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Abstract
This paper proposes a stochastic frontier model with three composed errors, and there-
fore six error components. As in the metafrontier literature, firms belong to groups
with a group-specific frontier. A firm has a level of short-run and long-run inefficiency
relative to its group-specific frontier, as in existing models with two composed errors
and four error components. But now there is also a group-specific inefficiency, that
is, a shortfall of the group-specific frontier from the best practice metafrontier. The
paper shows how to estimate this model and how to extract predictions of the various
inefficiencies.

Keywords Stochastic frontier · Panel data · Hierarchical model · Metafrontier ·
Inefficiency

JEL Classification C23 · C26

1 Introduction

Several recent papers have proposed models to separate long-run and short-run tech-
nical inefficiency from each other and from long-run and short-run heterogeneity that
is not regarded as inefficiency. In these papers, there are two composed errors, each of
which has two parts. There is a long-run (time-invariant) composed error ci � coi −c∗

i ,
where coi is normal and represents long-run heterogeneity, and c∗

i ≥ 0 is half-normal
and represents long-run inefficiency. There also is a short-run (independent over time)
composed error uit � uoit − u∗

i t , where uoit is normal and represents short-run het-
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erogeneity, and u∗
i t ≥ 0 is half-normal and represents short-run inefficiency. Papers

that have considered models with this error structure include Colombi et al. (2011),
Kumbhakar et al. (2014), Colombi et al. (2014) [hereafterCKMV], Tsionas andKumb-
hakar (2014), Filippini and Greene (2016) and Lai and Kumbhakar (2018). Despite the
rather large number of error components, this model has been estimated successfully.
As stressed by Filippini and Greene, this is not so surprising if we view the model as
containing two composed errors, as opposed to four error components.

In this paper we will add a third composed error wg � wo
g − w∗

g , where g � g(i)
represents the “group” or “cluster” or “industry” to which firm i belongs. We will use
the word “group” but in fact g can be anything that clusters the firms, like industry or
geographical region or choice of technology.

The motivation for this model is the concept of a “metafrontier.” The idea of a
metafrontier originated with Hayami and Ruttan (1971, 1985), and was later opera-
tionalized in a large number of other papers, including Pitt (1983), Lau andYotopoulos
(1989), Battese and Rao (2002), Battese et al. (2004), O’Donnell et al. (2008), Moreira
andBravo-Ureta (2010), Villano et al. (2015) andAmsler et al. (2017). In this literature
one is interested in the technical inefficiency of a firm relative to its group-specific
frontier, but also in the “technology gap” between the group-specific frontier and the
overall maximal frontier (the metafrontier). That is, for each group there is a frontier
and a firm in that group has an inefficiency relative to that frontier, but there is also a
potential inefficiency from being in an inefficient group (e.g. using the wrong technol-
ogy), reflected in the distance between the group-specific frontier and themetafrontier.
In our model this technology gap, for firms in group g, is captured by w∗

g .
In the original work of Hayami and Ruttan, the groups corresponded to different

choices of technology for growing rice (traditional methods versus “green revolution”
methods), but as noted above the groups can be defined in many different ways in
different settings. For example, in Amsler, O’Donnell and Schmidt, the “firms” are
actually countries and the “groups” are continents. The only requirement is that the
number of groups and the group membership of each firm are known.

2 Model and notation

Suppose that we have T time periods, indexed by t � 1, . . . , T , andG groups, indexed
by g � 1, . . . ,G. We have ng firms in group g, so that the total number of firms is
N � ∑

g ng . We will index firms by i � 1, . . . , N . We will assume that each firm
is in only one group and that firms do not change groups over time, so that we can
represent the group to which firm i belongs as g(i).

This is a “hierarchical” or “multi-level” data structure. Firms are nested in groups,
where “nested” is a term that dates back to the seminal article of Fuller and Battese
(1973), because for each firm there is a unique group. By way of contrast, time is
not nested in either firms or groups. There is a very large literature on hierarchical
models (i.e. linear models for hierarchical data). A very selective list of references
includes Fuller and Battese (1973), Raudenbush and Bryck (2002), Kim and Frees
(2007), Wooldridge (2010, pp. 876–883) and Matyas (2017), the latter being a recent
comprehensive treatment of the topic.

