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Two-Stage Maximum Likelihood Estimation
Procedure for Parallel Constant-Stress

Accelerated Degradation Tests
Cheng-Hsun Wu , Tzong-Ru Tsai, and Ming-Yung Lee

Abstract—The parallel constant-stress accelerated degradation
test (PCSADT) is a popular method used to assess the reliability
of highly reliable products in a timely manner. Although the max-
imum likelihood (ML) method is commonly utilized to estimate
the PCSADT parameters, the explicit forms of the ML estimators,
and their corresponding Fisher information matrix are usually
difficult to obtain. In this article, we propose a two-stage ML
(TSML) estimation procedure for a time-transformed model. In
the proposed procedure, all the TSML estimators not only have
explicit expressions but also possess consistency and asymptotic
normality. Hence, this method is tractable for reliability engineers.
Furthermore, the TSML estimators can provide constructive in-
formation about the unknown accelerated relationship law. The
proposed method is also applied to analyze light-emitting diode
data and compare the performance of our estimation procedures
with the ML method via simulations.

Index Terms—Accelerated relationship law, maximum
likelihood estimation, parallel constant-stress accelerated
degradation test, time-transformed model, two-stage estimation,
Wiener process.

Acronyms and Abbreviation
ADT Accelerated degradation test.
CSADT Constant-stress ADT.
PCSADT Parallel constant-stress ADT.
SSADT Step-stress ADT.
TSML Two-stage maximum likelihood.
ML Maximum likelihood.
MLE Typical ML estimator/ ML estimate.
TSMLE Two-stage MLE.
LED Light emitting diode.
QC Quality characteristic.

Manuscript received June 2, 2019; revised March 3, 2020; accepted May 13,
2020. Date of publication February 26, 2021; date of current version June 1,
2021. This work was supported by a research Grant from the Ministry of Sci-
ence and Technology, Taiwan (MOST 105-2118-M-126-002) Associate Editor:
Y. Deng. (Corresponding author: Ming-Yung Lee.)

Cheng-Hsun Wu is with the Department of Financial Engineering and
Actuarial Mathematics, Soochow University, Taipei 215006, Taiwan (e-mail:
chsunwu@scu.edu.tw).

Tzong-Ru Tsai is with the Department of Statistics, Tamkang University, New
Taipei City 251301, Taiwan (e-mail: 078031@mail.tku.edu.tw).

Ming-Yung Lee is with the Department of Data Science and Big Data
Analytics, Providence University, Taichung City 43301, Taiwan (e-mail:
mylee@pu.edu.tw).

Color versions of one or more of the figures in this article are available online
at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2021.3053312

Notation
h h+ 1 is the group (stress level) number of the

PCSADT.
k k is the measurement number.
sl lth stress level for l = 0, . . . , h.
t, tj , Δtj Time, jth measurement times, and Δ tj =

tj − tj−1 for j = 01, . . . , k.
Wi(tj ; sl) Degradation of test unit i under sl at time

tj , for l = 0, . . . , h, i = 1, . . . , nl, j =
1, . . . , k.

B(t), Bi(tj) Standard Wiener process at time t and tj for
unit i.

ΔBlij Increment of two standard Wiener pro-
cesses.

Ulij , Ũlij Increments and time-transformed incre-
ments of degradation measurements.

ξ, σ Drift and diffusion parameters of standard
Wiener process.

α Termination time of PCSADT.
nl, N Sample size under sl and total sample size.
β(θ; sl), βl Accelerated relationship laws under sl.
θ Accelerated parameter of accelerated rela-

tionship laws.
ξ̂, σ̂2, ξ̂l , σ̂2

l MLE of drift and diffusion parameters un-
der CSADT with stress levels of s0 and sl.

ξ̂2S , σ̂2
2S , ξ̂M , σ̂2

M TSMLE and MLE of drift and diffusion
parameters under CSADT.

β̂l Estimation of decay-acceleration value
under sl.

θ̂l MLE of θ under sl.
al Weight for TSMLE of θ under sl.
θ̂M , θ̂2S MLE and TSMLE of θ.
t̃l, α̃l Time-transformed jth measurement time

and censoring time for units under sl.

I. INTRODUCTION

IN ORDER to satisfy the stringent requirements and expecta-
tions of customers, contemporary products are designed with

much longer life spans. Products with longer life spans make the
lifetime information of reliable products more difficult to be col-
lected at normal temperature and pressure. Therefore, reliability
engineers adopt accelerated degradation test (ADT) methods
to accelerate the quality degradation of reliable products for
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reliability assessment. More details on using ADT methods can
be found in Meeker and Escobar [14].

In an ADT, the lifetime of a reliable product is closely related
to a quality characteristic (QC). For instance, the lifetime of
an alloy is defined as the observed duration until a crack in
the alloy reaches a specified size. The crack is a QC of the
lifetime of the alloy. Tseng et al. [24] presented a study of
light-emitting diode (LED) lamps for contact image scanners
according to the lifetime of LED, which depends on its QC,
light intensity. Furthermore, Park and Padgett [20] adopted
a generalized cumulative damage approach with a stochastic
process to describe the accelerated degradation model.

The parallel constant-stress ADT (PCSADT), step-stress
ADT (SSADT), and continuous-stress ADT (CSADT) are three
popular ADT methods. Applications using these three meth-
ods can be found in the following references: Tang et al.
[22], Nelson [17], [18], Liao and Tseng [11], Tseng et al.
[26], Lim and Yum [13], Tsai et al. [25], Chiang et al. [1],
Tsai et al. [24], Elsayed [4], and Lee et al. [12]. Collecting
degradation information of reliable products is simpler through
using the PCSDAT method than using the SSADT method.
However, the PCSADT method requires more sample resources
and less experiment time than the SSADT method. Fortunately,
since the cost of reliable products has drastically decreased,
using more sample resources from reliable products for ADT
methods becomes affordable. Therefore, the PCSADT method
has advantages over the SSADT method in some conditions.
In this article, we focus on using the PCSADT methods in
which the samples are classified into several groups according
to the stress levels. This feature makes the statistical infer-
ence based on the PCSADT more tractable than other ADT
methods.

Assume that a product has a critical QC whose (transformed)
degradation sample path {W (t)|t ≥ 0}, at normal stress s0
follows a Wiener process:

W (t; s0) = ξt+ σB (t) , σ > 0, t ≥ 0

where B(t) stands for the standard Brownian motion, ξ is
the drift coefficient, and σ is the diffusion coefficient. The
Wiener process is a crucial model for reliability and has suc-
cessfully been applied, see Doksum and Normand [3], Whit-
more and Schenkelberg [30], Liao and Elsayed [11], Tsai et
al. [23], Tsai et al. [25], Tseng et al. [27], and Tseng and
Wen [28].

Doksum and Hoyland [3] proposed a generalized degradation
process, also called the time-transform model, based on stress
level that satisfies the following stochastic process:

W (t; s) = ξτ (t; s) + σB (τ (t; s)) , σ > 0, t ≥ 0 (1)

where s is the stress level, τ (t; s) = β(θ; s)t as s is fixed, t ≥ 0,
and β is a nonnegative, continuous, and nondecreasing function
with β (θ; s0) = 1. The function of β is also called accelerated
relationship laws, in which θ is the accelerated parameter and the
value of θ is related to the material characteristics. Based on the
time-transformed model, the degradation process at high accel-
eration stress level can be represented by W (tsl) = W (t̃ls0),

where t̃l = β(sl)t. Many exiting studies have been developed
based on the time-transformed model assumption, such as Lee
et al. [12], Tsai et al. [25], Liao and Elsayed [11], Tseng et al.
[27], and Tseng and Wen [28].

