 0 0 10 
0 9 11 0 7 0 2 12 52 0 0 0 0 2 
0 74 13 0 0 0 3 108 5 4 0 0 0 2 
0 79 6 1 6 0 4 20 60 0 0 0 0 6 
0 84 5 0 7 0 3 68 10 0 0 0 0 0 

63 1181 267 76 124 10 421 906 1106 169 53 26 0 206 

891 
157 
968 
103 
379 
318 
229 
303 
770 

1419 
181 
183 
271 
248 
179 

6599 

Table 7. O-D table for VillNetl from THE 

0 
D 

I 2 3 4 5 6 7 8 9 IO 11 12 13 14 15 
Total 

1 0 
2 51 
3 76 
4 3 
5 6 
6 48 
7 16 
8 3 
9 40 
IO 982 
11 4 
12 97 
13 11 
14 14 
15 1 

Total 1352 

34 46 
0 1 
I 0 
0 30 
0 46 

34 6 
3 54 

18 26 
8 514 
6 115 
0 51 
0 7 
2 151 

10 17 
0 10 

116 1134 

21 12 13 I1 371 23 343 4 15 1 4 8 
0 0 3 21 1 42 0 7 3 1 7 0 

49 28 1 0 3 312 153 56 18 11 1 20 
0 9 0 0 0 53 40 10 5 3 0 17 

24 0 0 0 0 82 62 15 8 4 I 26 
4 1 0 0 2 15 155 3 21 0 3 4 

28 16 0 0 0 68 51 12 2 3 23 30 
11 7 7 6 0 13 189 2 8 1 2 4 
10 6 15 3 1 0 127 30 5 0 15 100 
51 30 64 57 36 112 0 20 73 4 19 20 

1 0 2 0 0 15 11 0 I 0 1 9 
15 9 2 3 4 4163 10 0 : I 
2 2 4 I 0 44 34 8 I 0 26 
8 4 3 1 0 107 46 18 7 34 0 9 

15 9 0 0 0 52 39 9 5 3 0 0 

239 133 114 103 418 942 1413 195 172 70 80 274 

906 
137 
729 
170 
274 
296 
306 
297 
934 

1589 
95 

307 
290 
283 
143 

6756 
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Fig. 10. RMSE fit of VillNetl by OD.Theta. 

Table 8. O-D table for VillNetl from OD,Theta 

0 
D 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 I5 Total 

1 0 1 0 97 62 0 0 349 0 363 0 0 0 0 0 872 

2 43 0 I 1 I 7 0 0 0 I 1.5 71 0 0 1 141 

3 20 1 0 0 0 0 63 0 236 179 174 0 0 0 74 747 

4 0 1 0 0 92 0 0 0 0 52 0 1 0 0 27 173 

5 0 I 157 0 0 0 0 0 8 113 0 1 0 0 0 280 

6 192 1 0 0 0 0 1 0 28: 67 0 1 0 0 56 318 

7 0 1 85 0 0 I 0 0 21 0 0 44 9 443 

8 1 1 30 0 0 0 38 0 149 26 0 :, 0 46 0 291 

9 243 I 524 0 0 1 0 7 0231 0 1 0 I 0 1009 

10 888 51 I98 117 0 120 40 0 20 0 0 108 0 0 0 1542 

I1 0 1 77 0 0 1 0 0 22 0 0 1 0 1 0 103 

12 1 78 0 0 0 0 0 1 0 234 0 0 0 20 334 

13 10 1 0 53 0 I 0 0 I50 0 0 1 0 1 8: 302 
14 0 1 0 0 0 8 35 0 0 176 0 1 0 0 37 258 

I5 0 I 0 0 0 0 69 64 32 0 0 I 0 0 0 167 

Total 1398 141 1072 268 155 139 246 421 898 1463 189 188 0 113 289 6378 

choosing the single shortest path increases. The relatively small value of 8 in this solution 
may mean that road users in VillNetl are not well aware of the actual shortest paths or 
are unwilling to seek time-saving routes around congested (but more familiar) arterial 
links. Separate research (Fricker & Moffett, 1993) indicates that such driver behavior does 
take place. 

The curve of RMSE vs 8 in Fig. 10 is a quasi-convex function (Bazaraa & Shetty, 
1979). This is reasonable, because when 8 approaches 00 or -00, the limiting traffic 
assignment pattern will follow the shortest paths or longest paths, respectively. Therefore, 
the assigned link flow patterns at these extreme 8 values should approach a steady state 
and a constant RMSE value. 