123



A hierarchical panel data stochastic frontier model for… 355

Our model will be similar to the model of Yang and Schmidt (2020), which has
fixed time effects and random firm and group effects. Specifically, our model is:

yit � x
′
i tβ + d

′
tθ + ci + wg(i) + uit . (1)

Here yit is the output (in logs) of firm i at time t ; xit is a vector of measures of inputs;
and dt is a dummy variable for time t , so that the elements of θ are the fixed time
effects. The ci , wg and uit are the long-run, group-specific and short-run composed
errors, respectively. Thus ci � coi − c∗

i , where coi is normal and c∗
i ≥ 0 is half-

normal; similarly, wg � wo
g − w∗

g and uit � uoit − u∗
i t . These composed errors have a

skew-normal distribution (Azzalini 1985).
There are some minor differences between this model and the model of Yang

and Schmidt. For example, their model distinguishes time-varying inputs (their xit )
from time-invariant inputs (their wi ), which is a relevant distinction for fixed-effects
or generalized least squares estimation but not a relevant distinction in this paper.
Also their model contains group-specific variables (their zg). We do not include these
because it is not reasonable to think of group-specific variables as inputs, though they
could be included as “environmental variables” in a model for the distribution of w∗

g .
But the main difference is that our ci , wg and uit are composed errors as opposed to
random effects of the usual kind (zero mean and unspecified distribution).

Our interpretation of the model is as follows. The overall frontier (metafrontier)

for firm i at time t is yit � x
′
i tβ + d

′
tθ +

(
coi + wo

g(i) + uoit

)
. Here coi is firm-specific

heterogeneity; wo
g(i) captures heterogeneity across groups; and uoit is idiosyncratic

heterogeneity. For firm i at time t , its inefficiency relative to the overall frontier is(
c∗
i + w∗

g(i) + u∗
i t

)
; its inefficiency relative to its group-specific frontier is c∗

i +u
∗
i t ; and

w∗
g(i) is the inefficiency of its group relative to the metafrontier. So we have split the

inefficiency of firm i at time t relative to the overall frontier
(
c∗
i + w∗

g(i) + u∗
i t

)
into

its inefficiency relative to its group-specific frontier (c∗
i + u∗

i t ) plus the inefficiency of
group g(i) relative to the best practice frontier (w∗

g(i)).
Many applications that we can envision would have a small number of time periods

(T ), a small number of groups (G), but a large number of firms per group (ng) and
therefore a large total number of firms (N ). Our model has fixed time effects, which is
consistent with small T and with the fact that we simply want to control for the time
effects, not to decompose them into heterogeneity and inefficiency. We have random
firm effects, for two reasons. First, if we had fixed firm effects, the group effects would
not be identified, due to the nested nature of the data. Second, we are interested in
decomposing thefirmeffects into heterogeneity and inefficiency, and this requires them
to be randomand to obey our normal/half-normal distributional assumptions.We could
have fixed group effects, but once again decomposing them into their heterogeneity
and inefficiency components requires random effects and distributional assumptions.
A potential issue is that the decomposition of the group effects into their heterogeneity
and inefficiency components will require estimates of the variances ofwo andw∗, and
these parameters cannot be expected to be estimated very precisely if G is small. This
is an intrinsic limitation of the model.
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3 Estimation of themodel

Wewill estimate the model bymaximum likelihood. To do so we require the following
assumptions.

Assumptions A. (i) The coi are iid N
(
0, σ 2

co
)
. (ii) The wo

g are iid N
(
0, σ 2

wo

)
. (iii) The

uoit are iid N
(
0, σ 2

uo
)
. (iv) The c∗

i are iid N
+
(
0, σ 2

c∗
)
. (v) Thew∗

g are iid N
+
(
0, σ 2

w∗
)
.

(vi) The u∗
i t are iid N+

(
0, σ 2

u∗
)
. (Here N+ denotes a half-normal distribution.)

B. xit , coj , c
∗
k , w

o
g, w

∗
h, u

o
ms, u

∗
qr are mutually independent for all i, j, k,m, q �

1, . . . , N , g, h � 1, . . . ,G and r , s, t � 1, . . . , T .