Some accelerated relationship laws used for ADT can be
found in Padgett and Tomlinson [19] and Meeker and Escobar
[14]. Two most popular temperature accelerated relationship
laws are the Arrhenius law and Eyring law.

Model (1) can be associated with the cumulative exposure
(CE) model proposed by Nelson [16]. In the CE model, the rate
of degradation only depends on the current stress. DenoteY (t; s)
as the performance model under stress s. Then, the degradation
at time t can be defined as W (t; s) ∼= Y (t; s)− Y (0; s), and its
expectation satisfies

E (W (t; s)) = ξ

∫ t

0

β (θ; s (z)) dz = ξτ (t) .

The derivative of E(W (t; s)) with respect to time t follows:

dE (W (t; s))

dt
=

dE (Y (t; S))

dt
= ξβ (θ; s (t)) .

The maximum likelihood (ML) method is the most popular
estimation approach. Deriving the explicit forms of MLEs is
usually an arduous task, so practitioners require the use of
numerical methods to calculate the estimates. Because the MLEs
and Fisher information matrix do not have explicit expressions,
numerical methods with massive computation loading is needed
to obtain the MLEs and the observed Fisher information matrix.
This fact results in a difficulty to obtain an optimal ADT design
via using the typical ML method. In this article, we propose
a TSML inference procedure for the time-transformed Weiner
model based on the PCSADT. The TSML inference procedure
can provide explicit forms of the estimators and their asymptotic
covariance matrix to help reliability engineers to obtain an op-
timal PCSADT design. The asymptotic properties of the TSML
estimators, including consistency and asymptotic normality, are
also clarified.

The remainder of this article is organized as follows. The
degradation model and inference methods based on the typical
ML method are introduced in Section II. The TSML inference
procedure and its implementation are provided in Section III.
The large sample properties and asymptotic normality of the pro-
posed TSML estimators are analytically derived in Section IV.
In Section V, we present an application of our method using the
LED dataset. The performance of the proposed TSML inference
procedure is compared with the typical ML method via using
Monte Carlo simulations. All simulation results are reported in
Section VI. Section VII concludes this article.

II. DEGRADATION MODEL AND INFERENCE METHODS

In this section, we discuss the degradation model and its
statistical inference based on the typical ML method. Assume
that a CSADT with n0 test units is conducted under the normal
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stress s0. The termination time of the CSADT is predeter-
mined by α, and the measurement times for collecting degrada-
tion information are scheduled as t0( = 0 ) < t1 < t2 < · · · <
tk( = α), where α is the termination time of the experiment.
Denote the degradation paths by Wi (tj ; s0) = ξtj + σB(tj),
for j = 01, . . . , k, and i = 1, . . . , n0. The increments at tj are
evaluated by

Uij = Wi (tj ; s0)−Wi (tj−1; s0)

= ξΔtj + σ (Bi(tj)−Bi (tj−1)) (2)

for j = 1, . . . , k, i = 1, . . . , n0, where Δ tj = tj − tj−1 and
Wi (t0; s0) = Wi (0; s0) = 0. Then, Uij is the normal distri-
bution with mean ξΔtj and variance σ2Δtj . According to the
independent increments of Brownian motion, the log-likelihood
function can be denoted by

� =

n0∑
i=1

k∑
j=1

[
−1

2
ln
(
σ2
)− 1

2
ln (Δtj)− (Uij − ξΔtj)

2

2σ2Δtj

]
.

Then, maximizing � gives the MLEs of the parameters as
follows:

ξ̂ =

∑n0

i=1 wik

n0α
=

∑n0

i=1 wi (α)

n0α
(3)

and

σ̂2 =
1

n0k

n0∑
i = 1

k∑
j = 1

(
Uij − ξ̂Δtj

)2
Δtj

(4)

where wik =
∑k

j=1 Uij = wi (α). The estimate of the drift
parameter ξ in (3) is free of k but is dependent on sample size
n0 and the degradation value at termination time α.The large
sample properties of the above MLEs (see Lehmann [9] for more
details) are provided as follows:

1) ξ̂ is a consistent estimator of ξ and is also the optimal lin-
ear unbiased estimator with weights Δtj/

∑k
j = 1 Δtj =

Δtj/α for j = 1, . . . , k.
2) The statistic (Uij − ξΔtj)/

√
Δtj has an asymptotic nor-

mal distribution with mean 0 and variance σ2.
3) σ̂2 is a consistent estimator of σ2.
In a multi-group PCSADT, samples of products are divided

into h+ 1 groups. We assume that the lth group, for l =
12, . . . , h , contains nl units tested under the stress sl(> s0).

Following the design in Doksum and Hoyland [3], we denote
the degradation model as

Wi (tj ; sl) = ξl tj + σBi (βltj) , l = 0, . . . , h i = 1, . . . , nl

(5)
j = 01, . . . , k where βl = β(θ; sl) and ξl = ξβl. Thus, the
CSADT model in (2) only uses normal stress s0 and is a special
case of model (5) with l = 0. Model (5) is a Weiner process
rescaled in time by (1) and describes that a higher stress level
accompanies a higher expected accumulated degradation. Then,

we denote the dataset as follows:

Under s0 w1(t1; s0) w1(t2; s0) . . . w1(α; s0)
. . . . . . . . .

wn0
(t1; s0) wn0

(t2; s0) wn0
(α; s0)

Under s1 w1(t1; s1) w1(t2; s1) . . . w1(α; s1)
. . . . . . . . .

wnl
(t1; s1) wnl

(t2; s1) w1(α; s1)
. . . . . . . . . . . . . . .

Under sh w1(t1; sh) w1(t2; sh) . . . w1(α; sh)
. . . . . . . . .

wnh
(t1; sh) wnh

(t2; sh) wnh
(α; sh).

Under the PCSADT experiment, we denote the increment of
degradation measurement as

Ulij = Wi (tj ; sl)−Wi (tj−1; sl) = ξl Δtj + σΔBlij (6)

for l = 0, . . . , h, i = 1, . . . , nl, j = 1, . . . , k, where Δ tj =
tj − tj−1, and ΔBlij = Bi(βltj)−Bi(βltj−1). It is clear that
Ulij’s are normally distributed with mean βlξΔtj and variance
βlσ

2Δtj . On the basis of the independent increments property of
Brownian motion, the log-likelihood function can be presented
by

� =

h∑
l=0

nl∑
i=1

k∑
j=1

[
−1

2
ln
(
σ2
)− 1

2
ln (βlΔtj)

− (Ulij − βlξΔtj)
2

2σ2βlΔtj

]

and its partial derivatives with respect to ξ, σ2, and θ are

∂�

∂ξ
=

h∑
l=0

nl∑
i=1

k∑
j=1

(Ulij − βlξΔtj)