Taking the O-D table based on the license plate survey as the true table for VillNetl, 
the sum of squared errors from THE is 430,488, which is better than the OD.Theta 
approach’s 580,537. However, comparing the volumes of major O-D flows tells a differ- 
ent story. The major through volumes in the study area-between, zones 10 and 1 and 
between zones 9 and 3-are thought to be the most reliable O-D entries, based on the 
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Table 9. Comparison of VillNet 1 through trip O-D entries 

O-D entries 

Method 

License Plate 
OD.Theta 
THB43 

U,lO) (10,1) (3,9) (933) 

396 670 247 293 
363 888 236 524 
982 312 574 

matching of vehicle license plate numbers. Assuming the O-D entries from the license 
plate approach are correct, THE gives a poorer estimate of these major through trips than 
does ODsTheta (see Table 9). 

The reason why THE estimates these major through trips poorly might be EM’s 
underlying multinomial distribution, which assumes random variates with equal prob- 
ability for each possible outcome. This assumption is derived from the physical law of 
molecular behavior, but this assumption may not be true when applied to driver route 
choice. One consequence would be a tendency to underestimate through trips. In contrast, 
the ODeTheta approach has the added flexibility of adjusting 8 in seeking the O-D table 
estimate whose traffic assignment pattern minimizes RMSE. In addition, EM cannot 
produce an accurate estimate for an O-D pair if the final solution must be zero (Bromage, 
1988) and it provides an O-D table with systematic errors when the total O-D flow is not 
equal to the total number of trips in the ‘observed’ trip table (Gur, 1983; Willumsen, 
1981). 

The same network after changes 
The VillNet2 link counts used by THE lead to Table 10. The VillNet2 results from 

OD.Theta are shown in Fig. 11 and Table 11. 
Comparing O-D estimates for VillNetl and VillNet2, the total PM peak hour O-D 

volume estimated by THE increases by 500 trips. The total O-D volume estimated by 
OD.Theta is about 650 trips more for VillNet2 than for VillNetl, but closer to the license- 
plate-based Table 6 total than is THE. 

The 8 parameter in The Village after the street system changes dropped from 0.255 to 
0.118. This is ‘evidence’ of somewhat greater route choice dispersion than in VillNetl. 
Because many obvious direct routes between two points have been eliminated by the new 
one-way street pattern, motorists have been forced to try a variety of more circuitous 
routes to reach their destinations. As a member of the Mayor’s task force set up to study 

Table IO. O-D table for VillNet2 from THE 

0 
D 

Total 
I 2 3 4 5 6 7 8 9 IO 11 I2 I3 I4 I5 

I 0 I4 0 5 I 9 12 I78 39 442 
2 II9 0 0 2 I 4 6 I4 I8 163 
3 I83 58 0 43 I4 73 106 21 338 43 
4 5 I 55 0 3 4 5 I 17 3 
5 I8 4 I89 33 0 I3 I9 2 60 8 
6 40 1 18 4 I 0 15 4 48 159 
7 IO 1 78 I4 4 I 0 I 99 39 
8 36 3 0 2 0 3 3 0 II II9 
9 46 8 368 65 20 3 0 5 0 I83 
IO 1477 I3 2 I6 5 28 40 I71 129 0 
11 10 1 81 14 5 0 I I I4 40 
I2 5 6 I 9 3 I4 21 0 67 20 
I3 8 2 69 12 4 0 0 I I10 34 
I4 22 2 78 I4 5 0 8 3 26 87 
15 9 2 97 4 1 7 IO I 30 4 

Total 1988 II6 1036 237 67 159 246 403 1006 1344 

7 2 0 0 174 883 
4 I 0 0 66 398 

60 I5 4 0 5 963 
31004 102 

IO 3 I 0 I5 375 
9 9 0 0 2 310 

17 2 18 0 7 291 
2 0 I 0 47 227 

I2 10 0 I 29 750 
23 5 2 0 8 1919 
0 2 0 1 6 176 

I2 0 I 0 4 163 
20 2 0 0 5 287 
45 006 260 
6 I I 0 0 173 

I89 58 28 2 378 7257 
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RMSE 
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Fig. 11. RMSE fit of VillNet2 by OD.Theta. 