These assumptions say that the regressors xii are exogenous in the strictest possi-
ble sense—independent of all observations on all of the error components—and can
therefore be treated as fixed. The error components are independent across different
components and different realizations of the same component. However, there is no
restriction on the dependence of the xit across firms or over time. These are strong
assumptions, but theymirror the assumptionsmade inCKMVandFilippini andGreene
for the model with two composed errors.

Define εi t � ci + wg(i) + uit . We have independence of the ε’s across differ-
ent groups, but within a group we have correlation across individuals and over time
because of the group effect. Suppose that within group g we re-index the individ-
uals as i � 1, . . . , ng (a separate re-indexing for each group), and we let ε(g) �
(
ε11, . . . , ε1T , . . . , εng1, . . . , εngT

)′ be the Tng × 1 vector of ε’s for group g. Let
fg

(
ε(g)

)
be the density of ε(g). Define y(g)andx(g) analogously to ε(g) and d(g) �

(d1, . . . , dT , . . . , d1, . . . , dT )
′
,, so that ε(g) � y(g) − x(g)β − d(g)θ . Then the log-

likelihood function is

ln L �
G∑

g�1

ln fg(y(g) − x(g)β − d(g)θ ). (2)

Wewill maximize this to calculate the maximum likelihood estimator. The parame-
ters with respect to which the likelihood is maximized are β, θ, σ 2

co , σ
2
c∗ , σ 2

wo , σ
2
w∗ , σ 2

uo

and σ 2
u∗ .

The remaining issue is how to calculate the density fg for each group g. The vector
of random elements on which ε(g) depends is ξg � (c1, . . . , cng , wg, u11, . . . , ungT ),
a vector of Tng + ng + 1 independent skew-normal random variables. These have
densities that depend on the univariate normal pdf and cdf; for example, fc(ci ) � 2

σc
ϕ

(
ci
σc

)
Φ

(
−λc

ci
σc

)
, where σ 2

c � σ 2
co + σ 2

c∗ and λc � σc∗/σco , and similarly for wg and

uit . Because the elements of ξg are mutually independent, the density of ξg is:

fξ
(
ξg

) � fg
(
wg

)
ng∏

i�1

[

fc(ci )
T∏

t�1

fu(uit )

]

. (3)
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Then we can obtain the density of ε(g) by integrating out wg and the ci :

fg
(
ε(g)

) � ∫ . . . ∫ fg
(
wg

)
ng∏

i�1

[

fc(ci )
T∏

t�1

fu
(
εi t − wg − ci

)
]

dwgdc1 . . . dcng (4)

This integral could in principle be evaluated numerically, but it is of dimension
ng + 1 and a numerical evaluation would be slow and of questionable accuracy. We
therefore seek alternatives to a brute-force numerical integration procedure. There are
two such alternatives, which are extensions of procedures considered in the simpler
four-component case.

The first alternative is to follow the path of CKMV (2014) and use results on
the closed skew-normal family. The relevance of the closed skew-normal family to
stochastic frontier models was pointed out by Domínguez-Molina et al. (2003) and
González-Farías et al. (2004a, b). Skew-normal random variables like ci , wg and uit
are special cases of closed skew-normal random variables. Since independent closed
skew-normal random variables are jointly closed skew-normal, ξg is closed skew-
normal. Since linear combinations of closed skew-normal random variables are closed
skew-normal, ε(g) is closed skew-normal. This makes it possible to write the density of
ε(g) in an explicit compact form.However, it does notmake it easy to calculate, because
the explicit form involves evaluating the cdf of a multivariate normal distribution of
dimension ng(T + 1)+1. (In the simpler four-componentmodel, thiswas amultivariate
normal distribution of dimension T + 1.) See “Appendix” for some algebraic details.