σ2
,

∂�

∂σ2
=

h∑
l=0

nl∑
i=1

k∑
j=1

[
− 1

2σ2
+

(Ulij − βlξΔtj)
2

2σ4βlΔtj

]

and

∂�

∂θ
=

h∑
l=0

nl∑
i=1

k∑
j=1

[
− β′

l

2βl
− U2

lijβ
′
l

2σ2β2
l Δtj

+
ξ2β′

lΔtj
2σ2

]
(7)

where β′
l = ∂βl/∂θ. Then, solving the equations of ∂�/∂ξ = 0

and ∂�/∂σ2 = 0, the typical MLEs of ξ and σ2 are

ξ̂M =

∑h
l=0

∑nl

i=1 Wlik∑h
j=0 nlβ̂l,Mα

=

∑h
l = 0

∑nl

i = 1 Wi (α; sl)∑h
j = 0 nlβ̂l,Mα

(8)

and

σ̂2
M =

1

Nk

h∑
l = 0

nl∑
i = 1

k∑
j = 1

(
Ulij − ξ̂M β̂l,MΔtj

)2
β̂l,MΔtj

(9)

where Wlik = Wi (α; sl) =
∑k

j=1 Ulij , β̂l,M = β(θ̂M ; sl)

and N =
∑h

l=0 nl . Note that the drift estimate ξ̂M in (8)
depends on the degradation value at termination time α and the
numbers of measurement. However, the explicit forms of β̂l,M

and θ̂M in (8) and (9) remain uncertain.
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The typical MLE of the accelerated parameter θ relies on
a special relationship, β′

l = cl βl, for a constant cl ∈ R, and
following such special relationship for the Arrhenius law:

∂

∂θ
β (θ, sl) =

∂

∂θ
βl = δl β (θ, sl) = δl βl

where δl = 11605(s−1
0 − s−1

l ). By substituting β′
l with δlβl in

(7) and setting ∂�/∂θ = 0

h∑
l = 0

δl

(∑nl

i = 1

∑k
j = 1 U

2
lij/Δtj

β (θ, sl)

− ξ̂2Mαnlβ (θ, sl)− kσ̂2
Mnl

)
= 0. (10)

Then, the MLE of θ denoted by θ̂M can be obtained by solving
(10). It is also extremely difficult to determine the closed-form
of θ̂M . Therefore, the estimate of θ̂M should be calculated via
using numerical methods.

III. TWO-STAGE ESTIMATION METHOD

In this section, we propose a TSML inference procedure to
derive the estimators of the lifetime distribution parameters. In
the first stage, we demonstrate how to obtain the estimators of
ξ, βl, and the accelerated factor θl separately for each stress
level sl. The estimators of βl and θl can be used to transform
the original PCSADT data under stress sl into degradation data
under the normal use condition. In the second stage, we adopt
the ML method to estimate the model parameters based on the
transformed data. It is noteworthy that the TSML estimators are
easily-interpretable and consistent, and all have closed-forms.

Another two-stage estimation procedure for the time-
censored ADT was proposed by Lee et al. [12] In their design,
the failure time data and degradation information are collected
at the censored time. They used latent variable and failure time
data to estimate the degradation value at the censored time, and
then the pseudocomplete degradation data are used to estimate
the ADT model parameters. In this article, the proposed TSML
inference procedure uses a different data design from the one
proposed by Lee et al. [12] The degradation datasets in this
article are composed of true degradation values observed under
the setup stresses. Moreover, the ADT parameters are estimated
based on the true degradation datasets collected at some time
points in the interval [0, α] for several stresses.

A. First Stage: Estimation of βl

ξl in (5) can be regarded as a new drift parameter, and βl can
be considered a parameter of the degradation model under the
stress sl. Using (3) and (4), a comparison of the parameters in
(5) and (2) can be used to represent the estimators of the drift
parameter ξl and the diffusion parameter as follows:

ξ̂l =

∑nl

i=1 Wlik

nlα
=

∑nl

i=1 Wi (α; sl)

nlα
(11)

and

σ̂2
l =

1

nlk

nl∑
i = 1

k∑
j = 1

(
Ulij − ξ̂lΔtj

)2
β̂lΔtj

(12)

for l = 0, . . . , h. According to ξl = ξβl, the estimator of βl

can be represented by

β̂l =
ξ̂l

ξ̂0
=

n0

nl

∑nl

i = 1 Wlik∑n0

i = 1 W0ik
, for l = 1, . . . , h. (13)

Then, the estimator of θ at the stress sl can be obtained through
of using the functional form of β(·) by

θ̂l = β−1
(
β̂l

)

for l = 1, . . . , h. The Arrhenius law model is a commonly
used stress model for ambient temperature in an ADT. Hu et al.
[7] also used an ADT with the Arrhenius law model to study the
reliability of LEDs. If the PCSADT cannot be carried out for the
stress level s0 (13) can be modified to estimateβ∗

l = β(θ; s1, sl).
The estimator of β∗

l satisfies

β̂∗
l =

ξ̂l

ξ̂1
=

n1

nl

∑nl

i = 1 wlik∑n1

i = 1 w1ik
, for l = 2, . . . , h.

That is, β̂∗
l can be obtained based on the degradation in-

formation observed at the stress levels s1 and sl. In practice,
although several explicit expressions of β are proposed, the best
expression has not been determined. It is noteworthy that β̂∗

l

is independent of the expression of β and provides an imper-
sonal estimate for the value of β under stress sl. Therefore,
the explicit form of β can be explored using mathematical or
statistical methods, for example, a regression analysis based
on the dataset {(sl, β̂∗

l ), l = 01, . . . , h}. Our method can be
extended to estimate the vector parameter θ in multiple stress
factor cases; see Appendix B in Lee et al. [12] for an alternative
method.

B. Second Stage: Estimation of Parameters ξ and σ Based on
Transformed Data

In this section, we transform the data drawn based on (5) to the
resulting data, which can be viewed as all of the data collected
under s0. The time tj is changed to βltj , and the transformed
measurement time (called aged time) of the experiment can be
denoted as

t̃lj = βl tj , l = 1, . . . , h, j = 1, . . . , k. (14)

The transformed termination times can be denoted as
α̃l = βl α, for l = 12, . . . , h, and the degradation model
W (tj ; sl) can be rewritten as W (t̃lj ; s0). Note that W (tj ; sl) =
W (t̃lj ; s0). The transformed dataset of PCSADT under s0 is
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listed in the following table:

Under w1(t1; s0) w1(t2; s0) . . . w1(α; s0)
s0 . . . . . . . . .

wn0
(t1; s0) wn0

(t2; s0) wn0
(α; s0)

Under w1(t̃11; s0) w1(t̃12; s0) . . . w1(α̃1; s0)
s1 . . . . . . . . .

wnl
(t̃11; s0) wnl

(t̃12; s0) wnl
(α̃1; s0)

. . . . . . . . . . . . . . .
Under w1(t̃h1; s0) w1(t̃h2; s0) w1(α̃h; s0)
sh . . . . . . . . . . . .

wnh
(t̃h1; s0) wnh

(t̃h2; s0) wnh
(α̃h; s0).

We omit s0 and denote the modified model of (5) by

Wi

(
t̃lj
)
= ξt̃lj + σBi

(
t̃lj
)
, l = 0, . . . , h, i = 1, . . . , nl

j = 1, . . . , k. (15)

The increment of (15) follows:

Ũlij = Wi

(
t̃lj
)−Wi

(
t̃lj−1

)
= ξΔt̃lj + σ

(
Bi

(
t̃lj
)−Bi

(
t̃l,j−1

))
.

Since Wi (t̃lj ; s0) = Wi (tj ; sl), the abbreviations Wlik and
Ulij are used to represent Wi(t̃lj) and its increments Ũlij .
Therefore, Ulij follows a normal distribution with mean ξΔt̃lj
and variance σ2Δt̃lj for l = 1, . . . , h, i = 1, . . . , nl, j =
1, . . . , k. Note that Doksum and Hoyland proposed the time-
transformed model and assumed that the acceleration stress not
only affects the drift coefficient but also the diffusion coefficient.
We present the log-likelihood function by

� =

h∑
l=0

nl∑
i=1

k∑
j=1

[
−1

2
ln
(
σ2
)− 1

2
ln
(
Δt̃lj

)

−
(
Ulij − ξΔt̃lj

)2
2σ2Δt̃lj

]
.

