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Abstract

Frequently implemented at freeway accesses to streamline traffic, ramp-metering control strategy is often
implemented during rush hours in heavily congested areas. This paper presents a novel ramp-metering
control model capable of optimizing mainline traffic by providing metering rates for accesses within the
control segments. Based on Payne’s continuum traffic stream model, a linear dynamic model with a qua-
dratic objective function is constructed for integrated-responsive ramp-metering control. Incorporating on-
line origin—destination (OD) estimation of co-ordinated interchanges into the proposed model increases
efficiency of the control. In addition, an iterative algorithm is proposed to obtain the optimal solution.
Simulation results demonstrate the robustness of the proposed model and its ability to streamline freeway
traffic while avoiding traffic congestion. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Traffic congestion severely limits road users and traffic officials in many industrialized and
developing countries. Freeway congestion in Taiwan is no exception. According to the traffic flow
theory, high density of vehicles in a particular section corresponds to a low flow speed and also
implies a low volume. Therefore, when high traffic demand occurs, vehicles that continuously
approach the mainline must be controlled to ensure that the freeway operates at optimal capacity.
Previously, police officers manually executed ramp-metering control whereas traffic signals cur-
rently perform the same function. Although applied elsewhere, local ramp control cannot achieve
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Nomenclature

by, the transition parameter for yf; to yi*!

k discrete time step or stage

/ road section

M the maximum number of time steps required for vehicles to traverse the entire
freeway section

N the number of road sections

n the number of lanes on section /

q flow

Gmax the maximum flows or capacity

gt the flows passing through x; at time k (veh./lane/step)

‘]]i,z the ideal or nominal flow (veh./h)

q the difference to the ideal flow on section / at time k (veh./lane/step)

Q,,0Q; the weighting factors for the system and control matrices, respectively

r the on-ramp flows at ramp / during k (veh./step)

7o the ideal or nominal on-ramp flow rate, ramp capacity

R: Atrk

R, (k),Ry(k) covariance matrices with respect to W(k) and V (k)

sk the off-ramp flows at interchange / during & (veh./step)

Sk Atsh

S(klk —1) a predicted k-stage vector on account of (k — 1)-stage S

t time

At the time duration of one step

u speed

uk the actual speed on section / at time k (km/h)

ut, the ideal or nominal speed (km/h)

u, speed at gmayx (km/h)

uk the difference to nominal speed on section / at time k

ue(p%) the equilibrium speed under the density condition of p#

Uy the proposed on-ramp-metering flow rate at ramp x; at time kAt ~ (k + 1)A¢

Ukt on-ramp capacity of ramp / during stage k + 1

Ut the difference between the proposed on-ramp-metering flow rate and the
on-ramp capacity at ramp x; at time kAs ~ (k + 1)A¢

vl wh random noises, respectively

V(k),W(k)  random noise vectors, formed from v, ws;, respectively

X the location of the beginning point of section /

yf]f"’ ratio of the trips of OD pair ij in the total trips from ramp i at time k — m

Y (k) the filtered point of variable Y(k)

Y(klk—1) a predicted k-stage vector on account of (k — 1)-stage Y

p density

ok the actual density on section / at time k (veh./lane/km)

the ideal or nominal density on section / at time k&
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0, density at gp.x (veh./lane/km)

ok the difference to nominal density on section / at time k

Apfl the noise for the density on section / by the leaving flows at off-ramp / at
time k

Bf.‘j””’k fraction of the arrived trips at k, which are generated for the OD pair ij at
k—m

T the driver reaction time

,uf.‘j”""k mean of travel time from 7 to j during the period [k — m, k ], counted in steps

A a preset maximal period in a control to optimum

v the coefficient representing a driver’s prediction to the density of next section

a global optimum. Therefore, this study derives a closed-loop feedback control model to enhance
freeway efficiency. The proposed model considers the control of multiple ramps with respect to the
co-ordinated interchanges for a corridor. A dynamic origin—destination (OD) estimation tech-
nique capable of accurately forecasting flow variation is incorporated in the model, which is
adaptively operated and elevates global control optimality.

Open-loop control generally cannot achieve robustness and stability as quickly as closed-loop
control (Papageorgiou, 1984). In addition, closed-loop control is preferred in terms of responding
to the variations of traffic demand or patterns. While describing the relation of transition among
traffic states, Payne’s (1971) continuum model is applied as the system dynamic model. Based on
the flow situation, the control objective attempts to minimize the difference square between actual
traffic and its ideal/nominal value, which is equivalent to maximizing the traffic volumes (Ger-
lough and Huber, 1975). This approach leads to the linear quadratic (LQ) optimal control
problem. In addition, understanding the real-time OD distribution of on-ramp trips would allow
us to accurately predict traffic conditions in each section, thereby making the control more precise
and efficient. However, obtaining the OD distribution is extremely difficult. Fortunately, several
OD estimation methods have been developed in recent years (Papageorgiou, 1990; Bell, 1991;
Jason, 1991; Chang and Wu, 1994). Among those, the method proposed by Chang and Wu (1994)
is modified and used in our metering control study. The output of our metering control model is a
set of optimal on-ramp flow rates for the ramps in a controlled corridor.