A second alternative that is more numerically promising is to follow the logic of
Filippini and Greene (2016) and calculate the likelihood by simulation. Conditional
on wg, c1, . . . , cng , (εi t − wg − ci ) for i � 1, . . . , ng , t � 1, . . . , T are i.i.d. with
density fu . Therefore, the density of ε(g) conditional on wg, c1, . . . , cng is

fcond
(
ε(g)

) �
ng∏

i�1

T∏

t�1

fu
(
εi t − wg − ci

)
(5)

and

fg
(
ε(g)

) � ∫ . . . ∫ fcond
(
ε(g)

)
fg

(
wg

)
ng∏

i�1

fc(ci )dwgdc1 . . . dcng

� E fcond
(
εg

)
(6)

where “E” represents the expectation over the distribution of wg, c1, . . . , cng . This
expectation can be evaluated by averaging over simulated draws. Let s � 1, . . . , S
index replications for the simulated draws, where S is a large number. For replication
s, draw w

(s)
g , c(s)

1 , . . . ∞, c(s)
ng from the applicable skew-normal distributions (that is,
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form them as the difference of a draw of a normal and a draw of a half-normal), and
then average fcond

(
ε(g)

)
over these draws. Then our simulated density for group g is:

f̂g
(
εg

) � 1

S

S∑

s�1

ng∏

i�1

T∏

t�1

fu
(
εi t − w(s)

g − c(s)
i

)
. (7)

Finally, then, the simulated log likelihood is ln L̂ �
G∑

g�1
ln f̂g(y(g) − x(g)β − d(g)θ ).

4 Prediction of the inefficiencies

Consider firm i at time t . It is a member of group g(i), which for simplicity
we will simply call group g. We wish to calculate the predicted inefficiencies
ĉ∗
i , ŵ

∗
g and û∗

i t , which are the expectations of c∗
i , w

∗
g and u∗

i t conditional on ε(g) �
(
ε11, . . . , ε1T , . . . , εng1, . . . , εngT

)′. The reason that the conditioning set should be
ε(g) is as follows. We have independence across groups, so values of ε j t for firms j
not in group g are irrelevant. However, we have correlation across firms in group g
because of the common group effect wg , so the values of ε j t for all firms j that are in
group g are relevant. That is why we need to evaluate

ĉ∗
i � E(c∗

i |ε(g)) (8)

and not the simpler expression

c̃∗
i � E(c∗

i |εi1, . . . , εiT ). (9)

Assuming the conditional expectation functions in (8) and (9) to be known (more on
that below), ĉ∗

i is a more precise (smaller mean square error) predictor than c̃∗
i .

Using arguments similar to those in CKMV (2014), we could use the properties
of the skew-normal distribution to derive explicit expressions for these conditional
expectations. In CKMV, these expressions involved the cdf of a normal distribution of
dimension T + 1, and its evaluation was feasible (though obviously this must depend
on the value of T ). Similarly, for c̃∗

i as given in Eq. (9), we would need to evaluate the
cdf of a normal distribution of dimension T + 2. However, for ĉ∗

i as given in Eq. (8),
we would need to evaluate the cdf of a normal distribution of dimension ng(T + 1)+1.
For empirically reasonable values of ng and T , this is unlikely to be feasible.

An alternative is to estimate the conditional expectation function in (8) nonpara-
metrically. This is essentially the same strategy as in Amsler et al. (2014), in a different
setting. We can consider using nearest neighbors or kernel nonparametric estimates.

To fix ideas, we will first give a brief summary of the nearest neighbors estimator
in a generic setting. Suppose we have a scalar r (in our case, c∗

i ) and a k × 1 vector z
(in our case, an estimate of εg). We want to estimateμ(z) � E(r |z) based on a sample
{zi , ri , i � 1, . . . , n}. Note that “z” is an arbitrary point, not necessarily one of the
data points, and similarly “r” need not be observed. Let D(z, z∗) be a distance function
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for k-dimensional vectors, generally of the form D (z, z∗) � (z∗ − z)′A(z∗ − z), where
A is a positive definite matrix, such as A � [∑n

i�1 (zi − z̄)(zi − z̄)′
]−1. Then μ̂(z) �

( 1
M

) ∑
j r j where (i)M is an integer, and (ii) the sum is over the values of j such that

z j is one of the M nearest neighbors of z. That is, we pick the M values of j such
that D (z, z j ) is smallest, and then we average the corresponding r j values. This is
pretty simple and it requires only the choice ofM. For consistency of μ̂(z) we require
M → ∞ and M/n → 0 as n → ∞. The point is that M needs to be big enough for
our average to be meaningful, but small enough that theM nearest neighbors of z are
quite close to z.