The first partial derivatives of � with respect to ξ and σ2 are
as follows:

∂�

∂ξ
=

h∑
l=0

nl∑
i=1

k∑
j=1

2
(
Ulij − ξΔt̃lj

)
Δt̃lj

2σ2Δt̃lj

=

h∑
l=0

nl∑
i=1

k∑
j=1

(
Ulij − ξΔt̃lj

)
σ2

and

∂�

∂σ2
=

h∑
l=0

nl∑
i=1

k∑
j=1

[
− 1

2σ2
+

(
Ulij − ξΔt̃lj

)2
2σ4Δt̃lj

]
.

By setting and solving ∂�/∂ξ = 0 and ∂�/∂σ2 = 0, the
TSMLEs of ξ and σ2 follow (recall that Wi(t̃lk; s0) and
Wi(tk; sl) have the same value and are denoted as Wlik)

ξ̂2S =

∑h
l=0

∑nl

i=1 Wlik∑h
l=0 nlα̃l

=

∑h
l=0

∑nl

i=1 Wi (α; sl)∑h
l=0 nlα̃l

(16)

and

σ̂2
2S =

1

Nk

h∑
l = 0

nl∑
i = 1

k∑
j = 1

(
Ulij − ξ̂2SΔt̃lj

)2
Δt̃lj

. (17)

The parameter ξ0 can be estimated by ξ̂0 in first-stage and ξ̂2S
in the second-stage. Via (13), it is clear that the two estimates of
ξ0 are the same.

Using the specific form of β, the parameter θ can be estimated
directly as

θ̂l = β−1
(
β̂l

)
(18)

according to the degradation data under stress sl. From (13),
ξ̂0 is the denominator of β̂l and θ̂l, l = 1, . . . , h, are depen-
dent. In this article, we denote the linear combination of θ̂l for
l = 1, . . . , h

θ̂2S =
h∑

l=1

al θ̂l

where al, l = 12, . . . , h, are weights with
∑m

l = 1 al = 1 as
the TSMLE of θ. Suitable weights al, l = 12, . . . , h can be
determined by minimizing the asymptotic variance of θ̂2S , see
Section IV.B. Finally, the unknown α̃l and Δt̃lj are estimated
using β̂lα and β̂lΔtlj , respectively. Then, we have the proposed
TSMLEs of ξ and σ2 using all of the data.

IV. ASYMPTOTIC PROPERTIES

In this section, the aim is to derive the properties of consis-
tency and asymptotic normality of the TSML estimators while
the sample size tends to infinity but the number of the time point
observations is fixed.

A. Consistency and Asymptotic Normality

Consistency is a fundamental property for evaluating the
quality of the point estimator and ensuring that the estima-
tor is approximate to the true parameter as the sample size
increases. It is well known that the MLE of the variance σ2

derived based on the n – sample drawn independently from
N(θr, σ

2), r = 12, . . . , n, is not consistent (see Lehmann [9,
p. 524]). Despite the hADT samples being drawn from different
normal distributions, all of the TSML estimators are equipped
with consistency.

First, we verify that all first-stage estimators are consistent in
Lemma 1. Then, the consistency of the second-stage estimators
θ̂2S is also given in Lemma 1. Moreover, the consistency of the
second-stage estimator ξ̂2S and σ̂2

2S are reported in Proposition 1.
Lemma 1: Under the stress sl, ξ̂l, β̂l, σ̂2

l , and θ̂l are consistent
estimators of the parameters ξl, βl, σ2

l , and θ. Moreover, θ̂2S =∑h
l=1 al θ̂l is a consistent estimator of θ.
Proposition 1: The TSML estimators ξ̂2S and σ̂2

2S are con-
sistent estimators of the parameters ξ and σ2, respectively.

The proofs of Lemma 1 and Proposition 1 are included in
Appendix A and B, respectively. The asymptotic normality of
θ̂2S is discussed in Appendix C.
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B. Selection of Coefficients al’s

Selecting the weights al, l = 12, . . . , h in θ̂2S is important
for specifying θ̂2S . In this section, we discuss how to determine
the weights al, l = 12, . . . , h by minimizing the asymptotic
variance

σ2
θ̂2S

=

(
h∑

l=1

al
(
β−1
)′
(βl)

)2 h∑
l = 1

[
(al
(
β−1
)′
(βl))

2
(

βl

ml

)]
(19)

subject to the equality constraint
∑m

l = 1 al = 1. Since

∂σ2
θ̂2S

∂al

= 2
(
β−1
)′
(βl)

m∑
l = 1

al
(
β−1
)′
(βl) + 2

[(
β−1
)′
(βl)
]2( βl

ml

)
al

and

∂ (
∑m

l = 1 al − 1)

∂al
= 1

for l = 12, . . . , h, via using the Lagrange multipliers method,
the following simultaneous linear equations are obtained:

2(β−1)′(βl)

h∑
l=1

al(β
−1)′(βl) + 2

[(
β−1
)′
(βl)
]2( βl

ml

)
al − λ

= 0, for l = 12, . . . , h.

and
m∑
l=1

al = 1

where λ is the Lagrange multiplier. Define aλ =

(a1, a2, . . . , ah, λ)′, θ(λ)i,j = (β−1)′ (βi)(β
−1)′(βj) and

Aλ =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2θ
(λ)
11 2θ

(λ)
12 . . . 2θ

(λ)
1,m −1(

1 + β1

m1

)
2θ

(λ)
12 2θ

(λ)
22

(
1 + β2

m2

)
. . . 2θ

(λ)
2,m −1

...
. . .

...
...

2θ
(λ)
1,m 2θ

(λ)
2,m . . . 2θ

(λ)
m,m

(
1 + βm

mm

)
−1

1 1 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where (β−1)′ is the derivative of the inverse function of β. Then,
the solution of the simultaneous linear equations above is

aλ = A−1
λ (00, . . . , 01)′ .

Since the Hessian matrix of σ2
θ̂2S

is a positive definite matrix,

we determine that σ2
θ̂2S

is a convex function of (a1, a2, . . . , ah)
from (19). Therefore, the unique solution aλ can be used to attain
the global minimum of σ2

θ̂2S
.

Note that the coefficients al can be easily obtained when
the inverse of β can be expressed as an explicit form. If it is
complicated to obtain the expression of the inverse function ofβ,

the uniform-weighted estimator of θ is still an accurate estimator
based on the consistency of θ̂2S .

Example 1: For a three-level PSCADT with h = 2, the
closed-form expressions of a1 and a2 can be carried out straight-
forwardly. Obviously, the Hessian matrix of σ2

θ̂2S
is a positive

definite matrix. Define

Aλ =

⎛
⎜⎜⎝

2θ
(λ)
11

(
1 + β1

m1

)
2θ

(λ)
12 −1

2θ
(λ)
12 2θ

(λ)
22

(
1 + β2

m2

)
−1

1 1 0

⎞
⎟⎟⎠ .