While performing a ramp-metering control study, Wattleworth and Berry (1965) applied linear
programming method to achieve the control optimum. Among recent investigations having
modified Wattleworth and Berry’s model to achieve the control objective include those of Wat-
tleworth (1967), Wang and May (1973), Eldor and Adler (1977), Papageorgiou (1980) and lida
et al. (1989). Their systems belong to open-loop types. Later, Papageorgiou et al. (1991) proposed
a closed-loop control model, ALINEA, which applies the classic automatic control theory to
construct a responsive metering model. ALINEA considers the core of a ramp operation with its
downstream occupancy. In general, the ramps in an urban area are relatively close to each other.
During peak period, co-ordinated metering control is considered to enhance the traffic
throughput. Isaksen and Payne (1973) provided a time-invariant LQ model to serve for co-or-
dinated ramp control with regulators. However, in extending Isaksen and Payne’s (1973) model,
Goldstein and Kumar (1982) presented a decentralized control strategy. Although Papageorgiou
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Fig. 1. Freeway layout and relevant variables.

and Mayr (1982) also proposed a nonlinear model for freeway control, the OD ratio is a given
constant. While providing a three-layer hierarchical structure for traffic control, Papageorgiou
(1984) proposed a dynamic OD concept. However, this model did not describe how to directly
achieve dynamic OD estimation. Chang et al. (1993) developed an open-loop DSCOM for ramp-
metering control via mathematical programming in which dynamic traffic is estimated through a
real-time flow and an OD table. While establishing a linear dynamic flow model for real-time
metering control for integrated ramps, Chang et al.’s (1994) subsequent work failed to consider
dynamic OD factors. Zhang et al. (1996) achieved nonlinear optimal ramp control but assumed
that off-ramp flow is a constant ratio from the mainline. In addition, Zhang and Ritchie (1997)
contributed to ramp-metering control via nonlinear artificial neural networks; however, their
study only considered a single ramp issue. Mangeas and Haj-Salem (1998) recently proposed a
nonlinear closed-loop optimization technique to achieve co-ordinated ramp-metering control.
Their work processed traffic assignment on account of the provided splitting rates, and not on a
dynamic OD. Therefore, in light of the above developments, this study presents a ramp-metering
control model capable of optimizing the mainline traffic by providing metering rates for all ac-
cesses within the control area. Particularly, the proposed model adopts the technique of dynamic
OD estimation.

Fig. 1 illustrates the relationship among the variables in this study based on a scheme of
controlled segments of a freeway.

2. Dynamic control modeling

According to the traffic characteristics, adopting ramp-metering control strategies to prevent
supersaturation over the mainline can well-maintain traffic throughputs. In developing a ramp-
control model, a system describing overall traffic conditions should be schematized. The system is
built at least with several components including a traffic flow model, input and output variables. A
ramp traffic control can be designed as a dynamic operation. Hence, the variables and/or the
parameters in the system model should be considered in terms of time. While controlling, the
input quantity can then be sequentially adjusted with a limited and programmed value in order to
make the system output achieve the target. Herein, the programmed value is obtained with a
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decision process on the basis of the designed feedback loop from the output measurement. This
procedure involves an automatic control field. Ramp-metering control can be dealt with in the
automatic control theory. A dynamic model for ramp-metering control is studied as follows.

2.1. Traffic flow model

Traffic control largely focuses on selecting an available traffic flow model. Among the many
flow models that have been proposed include static and dynamic ones. In our ramp-metering
control, a dynamic type is required so Payne’s (1971) high order continuum model is considered
herein. This model considers flow volume ¢, density p, speed u, driver reaction time 7, and an
anticipated coefficient v. For operation, a discrete type is employed for convenience. Isaksen and
Payne (1973) resolved Payne’s original model into difference equations as follows:

Concentration equation

/ﬁ*lZ/ﬁ—%Atm‘ﬂ?H'_nﬂﬁj4—Az%$1_S?4. (1)
nl(xl+1 - xl) nz(xm - xl)
Speed equation
Kk k 3
0 = o A e S — () — v R @
Flow equation
4t = piup . G)

2.2. System state space equation

Ramp-metering control is required only when demand exceeds capacity. When demand is far
from capacity, on-ramp flows do not need to be controlled. To maintain the freeway’s efficiency
during rush hours, the control objective generally involves making the vehicle density and flow
speed approach the ideal or nominal values that ultimately maximize the throughput and flow of
the controlled freeway. Thus, ramp-metering control is triggered when the on-ramp flows reduce
the speed of the mainline below the nominal point. According to the traffic theory, during rush
hours, maximizing ¢ requires that p and u are at the nominal points, p, and u,, respectively. For
operation, short time interval Az is adopted for revising the control. In doing so, a linear type
model is acceptable for investigating the metering rates. The differences between actual traffic and
the nominal condition are denoted as follows:

/3]1‘T = p]; - p]:,l’ (4)
i =} — ufﬁ}l, (5)
i =d — 4. (6)

During rush hours for control, p*, — p, and u*, — u.. Although ¢, p, and u are three compo-
nents of traffic stream, the control state model always selects speed and density to be the system
variables since the relationship between speed and concentration tends to be consistent, in which
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speed always declines with an increase of concentration (Highway Capacity Manual, 1994).
Substituting Eq. (3) into (1) then, taking Taylor’s expansion of Egs. (1) and (2) at the nominated
points described above and neglecting the high order terms lead to the following:

~krl _ ~k ~k i e Yan|
0 =app;_ Fagp; +aiypi—it;_ +agygt; +dRT (7)
el ~k ~k ~k i
;" = an+iP; T ani+1P t avsinvi-1U_ ) + ane vy, (8)
where
nyj—1Ux — Uy
(11’1_1 :At—, au: 1+At7,
ﬂ/(xz+1 - xl) Xry1 — X
ni—1P4 —Px
i1 =M ————— @y =AM———,
n/(xl+1 - Xl) Xyl — X
k
1 Que(py)

v 11
dh=n.  10.5(x120 —x1) p, ]’

At—" 1 1
a = T N & v N
N+1,1+1 T 0.5()C1+2 - X]) P ,

ayyi; = At [ .

op}

At—— I+ At — :

a A=A q = 05+  —~+ O\ ~
NN+ 0.5(x/41 —X1_1)7 NN 0.5(x/ 11 —x1-1) 7 ’
d=—— 0, R =R s U

n (X1 — xp)
REF = AukH, 56 = A,
where UX! is the on-ramp capacity of ramp / during stage k + 1. For control operation, an ap-

propriate control law or a control gain at stage k should be found for the next stage £ + 1. Thus,
by Eq. (7), the following equation is written:

ﬁ?ﬂ = a/,z—lﬁlf_l + al,l[)l; + al,N+1—15lIf_1 + 611.,N+177l]1C - API;H + dlff;k, )
where

Uk =y — gkt (10)
and

AP = dsi+! (11)

occur. In addition, U¥ is considered to be a virtual control variable. Moreover, U is a proposed
metering rate for stage k£ + 1.

Next, consider the term Apf™ in Eq. (9). Since S¢ is historically measured at ramp / at time
k, k=0,1,2,... k, if S{*' can be predicted by a appropriate methodology, the fraction is ob-
tained

k+1
— Sl

A =" (12)
/ S;c
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According to Eq. (11), we have
Apith = dSiH = diAL ST = A3 Apl. (13)
The next section discusses how to estimate Sf*'. With ramp-metering control, by incorporating

Egs. (8), (9), and (13), for a N-segmental freeway, / = 1,2,..., N, the system state space equation
is then expressed as

X(k+ 1) = A(k)X(k) + B(k)U(k) + B'(k) (14)
in which
X(k) = [p5, pk, ... ph ik ik db Apk L AR
X(k+ 1) = [, 500, b etk A AT,
Uk) = [Of, U%, ... U5,
An(k) An(k)  An(k) B (k) B (k)
A(k) = | Axi(k) Axn(k) Axn(k) |, B(k)= |By(k) |, B'(k)= |Byk) |,
Az (k) An(k) Ass(k) B; (k) B’3 (k)
-a171 0 0 s 0 0 T
(1211 azn 0 s 0 0
0 asnz dss 0 0
Ay (k) = . ;
0 0 0 - ay_1na 0
L 0 0 0 aynN-1 aN,N_ NxN
_(117N+1 0 0 ce 0 0 T
AN+l A2Ny2 0 0 0
0 asN+2  A3N+3 0 0
AIZ(k) = )
0 0 0 Cee o AN—12N-1 0
L O 0 0 o anov-1 anon d oy
-4 0 0 .- 0 0 ]
0 —A’g 0 0 0
0 0 —A§ 0 0
Ajs(k) = . ;
0 0 0 —A]’i,_l 0
k
| 0 0 0 0 —Ay | vun
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[an+11 An+12 0 0 0 7
0 an+22  AN423 0 0
0 0 ay+33 0 0
Ay (k) = .
0 0 0 AON-1N-1 A2N-IN
L 0 0 0 0 ayNnN
[ an+1 N+ 0 0 0
ANf2N+1  AN+42N+2 0 0
0 aN+3N+2  AN+43 N43 0
Azz(k) -
0 0 0 cct AaN—-12N-1
. 0 0 0 Tt oNaN-1
40 0 0 0]
0 A’; 0 0 0
0 0 A§ 0 0
Ax(k) = . : = —Ag;(k),
0O 0 O A’,‘Vf1 0
i 0O 0 O 0 A’,i,_ Nl
d; 0 0 0 0
0 d 0 0 0
0 0 d; 0 0
B1 (k) = . . . )
0O 0 O dyv-1 O
|0 0 O 0 dy | NxN
_al.oﬁ’é + lll,/vflk- [ an1 N |
0 0
!/ 0 ! 0
B)(k) = ; . By(k) = : ,
0 0
i 0 | _aZN,N-&-lﬁé{\url i