Coming back to our problem, “r” corresponds to c∗
i for some observation “i” in

our real data sample; it is not observed, but we only want to estimate its conditional
expectation. The first step is to estimate our model on the real data set. This yields
estimates of the parameters, both the regression function parameters β and θ and
the variance parameters in the distributions of c, w and u. Also then we can calculate
ε̂i t � yit−x ′

i t β̂−d ′
t θ̂ andwe can construct ε̂(g) � (

ε̂11, . . . , ε̂1T , . . . , ε̂ng1, . . . , ε̂ngT
)
,

which corresponds to “z” in the generic discussion above. Now we will construct a
sample by simulation. Pick a very large value of S, the sample size in our simulated
data set. For simulated observation s � 1, . . . , S, generate

ε(g)(s) � (
ε11(s), . . . , ε1T (s), . . . , εng1(s), . . . , εngT (s)

)′ (10)

from the appropriate closed skew-normal distribution. The easiest way to do this is to
make random draws from the normal distributions of all of the coi , w

o
g and u

o
it and from

the half-normal distributions of the c∗
i , w

∗
gand u∗

i t , and then to construct εi t (s) � coi
(s) − c∗

i (s) + wo
g(i)(s) − w∗

g(i)(s) + uoit (s) − u∗
i t (s). Then use Eq. (10) to construct

εg(s). Note that εg(s) corresponds to zi in the generic discussion above, and c∗
i (s)

corresponds to ri .
Finally, the nearest neighbors estimate of ĉ∗

i � E(c∗
i |ε(g)) is the average of c∗

i (s)
over the M values of s such that D

(
ε(g)(s), ε̂(g)

)
is smallest, that is, of the M nearest

neighbors of ε̂(g) in the simulated data set.
The construction of the estimates of w∗

g or u∗
i t is essentially the same. We simply

average the values of w∗
g(s) or u

∗
i t (s) instead of c∗

i (s). Also, the same procedure can
be easily modified to estimate the simpler conditional expectation c̃∗

i given in Eq. (9)
above.

An alternative way to estimate the necessary conditional expectations is to use a
kernel. We will briefly describe the well-known Nadaraya–Watson estimator in the
same generic setting as above. (The logical step from the generic discussion to our
specific case is exactly the same as for nearest neighbors.) Here we have μ̂(z) �
∑ng

j�1 w j (z)r j
/∑ng

j�1 w j (z), where w is a weighting function of the form

w j (z) � K

(
z j − z

h

)

. (11)

In this expression, K is a “kernel” function such that K (z) → 0 as |z| → ∞. For
example, the Gaussian kernel is the standard multivariate normal pdf. And h is the
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“bandwidth” which satisfies h → 0 and nh → ∞ as n → ∞. In nearest neighbors we
haveweights that are either zero or one, whereas in kernel regression every observation
gets positive weight but how much depends on how close the particular z j is to z.

There is a vast literature on the choice of kernel and bandwidth. See, for example,
Li and Racine (2006); or, in this day and age, Google.

We now return to a point we made earlier, concerning the comparison of ĉ∗
i and c̃

∗
i

as given in Eqs. (8) and (9) above. If these conditional expectations are known, then
ĉ∗
i is a more precise (smaller mean square error) prediction of c∗

i than c̃∗
i , because it

has a larger conditioning set. However, if they are estimated nonparametrically, the
so-called curse of dimensionality applies, and the estimation error in the evaluation of
ĉ∗
i is larger than the estimation error in the evaluation of c̃∗

i . This may not matter much,
because the nonparametric estimation error goes away asymptotically, as S → ∞,
where S is the number of simulation draws, and we can make that as large as we want.
The only constraint is computing time.

5 Concluding remarks

The aimof this paperwas to provide a stochastic frontiermodel that captures accurately
the metafrontier concept. Firms are members of groups, and wemodel the inefficiency
of a given firm relative to its group-specific frontier, and we alsomodel the inefficiency
of a given group relative to the overall metafrontier.

In our model the parameters of the deterministic portion of the frontier (β and θ )
are the same for all groups. This assumption could be relaxed if there are enough firms
per group.