Then, we can obtain

a1 =
θ
(λ)
22

(
1 + β2

m2

)
− θ

(λ)
12

θ
(λ)
11

(
1 + β1

m1

)
+ θ

(λ)
22

(
1 + β2

m2

)
− 2θ

(λ)
12

and

a2 =
θ
(λ)
11

(
1 + β1

m1

)
− θ

(λ)
12

θ
(λ)
11

(
1 + β1

m1

)
+ θ

(λ)
22

(
1 + β2

m2

)
− 2θ

(λ)
12

by aλ = A−1
λ (00, 1)′. Following the Arrhenius law, we

have (β−1)′ (βl) = 1/(δlβl) for l = 12, where δl =
11605(s−1

0 − s−1
l ). Therefore, the coefficients al, l = 12 have

the following representations:

a1 =

(
1

δ2β2

)2 (
1 + β2

m2

)
− 1

δ1β1δ2β2(
1

δ1β1

)2 (
1 + β1

m1

)
+
(

1
δ2β2

)2 (
1 + β2

m2

)
− 2

δ1β1δ2β2

and

a2 =

(
1

δ1β1

)2 (
1 + β1

m1

)
− 1

δ1β1δ2β2(
1

δ1β1

)2 (
1 + β1

m1

)
+
(

1
δ2β2

)2 (
1 + β2

m2

)
− 2

δ1β1δ2β2

.

Remark 1: Note that all of the commonly used accelerated
relationship laws have the continuous derivative of the inverse
function β−1. However, the expressions of the optimal coeffi-
cient al involving unknown parameter βl for l = 12, . . . , h, we
propose replacing βl by the consistent estimator β̂l to obtain the
approximations of al for l = 12, . . . , h. In addition, the accuracy
of these approximations can be ensured by the consistency of
the estimators β̂l, l = 12, . . . , h and the continuity of (β−1)′.

V. LED EXAMPLE

In this section, we evaluate the performance of the proposed
TSML estimators via using Monte Carlo simulations. A real-
world application based on the proposed inference procedure is
also given for illustration.

A. Simulation Study

Intensive simulations were conducted to study the perfor-
mance of the proposed TSML estimation method. Referring the
results of the LED example in the next section, we set ξ = 0.001
and σ = 0.006 for the Wiener process model in this simulation
study. The life–stress relationship is set as the Arrhenius law
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TABLE I
SIMULATION RESULTS FOR θ = 0.15, ξ = 0.001 AND σ = 0.006.

model with θ = 0.15. The stress levels (s0, s1, s2) = (25 °C,
65 °C, 105 °C) are selected for the three-level PCSADT. Three
measurement numbers, k = 8, 13, and 52, are adopted with
the time intervals, which has length α/k. We set the termination
time to α = 100 and the sample sizes to n = 6, 15, 24, and
120 for all stress levels. All the designs are repeated 1000 times
to obtain 1000 estimates of the model parameters. Then, the
average estimate (AVE), the standard error (SE), and root-mean-
square error (RMSE) are evaluated. These results are reported in
Table I.

From Table I, we find that the AVE of θ̃2S is closer to the true
value θ = 0.15 than θ̃M , except for the case of N = 120× 3
and k = 52. It is noted that the bias of θ̃2S in most of the cells
of Table I are smaller than that of θ̃M , but the difference of bias
based on θ̃2S and θ̃M is insignificant. However, the SE of θ̃2S

is slightly greater than those of θ̃M . Their absolute difference
decreases from 0.00055 to 0.000051 for the cases with k =
6, from 0.000361 to 0.002588 for the cases with k = 13 and
decreases from 0.012976 to 0.004174 for the cases with k =
52, as the sample size increases. Furthermore, the SE of θ̃2S is
less sensitive than those of θ̃M for the measurement member k.
Since the SEs of θ̃M and θ̃2S are small, both estimators θ̃2S and
θ̃M are competitive.

The AVEs of ξ̃2S and ξ̃M are extremely close to ξ = 0.001,
and their SEs are extremely small. Although the SE of ξ̃M is
slightly less than the SE of ξ̃2S , ξ̃2S is less sensitive than ξ̃M
for the measurement number k. For estimating σ, the AVEs of
σ̃2S and σ̃M are also very close to σ = 0.006. However, σ̃M

has a smaller SE and σ̃2S is less sensitive for the measurement
numbers. The absolute difference of SEs between the MLEs and
TSMLEs is very small, but the SE and RMSE of TSMLE are
slightly bigger than the MLE. These two estimation methods are
competitive. Due to the TSML estimators have explicit forms,
the TSML method is more tractable than the ML method. In
this article, we recommend the TSML method to engineers for
implementing CSADTs.

B. LED Data Analysis

The LED is a critical part of a contact image sensor (CIS)
module. The lifetime of the CIS module is highly dependent on
the light intensity quality of the LEDs and the lifetime of an LED
lamp is highly correlated with its light intensity (brightness).
There is a fairly standard operating procedure for implementing
an LED ADT (see Huang et al. [5], Wang [29], and U.S. Depart-
ment of Energy [35] for more details). The main test equipment
is a high-temperature aging degradation chamber. Note that
IES LM-80-08 (IESNA Testing Procedures [33], which is an
industry standard developed by the Illuminating Engineering
Society of North America and sponsored by the U.S. Department
of Energy[34], suggests using only one stress factor, namely,
temperature, at three different levels when analyzing the lumen
degradation and lifetime of LEDs.

Normally, the lumen degradation information of LED is col-
lected under ADTs to evaluate the reliability of LEDs. Using a
higher stress than the normal use condition in an ADT can accel-
erate the lumen degradation of LED and reduce the experimental
time and testing cost. Temperature is a critical stress factor in this
study. A lumen degradation dataset for a special type of LED was
obtained from a leading LED manufacturer in Taiwan by using a
three-level (h = 2) PCSADT with temperatures at (s0, s1, s2)=
(25, 65, 105) in Celsius (°C) in whichn0 = 15,n1 = 18, andn2

= 23 LEDs were allocated for the PCSADT at the temperatures
s0, s1, and s2, respectively. The total measurement number is
k = 13. The PCSADT was implemented for 2184 h and then
terminated.

According to Yu and Tseng [31], [32], Tseng et al. [24], and
Liao and Elsayed [10], a transformed degradation process can
be modeled by a linear process in many engineering applica-
tions. In this example, we consider the transformed degradation
path by Wli (t) = − ln(Lli(t

0.6)). Therefore, the correspond-
ing termination time of the PCSADT is also transformed as
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Fig. 1. Transformed Wiener process paths of LEDs.

α = 21480.6 = 100.82. The transformed Wiener process paths
of LEDs over time are depicted in Fig. 1.

Consider the Arrhenius law model for the stress of tem-
perature. Solving (10) based on (8) and (9) gives the MLEs
of ξ, σ, and θ, which are listed as follows: ξ̂M = 0.001189,
σ̂M = 0.005870, and θ̂M = 0.149048. Following the TSML
procedure, the estimate of θ is θ̃2S = 0.146052 and the repre-
sentation of the estimate of the decay acceleration factor can be
straightforwardly denoted as

β̂l = β
(
θ̂2S ; sl

)
= e

(0.146052/kb)
(

1
273.15+25− 1

273.15+sl

)

for l = 12. The transformed times can be calculated by t̃lj =

β̂l tj for l = 12 and j = 1, . . . , k, and the transformed termi-
nation times are α̃l = β̃l α for l = 12. Then, we obtain α̂1 =
196.15 and α̂2 = 331.49 at the stress levels s1 = 65 ◦C and
s2 = 105 ◦C, respectively. Using (16) and (17), we obtain the
TSMLEs of ξ and σ as ξ̂2S = 0.001186 and σ̂2S = 0.005914.