A (k) = Asi (k) = An(k) = Oyw,

NxN

S O O

0

arN 2N

NxN

Bz(k) - B3(k) - Bg(k) - 0N><N-
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However, Eq. (14) can be transferred into the following standard form:

[ B, (k)U(k) + B (k)
X(k 4 1) = A(k)X (k) + B,(K)
I 0
_B1(k) [U(k) + B, (k)B (k)]
= A(K)X (k) + B (4)
i 0
[ B, (k)
= ARX() + | Y B ()0 k) | Uk
I 0
= A(k)X(k) + B(k)U(k), -
where
0w =[atemtes o o, g
B, (k)
B(k)= |1 -

Real on-ramp flow Rf*! tends towards the provided/allowed flow U¥; in addition, Uf must be less
than U¥, during rush hours Restated, fully on-ramp flows cannot be allowed such that Uf = U,
during a rush period. Therefore, the inverse of U(k) exists for / =1,2,...,N. In fact, trlggering
the ramp-metering control is unnecessary if the output is Uf = U¥,.

2.3. Performance function (objective function)

The control is set to maximize the mainline traffic volumes along the freeway in a given in-
coming period A. Based on the traffic theory (Gerlough and Huber, 1975), maximizing the traffic
volumes at time ¢ is equivalent to minimizing the deviation of the real flow from the ideal flow.
Therefore, the performance function is provided as follows:

A— 1

MIN: J=> [ (k+OQi(k + &) + U (k + &)QU(k + &)], (16)

c=0

where
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qk+¢) =qlk+ &) —q.(k+ &),
q(k+ &) = Atlmai™  mg5™ nsgh™ - mvadyS g
q.(k+&) = Amg™ " mdy md o nvadi gy

In addition, Q, and Q, are the weighting factors for the system and control matrices, respectively.
Linearizing Eq.(3) and incorporating Eqs. (4)—(6) for each /, / =1,2,3,... N lead to

qlk + &) = CX(k + &), (17)
where
C=[C, C (G,
rnp 0 -~ 0 07 (g 0 -~ 0 07
0 nm, --- 0 0 0 nm, --- 0 0
Ci=Am, | = : : , CG=Awp. |t : : ;
0 0 - nyy O 0 0 - nyy O
L0 0 --- 0  nvdy. L0 0 --- 0  nyvdyen

C; is an N x N zero matrix.
Consequently, Eq. (16) can be transferred into
-1
MIN:J =) [XT(k+ OQX(k + &) + UT(k + QUK + &), (18)

<=0

where Q) = C'Q,C

3. Solution of the presented model
3.1. Off-ramp flow prediction via a dynamic OD estimation

In recalling Eqgs. (12) and (13), completing and solving the system equation at step k initially
involves predicting Sk+1 j =1, 1i.e., the next step off-ramp flow. Many methods are available to
forecast Sf“ such as tlme series, fuzzy neural networks and Kalman filters. Herein, although the
Kalman filter method is applied, a dynamic OD estimation is involved when considering the off-
ramp flow prediction herein in order to improve the precision of freeway control. Details of the
approach are as follows.

According to Chang and Wu (1994), each off-ramp flow S" can be expressed by all predecessors
of upstream on-ramp flows R*™, m =0,1,2,...,.M (M < k) with the factors of OD ratio y" "
and travel time distributed fractlon 0" “mk (a fractlon of the vehicles that arrive at ramp j durlng
interval k, and they entered the freeway at ramp i during k — m)

o k—m.k
= Z Z(Rf'ﬁmyfjim@ijim )- (19)

i=0 m=0
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However, for 0 <i < j< N, the OD ratios and travel time distributed fractions must satisfy:

N
dok=1 (20)

j=itl
M

> oo =1. (21)

m=0

Chang and Wu (1994) s1mp11ﬁed m such that it would only occur in two stages, tlkf and tk’ They

also assumed that yl . o ~ Y i ~ ylj, implying that

" ! k—t k k o e A
Sj:ZK s o >y,.j]. (22)
i=0

The above simplification and assumption are unrealistic if the travel distance in the controlled
freeway section is not short. Herein, m is extended to constitute a probability distribution func-
tion. In general, vehicle arrival events are investigated as a Poisson distribution when the traffic is
at a free flow condition, as a binomial distribution during congested traffic (Gerlough and Huber,
1975). A Poisson distribution (of course, a binomial distribution can replace it if necessary) is
utilized hereinafter for stage m to count the fraction foj””’k . Thus, Eq. (19) yields

k—m k

_ 1i{wk,ﬂ<uy 4" exp(— ﬂf‘,"”k)}’ o)

m!
=

\.

where ,u,-j*’"’k denotes the mean of travel time from 7 to j during the period [k — m, k], which is
counted in steps. Eq. (23) can be rewritten in two parts

j—1 j-1 M ( k— mk) ex ( k—m.k
k_ o kmkm'ul] p(—w; ™)
1= S+ S5 {R i (24
-1
— k+
=2y wZHﬁ (24b)
in which
}Iil;'_ = Rf‘(e fjk’
M ( k—m.k k—m k
k+ __ k—m_ k—m 'ulj ) exp( :ulj )
I—Iij - 2:1 {Rz ylj m! .