Table 11. O-D Table for VillNet2 from OD.Theta 

0 
D 

1 2 3 4 5 6 7 8 
Total 

9 10 11 12 13 14 15 

1 0 5 0 0 0 0 0 193 0 562 0 0 0 0 132 892 
2 89 0 0 0 0 0 0 0 30 20 0 0 0 0 28 167 
3 0 30 0 0 0 0 0 225 502 57 192 0 0 0 1 1007 
4 34 1 0 0 73 0 0 0 0 0 0 0 0 0 0 108 
5 89 1 38 256 0 0 0 0 0 0 0 0 0 0 0 384 
6 284 I 49 0 0 0 0 0 0 0 0 0 0 0 0 334 
7 0 1 36 0 0 1 0 0 86 104 0 0 19 0 0 247 
8 161 0 112 0 0 0 0 0 19 0 0 0 0 0 13 305 
9 0 1 502 0 0 I 0 0 0 231 I 76 0 0 0 812 
10 1254 46 0 0 0 196 0 0 71 0 0 61 0 0 0 1628 
11 0 1213 9 0 10 0 10 0 0 0 0 0 225 
2 47 0 0 0 0 0 0 0 54 36 0 0 0 0 0 137 
13 32 I 174 0 0 I 0 0138 0 0 0 0 0 0 346 
14 0 1 16 0 0 1 0 0 27 109 0 0 0 0 94 248 
15 0 1 29 0 0 0 0 3 0156 0 0 0 0 0 189 

Total 1990 90 1169 265 73 201 0 421 928 1275 193 137 19 0 268 7029 

the impacts of the new street pattern, the second author received numerous comments 
from local citizens about how they traveled between points in the Village network. The 
comments indicated a surprising lack of consensus on which new path between many 
given O-D pairs in VillNet2 is the ‘best’. Although VillNetl had more path alter- 
natives than VillNet2 now does, VillNetl usually had one or two ‘obvious’ (commonly 
used) choices. While VillNet2 has fewer alternatives, often there is no clearly superior 
path choice, leading to greater dispersion in traffic flow, which is reflected in a lower 0 
value. 

For the VillNet2 network, the sum of squared errors with respect to the license plate O- 
D table is 668,806 from THE, and 851,698 from ODaTheta. Much of this error is asso- 
ciated with the major east-west through trips shown in Table 12. Both THE and OD.- 
Theta indicate a shift of through trips from the (9, 3) O-D pair to the parallel (10,l) O-D 
pair to the north that is not reflected in the license plate survey. Because VillNet2’s one- 
way pattern restricts the number of route choices previously available in VillNetl, the 
VillNet2 results may be an indication that OD.Theta performs better where a wider range 
of route alternatives exist. 
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Table 12. Sensitivity to network changes 

Method Data Set 
(l,lO) 

O-D Entries 

(10,1) (339) (973) 

VillNet I 396 670 241 293 
License Plate VillNet2 480 876 243 344 

VillNet I 343 982 312 574 
THE VillNet2 442 1477 338 368 

VillNet I 363 888 236 524 
OD.Theta VillNet2 562 1254 502 502 

CONCLUSIONS 

Based on the tests of the OD.Theta method and comparisons with THE, several con- 
clusions can be drawn. 

1. Estimation of an O-D table and the 0 parameter for stochastic assignment can be 
accomplished at the same time. This improves the consistency of the estimation, because 
the O-D estimation occurs in conjunction with the value of the 0 parameter that best fits 
the observed link flows. 

2. The input requirements are simplified. Only link volume counts and link travel costs 
are needed; no target trip table is required. If a target trip table can be partially or fully 
specified, terms can be added to the objective function that incorporate this additional 
information without affecting the problem structure. 

3. O-D table estimation and 0 parameter calibration have been demonstrated on a 
real network that offered: 

flow and link cost data of reasonable accuracy; 
a separately-estimated O-D table; 
a size and complexity greater than the test networks commonly seen in the literature; 
a change in network conditions (introduction of one-way arterials) that per- 
mitted some evaluation of model sensitivity. 

The network dispersion parameter 0 was 0.255 in the original VillNet study area and 
decreased to 0.118 after the one-way street changes. This decreased 0 value can be inter- 
preted in terms of decreased driver certainty in selecting shortest paths after many obvious 
direct paths have been made unusable. 
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