Comparing the results obtained from the ML and TSML
methods, we have |ξ̂M − ξ̂2S | = 3× 10−6, |σ̂M − σ̂2S | =
4.4× 10−5, and |θ̂M − θ̂2S | = 3× 10−3. These absolute dif-
ferences indicate that the estimates using the two methods are
close. However, the MLEs are lacking the explicit expressions
and calculating the MLEs relies on a numerical method. By
contrast, the TSML method can provide the explicit forms for
estimating the parameters. Hence, our method can provide a
more efficient and direct approach for estimating the parameters
without using a numerical method.

In addition, evaluating the traditional MLE based on the nu-
merical computation requires a suitable initial value. However,
a suitable initial value is not always given, and as a result, the
computation result is likely divergent or the local maximum
cannot be attained. Therefore, in this section, we set the esti-
mates of the TSMLEs as the initial values for evaluating the
traditional MLEs. Moreover, the roots of (10) are difficult to
obtain. Therefore, the explicit forms of the TSMLEs are not
only a stable and trustworthy estimation but also can provide a
suitable initial value for computing the traditional MLEs.

VI. CONCLUSION

To provide a tractable method to estimate the parameters of the
Wiener process under a PCSADT for highly reliable products,

a TSML estimation procedure was proposed in this article.
The step-by-step estimation procedure was introduced, and the
asymptotical properties of the proposed TSML estimators were
analytically derived.

In the first stage of the proposed method, we obtained es-
timates of the acceleration factor for each stress level. These
estimated acceleration factors were used to transform the orig-
inal data collected from the PCSADT. In the second stage, the
transformed data from the first stage were used to estimate the
drift parameter and diffusion parameter of the Wiener process.
Moreover, a linear combination estimator was proposed to esti-
mate the accelerated parameter or the nuisance parameter. The
proposed TSML estimators were close-formed and equipped
with consistency. The asymptotical normality of all of the TSML
estimators was also analytically derived. In addition, using the
numerical method to evaluate the traditional MLE required a
suitable initial value. However, unsuitable initial values often
cause the computation results to diverge or fail to attain the local
maxima. Contrasting the traditional MLE method, our proposed
TSML method can provide a stable and trustworthy estimation.
Furthermore, our method can provide a suitable initial value for
evaluating the typical MLEs via the computation method. Hence,
the TSML estimation procedure can be an auxiliary method
for finding reliable MLEs. Moreover, the TSML estimation
procedure is simple for implementation without working on an
iteration process.

An intensive simulation study was conducted to evaluate the
performance of the proposed estimation method. Simulation
results show that the TSML estimators perform well for esti-
mating the parameters. Since the typical ML estimators and their
corresponding Fisher information matrix were not close-formed,
constructing an optimal ADT plan relies on algorithms and
complicated numerical methods. Our proposed method, which
provides explicit forms, was more tractable and improved the
PCSADT design efficiently. The LED example was presented to
show the application of the proposed TSML estimation method.

One possible direction of future research is to extend our
proposed TSML method to step-stress ADTs. The proposed
estimation procedure can be applied to other popular stochastic
models such as the gamma process and inverse Gaussian process.
Based on these models, improving the PCSADT design is also
an important issue that merits future study. Another possible
direction of the future research is to extend our method to these
popular models with taking the failure time into consideration.

APPENDIX A
PROOF OF LEMMA 1

Since the MLE of the drift parameter of Brownian motion is
consistent, it is clear that ξ̂l is a consistent estimator of ξl. Then,
by Slutsky’s theorem, we obtain that β̂l is a consistent estimator
of βl. Furthermore, since β is a monotonic and continuous
function of θ, the consistency of θ̂l and θ̂2S can be clarified.
σ̂2
l can be rewritten as

σ̂2
l =

1

nlk

nl∑
i=1

k∑
j=1

(
Ulij − ξlΔtj + ξlΔtj − ξ̂lΔtj

)2
β̂lΔtj

.
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Hence, the consistency of σ̂2
l can be verified directly via the

following properties:
1)

1

nlk

nl∑
i = 1

k∑
j = 1

(Ulij − ξlΔtj)
2

β̂lΔtj

p→σ2 as nl → ∞ (A1)

2)
2

nlk

nl∑
i=1

k∑
j=1

(Ulij − ξlΔtj)
(
ξlΔti − ξ̂lΔtj

)
β̂lΔtj

p→ 0 as nl → ∞ (A2)

3)

1

nlk

nl∑
i=1

k∑
j=1

(
ξlΔtj − ξ̂lΔtj

)2
β̂lΔtj

p→σ2 as nl → ∞.

(A3)

APPENDIX B
PROOF OF PROPOSITION 1

It is obvious that

ξ̂2S =
m∑
l=1

[(∑nl

i=1

∑k
j=1 Ulij

nlβ̂lα
− ξ

)
nlβ̂lα∑m
l=1 nlβ̂lα

]
+ ξ.

According to the following:

∑nl

i=1

∑k
j=1 Ulij

nlβ̂lα
− ξ

p→ 0 and

∑m
l=1

∣∣∣nlβ̂lα
∣∣∣∣∣∣∑m

l=1 nlβ̂lα
∣∣∣

p→ 1 as nl → ∞

ξ̂2S can be shown to be a consistent estimator of ξ using
Slutsky’s theorem.

Obviously, σ̂2
2S can be rewritten as

σ̂2
2S =

⎧⎪⎨
⎪⎩

1

Nk

h∑
l=1

nl∑
i=1

k∑
j=1

(
Ulij − ξ̂lΔt̃lj

)2
Δt̃lj

+
h∑

l=1

2
(
ξ̂l − ξ̂2S

) nl∑
i=1

k∑
j=1

(
Ulij − ξ̂lΔt̃lj

)

+

h∑
l=1

(
ξ̂l − ξ̂2S

)2 nl∑
i=1

k∑
j=1

Δt̃lj

⎫⎬
⎭ .

The following three properties:
1)

1

Nk

h∑
l = 1

nl∑
i = 1

k∑
j = 1

(
Ulij − ξ̂lΔt̃lj

)2
Δt̃lj

p→σ2 as nl → ∞,

2)
1

Nk

h∑
l=1

2
(
ξ̂l − ξ̂2S

)

×
nl∑
i=1

k∑
j=1

(
Ulij − ξ̂lΔt̃lj

)
p→ 0 as nl → ∞,

3)
1

Nk

h∑
l=1

(
ξ̂l − ξ̂2S

)2 nl∑
i=1

k∑
j=1

Δt̃lj
p→ 0 as nl → ∞,

can be verified by (A1)–(A3), Lemma 1 and the consistency of
ξ̂2S . Therefore, we can verify that σ̂2

2S is a consistent estimator
of σ2 using the above properties.

APPENDIX C
ASYMPTOTIC NORMALITY

The asymptotic normality of the TSML estimators is dis-
cussed in this appendix. In practice, all sample sizes nl, l =
01, . . . , h are usually selected to be “nearly” equal in an ADT.
Hence, it is reasonable to assume that nl/n0 → ml for some
ml ∈ R+ as (n0, nl) → (∞,∞), i.e., nl = O(n0).