Assume that each on/off ramp is equipped with flow detectors capable of supplying the real-time
data of flows. When at the end of time k, R} and S} as well as R;" are known for 0 <i < j <N and
m=20,1,2,... M. In addition, the travel time of each segment is calculated since the flow ¢, the
speed u, and the density p of each segment are measured from time to time. In doing so, uk mk can
be summed up from the calculated travel time of all segments between i and ;. However y

difficult for any equipment to obtain. In addition, y must be 1dent1ﬁed by a mathematical cah-

bration method, in which Kalman filter method is utlhzed herein. If y is calibrated on-line at the
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end of time k, for m < k, y" ™ is known implying that Hk* and H"+ are constants. Thus, Eq. (24a)
and (24b) is only a functlon of yl Moreover, because %, ] 1s p0551bly varied in a sequentlal manner
assume that y* ; constitutes a one-step Markovian random walk process for each OD pair such that

yzk/+l - bl]yl/ + Wl]7 (25>

where w is an independent event and sequence {w* g k=0,1,2,. ..} constitutes a white noise with

respect to zero mean, E(wf,) =0, and covariance E(Wiws) = wfdu for 0<i < j< <N S 1s the

Kronecker delta. b"/ is an unknown parameter to be determined 51multaneously with J’, In a short
period at k and for approaching the system stability, the space equation defined in an OD pair
between i and j is taken as

5)-1%]-[4)

By 1ncorporat1ng Eq. (24a) and (24a), the observation function is set to be
E)ﬁ%+2}¢+% (27)

where v] is also 1ndependent and {vk k=0,1,2,...} constitutes a white noise with respect to
E(vf) =0, and E(v}v )—vkékk/
For the controlled sectlon with &V interchanges of a freeway, based on Egs. (26) and (17) the
entire off-ramp flow prediction space equation is written as

Y(k+1)=¢(Y(k), k) + T'(k)W(k) (28)
with the observation function

S(k) = o(Y(k), k) + V(k), (29)
where

Y(k) = b’gl )/(;2 ych—l)N bl(;l bgz b](cN—l)N]T’

o(Y(k), k) = [b01J’01 bozyoz T bl(CN—l)NngN—l)N bl(;l bgz bI(CN—l)N]T’

nmzm}

where Iy is an N x N identity matrix and Oy is an N X N zero matrix

W(k) = [W& Wﬁz Wl(cNfl)N}T7
Sky =18t 85 -+ S,

S HE A S HE
S(Y(k). k) = Yoo HE ¥ n o HE 7

P ‘Hk R ZNOI HY
Vik)=[f of - Wi
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Since Eq. (28) is actually nonlinear, to calibrate Y(k) the method of extended Kalman filter (EKF)
is applied. Consider the linearity of Eq. (28) at the filtered point Y(k)

99

v YOO = Y (0] + (W (&), (30)

Y(k+1) = p(Y(k), k) +
which yields to
Y(k+ 1) = ®Y(k))Y(k) + I'(k)W(k) +u(k), (31)

where the transition matrix is

[ b, 0 - 0 0 0
0 b, - 0 0 3 - 0
o(V(k)=| 0 O By 00 Phow |,
0 0 0 1 0 0
0 0 0 1 0
0 0 - 0 o 0 --- 1]
u(k) = —[B§,35,  bhost, - I;l(cNfl)NﬁécNfl)N 00 - 0.
In addition, Eq. (29) can be rewritten as
S(k) = (Y (k)Y (k) + V(k) + z(k), (32)
where
H 0 - 0 0 0 0
A Hiy Hfy - 0 00 0
YY) = : o : Co 0|
Hyy Hiy -+ Hyy 00 0
0 1 N-1 T
2(k) = | D _Hyt Y HE - D Hy
i=0 i=0 i=0

According to EKF (Saridis, 1994), combining Egs. (31) and (32) leads to:
Ykl — 1) = (Y (k — 1),k — 1), (33)
P(klk — 1) = &(Y (klk — 1))P(k — DO (V(klk — 1) + Tk — DRi(k— DIT(k—1),  (34)
K(k) = P(klk — )W (Y (klk — 1)[# (Y (klk — 1)P(lE — D)WT (Y (kK — 1)) + Ra()] ', (35)
Y(k) = Y(klk — 1) + K(K)[S(K) — o(V(klk — 1), )] (36)
P(k) = [1 — K(k) ¥ (Y (k|k — 1)]P(k|k — 1), (37)

where R, (k) and R, (k) denote the covariance matrices with respect to W(k) and V(k), respectively.
Given the initial values of Y(0) and P(0), the variance of Y(0), by Eqgs. (33)-(37) sequentially,
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(k) is iteratively calculated. Obviously, Eq. (33) has prediction capability. Replacing Y(k) by
(k + 1]k) in Eq. (29) and/or substituting the further step result by Eq. (33) into (29) lead to

S(k + 1)k) = (Y(k + 1]k), k + 1). (38)
Eq. (38) is utilized for basis of predicting off-ramp flows.

Y
Y

3.2. Control law and searching procedure

After the off-ramp flow is predicted for each interchange of the controlled segments, the pa-
rameters of the system equation (Eq. (15)) and the objective function (Eq. (18)) are determined.
According to the optimal control theory (Saridis, 1994), the feedback control law results in

U(k) = —Q, ' (k)BT (k)G (k + 1[I+ B(k)Q; ' (k)BT (k)G (k + 1)] " A(k)X(k), (39)
where G(&), ¢ =1,2,...,f (at final), should be satisfied with

G(&) = AT(OG(E+ DI+ B(OQS ' (OBT(OG(E + D] A(S) + Qi (&) (40)
and in this study, at final target we set

G(f) = Qi (f)- (41)

Then, first in Eq. (40) setting &+ 1 = f, and substituting Eq. (41) into Eq. (40), G(&),
&E=1,2,...,f, is calculated. The corresponding fJ(k), k=0,1,2,...,f — 1, are also obtained
from Eq. (39).

Obviously, the search for the control law is quite elaborate. Fig. 2 depicts the following pro-
cedure:

Step 1: At step k = 0, initiate the number of controlled segments and the length of each seg-
ment. Set the mean and variance of Y(0) and P(0) based on the historical data. Give Q;, Q,, R,
and R,.

Step 2: Obtain the current speed and flow on freeway and on on/off ramp of each segment.
Calculate travel time on each segment as well as each OD pair.

Step 3: Calculate ¢, @, ¥ and ¢. Execute Y(k) calibration and prediction via Kalman filter
method.

Step 4: Execute off-ramp flow prediction via

S(k + &lk) = (Y (k + &[k), k + ¢) (42)

for £ =0,1,2,...,4. Eq. (42) is an extension of Eq. (38).

Step 5: Based on Step 4, the predicted A’l”f on account of the data at stage k, i.e., All‘+5lk is
calculated for all /.

Step 6: Based on Steps 2 and 5, the predicted matrix A(k + £|k) is obtained. .

Step 7: Since the control matrix B(k) defined in Eq. (15) is expressed in terms of U~'(k), the
inverse of control variable vector U(k) which will be solved from a given B(k), U(k) should be
assumed in advance. Then, confirm whether the results are equal to the assumed value. According
to the definition of U(k) in Egs. (10), (14) and (15), U(k) is located in the range approximately
between zero and ramp capacity. Thus, take a constant ¢; =0 for j =1,2,... N, for the initial
condition in the following trial and error loop.
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Fig. 2. Control law searching flow-chart.
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Step 8: Put ﬁ(k) =l ¢ - cN}T, thus beginning the trial and error iteration.

Step 9: Calculate B(k).

Step 10: Based on Steps 6 and 9, the system equation of Eq. (15) with the objective function is
constructed.

Step 11: According to the optimal control theory, a fresh U(k) is obtained.

Step 12: However, the fresh U(k) mustequal [c; ¢, -+ cy] asassumed in Step 8. If “No”,
go to the next step, Step 13; if “Yes” (practically operated by that their mean square error is
smaller than an acceptable small constant), go to Step 14.

Step 13: Set c¢; = c¢; + 10 sequentially for an interchange in an iteration, j = 1,2,...,N. Then
return to Step 8.

Step 14: ﬁ(k) is settled and converted into U, I =1,2,..., N, for the execution of on-ramp
flow control during k£ to k£ + 1.

Steps 15 and 16: Meanwhile, during the execution, the real on-ramp flows should obviously be
detected for next optimal searching. Set £ = k£ + 1 and return to Step 2.

4. Verification via a numerical case

For application, the proposed model should be verified and evaluated. Herein, simulation is
performed to execute the verification and evaluation procedures. A freeway with five segments is
involved for the demonstrative case. To understand the control efficiency and compare demand
with real on-ramp flows, the case is associated with the scenario of a varied demand in terms of
simulated time ¢ as

Demand = 100 + 15¢, 0 <¢<10
=400+ 15¢, 10<t<20
=850, 20 <<50
=350 — 10¢, 50 < t<70.