First, we discuss the sampling distribution of the first-stage
estimators θ̂l and β̂l. Since Wlij has a normal distribution with
mean αξl and variance αβlσ

2, the MLE ξ̂l follows a normal
distribution with mean ξl and variance σ2βl/(nα) for i =
1, . . . , nl, l = 1, . . . , h. Pham-Gia et al. [21] have established
a closed-form expression for the general bivariate normal case
by the Kummer hypergeometric function.X ∼ N(μX , σ2

X) and
Y ∼ N(μY , σ

2
Y ) are assumed to be two independent normally

distributed random variables. The probability density function
of the ratio variable Z = X/Y is given by

PZ (z) =
b (z) c (z)

d3 (z)

1√
2πσXσY

[
2Φ

(
b (z)

d (z)

)
− 1

]

+
1

πσXσY d2 (z)
exp

{
−1

2

(
μ2
X

σ2
X

+
μ2
Y

σ2
Y

)}
(A4)

where b (z) = μX

σ2
X

z + μY

σ2
Y

, c (z) =

exp{ b2(z)
2a2(z) − 1

2 (
μ2
X

σ2
X
+

μ2
Y

σ2
Y
)}, d (z) =

√
1

σ2
X
z2 + 1

σ2
Y

, and

Φ(·) is the cumulative distribution function of the standard
normal distribution. Assuming that μY >> σY or μY > 5σY ,
Hayya et al. [6] used the Geary–Hinkley transformation to
rewrite (A4) as

gz(z, μX , σ2
X , μY , σ

2
Y )

=
μX√
2πσ2

Y

(
z +

μY σ2
X

μXσ2
Y

)
(z2 +

σ2
X

σ2
Y
)

3
2

exp

⎧⎪⎨
⎪⎩−

(
z − μX

μY

)2
2
σ2
Y

μ2
Y

(
z2 +

σ2
X

σ2
Y

)
⎫⎪⎬
⎪⎭ (A5)

which is approximately a standard normal distribution.
Under the normal use condition s0, ξ̂0 follows a normal

distribution with mean ξ and variance σ2/(nα). In an ADT,
the assumption that σ < ξ < 0.1 if α is large is reasonable. It
can be shown that the ratio

√
nα ξ/σ > 5 if 10 ≤ n ≤ 30. The

distribution of β̂l = ξ̂l/ξ̂0 can be expressed by

gz

(
z, ξ,

σ2

n0α
, ξl,

βlσ
2

n1α

)

=
ξ√

2πβlσ2

n1α

(
z + n1

n0

)
(z2 + n1

n0βl
)

3
2

× exp

⎧⎪⎨
⎪⎩−

n1αξ
2
(
z − 1

βl

)2
2σ2
(
z2 + n1

n0βl

)
⎫⎪⎬
⎪⎭
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using (A5). Then, the distribution of θ̂l can be obtained as
follows:

fZ (z, ξ, σ, βl, β (z))

= gZ

(
β (z) , ξ,

σ2

nα
, ξl,

βlσ
2

nα

)
×
(

∂

∂z
β (z)

)−1

.

However, the density function of θ̂l is extremely complicated,
so it is difficult to derive the explicit form of the density function
of θ̂2S . The asymptotic normality can provide more elegant limit-
ing distributions for the estimators. In the following proposition,
we state the asymptotic normality of β̂l, and the proof is shown
in Appendix D.

Proposition C.1: Let nl = O( n0) for l = 12, . . . , h.

Then,
√
N(β̂l − βl)

d→N(0, σ2
β̂l
) as n0 → ∞, where

σ2
β̂l

= (
∑h

j=1 mj) [ σ2

αξ2 (β
2
l + βl

ml
)].

We proceed to clarify the asymptotic normality of θ̂2S .
Assume that the inverse of β(·) is differentiable. Define
gθ(ξ0, ξ1, . . . , ξh) =

∑h
l=1 alβ

−1(ξl/ξ0) . Then, the gradient of
gθ is

∇ gθ =

(
−

h∑
l=1

al
ξl
ξ0

[
β−1

(
ξl
ξ0

)]′
,
a1
ξ0

[
β−1

(
ξ1
ξ0

)]′
, . . . ,

ah
ξ0

[
β−1

(
ξh
ξ0

)]′)
.

Let

Σθ =

⎛
⎜⎜⎜⎝

1
ασ

2 0 . . . 0
0
...

σ2β1

αm1

0

0
. . .

...
0 0 . . . σ2βh

αmh

⎞
⎟⎟⎟⎠ .

Using the multivariate delta method and nl = O( n0) for
l = 12, . . . , h, the following is obtained:

√
n0

(
θ̂2S − θ

)
d→N

(
0,∇gθ (uξ,β) Σθ[∇gθ (uξ,β)]

T
)

as n0 → ∞
where uξ,β = (ξ, β1ξ, . . . , βhξ) and

∇gθ (uξ,β)
∑
θ

[∇gθ (uξ,β)]
T

=
σ2

αξ2

⎧⎨
⎩
(

h∑
l=1

al
(
β−1
)′
(βl)

)2

+

h∑
l=1

[
al
(
β−1
)′
(βl)
]2( βl

ml

)}
.

Using the expression
√
N (θ̂2S − θ) =

√
N
n0

√
n0(θ̂2S − θ)

and Slutsky’s theorem, we can verify that

√
N
(
θ̂2S − θ

)
d→

√√√√ h∑
l=1

mlN

(
0,

(
∇gθ (uξ,β)

∑
θ

[∇gθ (uξ,β)]
T

))

as n0 → ∞. Therefore, we clarify the asymptotic normality
of the second-stage estimator θ̂2S and summarize the result in
Proposition C.2.

Proposition C.2: Assume that the inverse function of β(·)
is differentiable and nl = O(n0) for l = 12, . . . , h. Then,√
N(θ̂2S − θ)

d→N(0, σ2
θ̂2S

) as n0 → ∞, where

σ2
θ̂2S

=

(
h∑

l=1

ml

)
× (∇gθ (uξ,β)

∑
θ

[∇gθ (uξ,β)]
T

and

[∇gθ (uξ,β)]
∑
θ

[∇gθ (uξ,β)]
T

=
σ2

αξ2

⎧⎨
⎩
(

h∑
l=1

al
(
β−1
)′
(βl)

)2

+
h∑

l=1

[
al
(
β−1
)′
(βl)
]2( βl

ml

)}
.

Before deriving the asymptotic normality of σ̂2
2S , we define

gσ2 (x0, x1, y1, . . . , xh, yh)

=

(
h∑

l=1

ml

)−1 h∑
l=1

(
mlβlylx0

xl
− σ2

)
.

The gradient vector of gσ2 is

∇gσ2 =

(
h∑

l=1

ml

)−1( h∑
l = 1

mlβlyl
xl

,

− m1β1y1
x2
1

,
m1β1x0

x1
, . . . ,−mhβhyh

x2
h

,
mhβhx0

xh

)
.

We verify the asymptotic normality of the second-stage esti-
mators ξ̂2S and σ̂2

2S in the following propositions.
Proposition C.3. Let nl = O(n0) for l = 12, . . . , h. Then,√
N(ξ̂2S − ξ)

d→N(0, (
∑h

l=1 ml)σ
2) as n0 → ∞.

Proof: See Appendix E.
Proposition C.4. Let nl = O( n0) for l = 12, . . . , h. Then,

√
N
(
σ̂2
2S − σ2

) d→

N

(
0,

(
h∑

l=1

ml

)
[∇gσ2 (uσ2)]

∑
σ2

[∇gσ2 (uσ2)]T
)
as n0 → ∞,

where(
h∑

	=1

m	

)
[∇gσ2 (uσ2)]

∑
σ2

[∇gσ2 (uσ2)]T

=
σ6

ξ2α

h∑
	=1

m	 +
σ6

ξ2α

[
h∑

	=1

m	

β	

][
h∑

	=1

m	

]−1

+
2σ4

k
.
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Proof. See Appendix F.

APPENDIX D
PROOF OF PROPOSITION C.1

Define X̄
(l)
nl =

∑nl

i=1

∑k
j=1 Ulij /(nlα) for l = 01, . . . , h.