(43)

Obviously, the demand initiates at 100 veh./h and increases with a slope 15 veh./h until 20 min of
the simulation. However, the demand has a jump of 150 veh./h at around 10 min. Between 20 and
50 min, the demand is assumed to be a constant 850 veh./h. Beyond 50 min, the demand reduces
owing to a sudden drop of 500 veh./h and then decreases with a slope of 10 veh./h along the
simulation time. The demand function is uniformly provided for all ramps and, then, the differ-
ences of responsive controls of ramps are investigated. Applying such scenario for a metering
control is relatively severe to real situations. The running time of the simulation is continuous for
70 min. The traffic is described by Eqgs. (1)—-(3). According to Haynes (1965), for a three-lane
freeway

g =65.5p —0.179p% — 80 (44)

in which the density is denoted in vehicles per mile. According to Eq. (44), the following form is
utilized for the term of u.(p) in Eq. (2) and for identifying the nominal points:



T.-H. Chang, Z.-Y. Li | Transportation Research Part C 10 (2002) 99-120 115

26.67
ue=q/p = 10539 139 — ==, (45)

where the unit of the density is converted into vehicles per kilometer per lane. Eq. (45) represents
the real world traffic on the simulation and analysis. Based on Eq. (45), the maximal flow is easily
verified to be 1976 veh./h, which corresponds to u, = 52 km/h and p, = 38 veh./km. Assume that
all segments uniformly have three lanes. The scanning interval A¢ of the simulation is set for 1 min.
v=19.2 (km?/h), T = 0.0083 (h) are provided for completing Eq. (2) (Goldstein and Kumar,
1982). The capacity of each ramp is defined at ry = 1000 veh./h.

Figs. 3-7 summarize the simulation results. The simulation corresponds to an initial condition
of which all mainline segments are unsaturated in traffic at around 1400-1700 veh./h. The flow as
well as the speed of uncontrolled segment SO, the upstream, is assumed to remain constant. Figs.
3-5 illustrate the flow, speed and density of five segments of the controlled freeway, respectively.
Fig. 6 contains six curves, one demand and five on-ramp flow curves. Fig. 7 displays the queue
lengths of each ramp. According to Figs. 3 and 5, owing to that the on-ramp flow in each ramp
increases in coincident with the simulated time during the first stage (Fig. 6), the flow as well as the
density of each segment of the freeway increases. Meanwhile, the speed decreases (Fig. 4).
However, according to Fig. 3, every segment flow gradually tends to approach 1976 veh./h/lane,
i.e., the saturation point. In the middle stage, each curve remains flat, never increasing again. The
traffic is controlled at the exact saturated condition. While saturated, the speed tends to 52 km/h
and density 38 veh./km, the actually nominal values. Because the speed does not fall below the
nominal point and ensure the flow at capacity, the control is clearly robust. This observation
implies that the proposed model can maintain traffic at a high performance, which also avoids
freeway congestion during peak hours.

Fig. 6 obviously reveals the differences between demand and real/allowed on-ramp flow. During
the first stage, the allowed on-ramp flow coincides with demand. However, during the middle
stage, the on-ramp flows are restricted owing to that the mainline is saturated. The allowed-
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Fig. 3. Mainline flows of the controlled segments.
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Fig. 5. Mainline density of the controlled segments.

pouring volumes decline. This is owing to that the demand exceeds supply, subsequently causing
queuing on ramps. Fig. 7 illustrates the variation of the queue length for each ramp. During the
final stage, the allowed on-ramp flows are gradually flat owing to the dispersion of the freeway
traffic and the decrease of demand. Nevertheless, the dispersion for each segment has a time lag
after the decrease of demand. Evidently, Ramp 1 reveals that its on-ramp flow initially exceeds the
demand increment at around 50 min, and its traffic returns to normal approximately at the final
stage, in which the allowed quantity matches the demand again, i.e., queue length vanishes (Fig.
7). On Ramp 2, the on-ramp flow is roughly equivalent to the demand increments, but it does not
break even between supply and demand by the end of simulation. The queues of Ramps 3, 4, and
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Fig. 6. On-ramp demand and allowed flows.

500
450 ]
400
350
300

Veh

250
200
1501
100

50

10 20 30 40 50 60 70
minute

Fig. 7. Queue lengths at on-ramps.

5 are being reduced from 50 min because the curves do not incline again. Until 70 min, queuing
still persists. Obviously, these ramps require more recovery time. However, the queue lengths
occurred at Ramps 2, 3, 4, and 5 are too large due to the high demand scenario given for the
simulation and no queue constraints set for the ramps in the model.

This work also attempts to understand the efficiency of the proposed model by conducting two
additional simulations of one for no on-ramp flow control and the other for the control with a
fixed OD table. The case of ‘no-control’ is used in order to reveal the traffic problem during rush
hours and clarify the role of ramp control. ‘Fixed OD’ case is to manifest the power of the control
with ‘dynamic OD estimation’. These two simulations are also handled under the same traffic
situation as in the previous case. The fixed OD table is taken from a highly reliable condition, i.e.,
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Table 1
Mainline traffic comparison between ‘with control’ and ‘no control’
Segment number Segment 1 Segment 2 Segment 3 Segment 4 Segment 5
(S1) (S2) (S3) (S4) (S5)
Length (km) 1.70 1.90 1.90 2.20 2.00
Control with dynamic 58702 58942 58972 58412 58812
oD 53.56° 50.33° 49.98> 50.25° 50.97°
Control with fixed OD 58892 58892 58972 58942 58812
53.19° 49.90° 49.88 50.23b 50.96°
No Control 58602 34942 42292 4749° 50152
40.44° 28.50° 29.21° 36.87° 41.39%
Gain (%)° 0.2 68.7 39.4 23.0 17.3

#Flows in veh/h.
®Mean speed in km/h.
¢ Gain = (control flow — no_control)/no_control x 100%.

Table 2
Delay at ramps due to control or no control
Ramp number Ramp I (R1) Ramp 2 (R2) Ramp 3 (R3) Ramp 4 (R4) Ramp 5 (RYS)
Dynamic OD 3.79* 49.542 77.40° 97.19* 52.48*
Fixed OD 3.20° 70.39* 101.65% 113.982 59.39°
No control 2.242 36.69* 25.522 29.212 27.57*

* Average stopping delay in seconds per vehicle.

the mean state of the dynamic OD estimation. Table 1 compares ‘control with dynamic OD
estimation’ by the proposed model, ‘control with a fixed OD table’ and ‘no control’ in the
mainline traffic flows, which is summarized from the simulation results based on the final single
hour data from 10 to 70 min. According to this table, ‘control’ is obviously more effective than
without any control policy in the mainline traffic operations. ‘Control’ maintains smooth flows of
traffic. “‘No control’ leads to congestion, low throughput, and unstable speed of each segment.
Comparing the control with the dynamic OD estimation to which with the fixed OD policy reveals
almost no difference at the mainline traffic. This appears to be attributed to that the fixed OD
table is selected from the mean of the dynamic estimation. Notably, the difference is significant in
average delays during vehicles at on-ramps. Table 2 summarizes this data. The control with the
fixed OD policy inefficiently manages all ramps, which lacks flexibility harmonizing overall on-
ramp operations. Conversely, the dynamic OD methodology can achieve global efficiency. It
reduces some on-ramp flows at Ramp 1 to satisfy the demand at downstream ramps. Syntheti-
cally, a reasonable OD table also produces efficient mainline control. Otherwise, imprecise OD
data would worsen control. Currently, obtaining a precise OD table is extremely difficult. Ramp-
metering control with dynamic OD estimation seems a viable solution. Without unexpected, ‘no
control’ lets vehicles save time at on-ramps. But in the point of total travel time spent, ‘control’ is
advantageous. Table 3 depicts the average travel time in the simulation period. The indicated time
is summed up with the time that the vehicle spent at an origin on-ramp and which spent in its
traveling segments to a destination (represented by an interchange). This table reveals that ‘ramp
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Table 3
Average travel time in minutes (time spent at ramp and segments)
Origin Destination
Interchange 2 (R2) Interchange 3 (R3) Interchange 4 (R4) Interchange 5 (RY5)
Ramp 1 (R1) 1.967* 4.2322 6.513* 9.140*
1.971° 4.256° 6.541° 9.169°
2.559¢ 6.559¢ 10.462°¢ 14.042¢
Ramp 2 (R2) 3.091# 5.372¢ 7.999°
- 3.458° 5.743° 8.371°
4.612¢ 8.515¢ 12.095¢
Ramp 3 (R3) 3.5712 6.198*
- - 3.979° 6.607°
4.328° 7.908°
Ramp 4 (R4) 4.247
- - - 4.528b
4.040°

# Average time spent while ramp control with dynamic OD.
® Average time spent while ramp control with fixed OD.
¢ Average time spent without ramp control.

control’ during rush hours has benefit to travelers, although there is a bit of interference at on-
ramp. The longer distance a vehicle travels, the more time the traveler can save.

5. Conclusion

Traffic flow theory stipulates that ramp-metering control is a prerequisite for improving free-
way traffic efficiency. While an efficient control model allows for a high performance operation, an
inefficient one does not. Owing to available techniques, a dynamic operation is required. Based on
Payne’s continuum traffic stream model, this work derives a co-ordinated-responsive and closed-
loop system model to achieve efficient on-ramp flow control. The proposed model is a linear-
quadratic type with on-line OD estimation, capable of improving control efficiency. The Kalman
filter method is essential for on-line OD estimation. However, the proposed model is quite
elaborate. An iterative algorithm is provided for searching for the optimal results.

Simulation results indicate that the proposed model is robust. Verification and evaluation by an
illustrative case reveals the efficiency of the proposed model in terms of freeway access control.
With such control, freeway traffic eliminates congestion.

Despite its merits, the proposed model has its limitations. Results presented herein indicate that
to implement this model, historical upstream approaching flows, the flows on each segment, on-
ramp as well as off-ramp are required during the initial stage. During which, flows should be
detected in real-time to produce a new control law for the following control. The law that rep-
resented by allowed on-ramp flow rates is generally converted into on/off timings executed by
traffic signals. Such an integrated control should be implemented through either a master con-
troller or a co-ordinated traffic control center. Moreover, the constraint of queue lengths on
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ramps is absent considering in this study. The presented model should be improved in the future
work.
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