Then, the following properties are obtained:
1) √

nl

(
X̄(l)

nl
− ξl

)
∼ N

(
0, σ2βl/α

)
.

2) √
n0(X̄

(0)
n0

− ξ) ∼ N
(
0, σ2/α

)
. (A6)

3)
For each l,

√
n0

(
X̄(l)

nl
− ξl

)
→ N

(
0, σ2βl/ (αml)

)
as n0 → ∞ and nl → ∞. (A7)

Furthermore, β̂l can be rewritten as β̂l = X̄
(l)
nl /X̄

(0)
n0 .

Let Σβ =
(

σ2

α 0
0

σ2βl
αml

)
. The gradient of βl = ξl /ξ0 is ∇ βl =

(−ξl/ξ
2
0 , 1/ξ0).

By the multivariate delta method and the properties (A6) and
(A7), we obtain

√
n0

(
β̂l − βl

)
d→N

(
0, [∇βl] Σβ [∇βl]

T
)

as n0 → ∞.

Via Slutsky’s theorem, we obtain

√
nl

(
β̂l − βl

)
d→√

mlN
(
0, [∇βl] Σβ [∇βl]

T
)

= N

(
0,

σ2

αξ2
(
mlβ

2
l + βl

))
as n0 → ∞, and

√
N
(
β̂l − βl

)
d→N

(
0,

(
h∑

l=1

ml

)[
σ2

αξ2

(
β2
l +

βl

ml

)])

as n0 → ∞. Proposition C.1 is proved. �

APPENDIX E
PROOF OF PROPOSITION C.2

After a simple algebraic computation, we obtain ξ̂2S − ξ =

(X̄
(0)
n0 − ξ) and the following property:

√
N
(
ξ̂2S − ξ

)
d→
√√√√ h∑

l=1

mlN

(
0,

1

α
σ2

)
as n0 → ∞

can be verified using Slutsky’s theorem. �

APPENDIX F
PROOF OF PROPOSITION C.3

It can be shown that

σ̂2
2S − σ2 =

1

Nk

h∑
l=1

(nlk)

×

⎡
⎢⎣ 1

nlk

nl∑
i=1

k∑
j=1

(
Ulij − ξ̂2SΔtj

)2
Δt̃lj

− σ2

⎤
⎥⎦

and

1

nlk

nl∑
i = 1

k∑
j = 1

(
Ulij − ξ̂lΔtj

)2
Δt̃lj

=
1

nlk

nl∑
i = 1

k∑
j = 1

(Ulij − ξlβlΔtj)
2

β̂lΔtj
−
(
X̄

(l)
nl − ξβl

)2
α

β̂lk
.

(A8)

Based on Lemma 1, the second term of (A8) is op = (n
−1/2
0 ).

This property can be clarified based on Lemma 1, (A5), and the
fact that X̄(l)

nl is a consistent estimator of ξβl. Therefore, we also
have√∑h

l=1 nl

Nk

h∑
l=1

(nlk)

⎡
⎢⎣−
(
X̄

(l)
nl − ξβl

)2
α

β̃lk

⎤
⎥⎦ = op

(
n
− 1

2
0

)
.

Define X
(l)
nl,i

= 1
α

∑k
j=1 Ulij and Y

(l)
nl,i

=

σ2

k

∑k
j=1

(Ulij−ξlβlΔtj)
2

σ2βlΔtj
for 1 ≤ i ≤ nl and l = 12, . . . , h.

Then, it is obvious that E (X
(l)
nl,i

) = ξβl, Var ( X
(l)
nl,i

) = σ2βl

α ,

E (Y
(l)
nl,i

) = σ2 , Var ( Y(l)
nl,i

) = 2σ4

k and Cov (X
(l)
nl,i

,Y
(l)
nl,i

) =
0. Using the Central Limit Theorem and the multivariate
Slutsky’s theorem, we obtain, as n0 approaches infinity

√
n0

(
X̄(0)

n0
− ξ, X̄(1)

n1
− β1ξ, Ȳ

(1)
n1

− σ2, . . . ,

X̄(h)
nh

− βhξ, Ȳ
(h)
nh

− σ2
)
→ MN (0,Σσ2 )

where

Σσ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2

α 0 0 · · · 0 0

0 σ2β1

m1α
0 · · · 0 0

0 0 2σ4

m1k
0 0 0

...
...

...
. . .

...
...

0 0 0 · · · σ2βm

mhα
0

0 0 0 · · · 0 2σ4

mhk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let

gσ2 (x0, x1, y1, . . . , xh, yh)

=

(
h∑

l=1

ml

)−1 h∑
l=1

(
mlβlylx0

xl
− σ2

)
.

Then, the gradient vector of gσ2 is

∇gσ2 =

(
h∑

l=1

ml

)−1

×
(

h∑
l=1

mlβlyl
xl

,−m1β1y1
x2
1

,
m1β1x0

x1
, . . . ,

− mhβhyh
x2
h

,
mhβhx0

xh

)
.
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Using the multivariate delta method, we have

√
n0

(
h∑

l=1

ml

)−1

h∑
l=1

ml

⎛
⎝ 1

nlk

nl∑
i=1

k∑
j=1

(Ulij − ξβlΔtj)
2

β̂lΔtj
− σ2

⎞
⎠

→ N
(
0,∇gσ2 (uσ2) Σσ2 [∇gσ2 (uσ2)]T

)
in distribution as (n0, . . . , nh) → (∞, . . . ,∞), where uσ2 =
(ξ, β1ξ, σ

2, β2ξ, σ
2, . . . , βhξ, σ

2).
Therefore, via Slutsky’s theorem, we obtain

√
n0

Nk

h∑
l=1

(nlk)

⎡
⎣ 1

nlk

nl∑
i=1

k∑
j=1

(Ulij − ξβlΔtj)
2

β̂lΔtj
− σ2

⎤
⎦

−
√
n0∑h

l=1 ml

h∑
l=1

ml

⎛
⎝ 1

nlk

nl∑
i=1

k∑
j=1

(Ulij − ξβlΔtj)
2

β̂lΔtj
− σ2

⎞
⎠

=

h∑
l=1

(
nlk∑h
l=1 nlk

− ml∑h
l=1 m	

)
√
n0

×
⎡
⎣ 1

nlk

nl∑
i=1

k∑
j=1

(Ulij − ξβlΔtj)
2

β̂lΔtj
− σ2

⎤
⎦→ 0

in distribution as (n0, . . . , nh) → (∞, . . . ,∞). Consequently,
we obtain√∑h

l=1 nl

Nk

h∑
l=1

(nlk)

⎡
⎣ 1

nlk

nl∑
i=1

k∑
j=1

(Ulij − ξβlΔtj)
2

β̂lΔtj
− σ2

⎤
⎦

d→N

(
0,

(
h∑

l=1

ml

)
∇gσ2 (uσ2) Σσ2 [∇gσ2 (uσ2)]T

)
.

Thus, we can conclude that√√√√ h∑
l=1

nl

(
σ̂2
2S − σ2

)

→ N

(
0,

(
h∑

l=1

ml

)
∇gσ2 (uσ2) Σσ2 [∇gσ2 (uσ2)]T

)

in distribution as (n0, . . . , nh) → (∞, . . . ,∞), where

(
h∑

	=1

ml

)
∇gσ2 (uσ2) Σσ2 [∇gσ2 (uσ2)]T

=
σ6

ξ2α

h∑
l=1

ml +
σ6

ξ2α

[
h∑

l=1

ml

βl

][
h∑

l=1

ml

]−1

+
2σ4

k
. �
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