While the model is (in our opinion) attractive, further research will be needed to
see how useful it is empirically. Here we see two main issues. The first issue is that
the methods we propose for estimation of the parameters and for the prediction of the
inefficiencies are computationally intensive. This is probably not an insurmountable
obstacle. The second issue is that the decomposition of the group effects into their
heterogeneity and inefficiency components will require estimates of the variances of
wo and w∗, and these parameters cannot be expected to be estimated very precisely if
the number of groups (G) is small. This is an intrinsic limitation of the model.

How serious this second issue is clearly depends on the nature of the data and the
application. For many production metafrontiers problems, the number of groups will
be small. However, stochastic frontier models can be applied in other settings, and in
some of them the number of groups may not be small. For example, suppose that an
educational researcher is interested in the efficiency of schools and school districts in
“producing” a measurable outcome, like the average student score on a standardized
test. Then we would likely have a small number of time periods (T ), a small number
of schools per district (ng), but a large number of districts (G).

As noted in the Introduction, it is assumed that the number of groups and the group
membership of each firm are known. This is true throughout themetafrontier literature.
An interesting and non-trivial question is whether this assumption could be relaxed.
In principle this is probably possible; we don’t see an identification problem here.
However, we do not see any straightforward or attractive way to relax the assumption
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A hierarchical panel data stochastic frontier model for… 361

that the number of groups is known. Given a known number of groups, the assumption
that the group memberships are known could probably be relaxed. For example, we
could propose a “latent class” model in which there are probabilities for firms to be in
each of the G groups, perhaps depending on firm characteristics and some auxiliary
parameters, and then these probabilities would be estimated along with the production
function parameters. As is standard in the latent class literature, these would be the
unconditional probabilities of group membership, and we could also calculate the
probabilities conditional on the data. This kind of extension of our model is intuitively
reasonable but clearly beyond the scope of this paper.
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Appendix

We wish to derive an expression for the density of ε(g) �
(
ε11, . . . , ε1T , . . . , εng1, . . . , εngT

)′. The starting point will be the density of
ξg � (

c1, . . . , cng , wg, u11, . . . , ungT
)
. Since we are dealing with a specific group,

group g, we will simplify the notation, for this “Appendix” only, by omitting the
subscript g. Thus we write ε in place of εg , ξ in place of ξg , w in place of wg and
n in place of ng . We will use results on the closed skew-normal distribution from
González-Farías et al. (2004b) (hereafter GDG).

A p-dimensional random variable Z is distributed as CSNp,q(μ,Σ, D, ν,�) if
its density is f (z) � Cϕp(z;μ,Σ)Φq(D(z − μ); ν,�). Here ϕp and Φq are the
p-variate normal density and the q-variate normal cdf, respectively, and C−1 � Φq(
0; ν,� + DΣD′). The dimensions of the parameters are as follows: μ : p × 1,Σ :
p × p, D : q × p, ν : q × 1,� : q × q. The relevance of this to the our model
is that the composed error ci, with parameters λc and σ 2

c , is distributed as CSN1,1(
0, σ 2

c ,−λc
σc

, 0, 1
)
, and similarly for w and uit .

Proposition 2.4.1 of GDG says that independent marginally CSN random variables
are jointly CSN. Generically, if Z � (

Z ′
1, . . . , Z

′
k

)′ where the Z j are mutually inde-
pendent and Z j ~CSNp j ,q j

(
μ j ,Σ j , Dj , ν j ,� j

)
, then Z ~CSNp,q(μ,Σ, D, ν,�),

where p � ∑

j
p j , q � ∑

j
q j , μ � (

μ′
1, . . . , μ

′
k

)′, ν � (
ν′
1, . . . , ν

′
k

)′, Σ � ⊕k
j�1Σ j ,

D � ⊕k
j�1Dj , � � ⊕k

j�1� j . Here ⊕ is the matrix direct sum operator that makes

matrices A and B into a block diagonal matrix: A ⊕ B �
[
A O
O B

]

. In our case, this

implies that ξ ∼ CSNq,q(μ,Σ, D, ν,�) where q � n(T + 1) + 1 and:

μ � 0, ν � 0 (both q × 1)
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Σ � σ 2
c In ⊕ σ 2

w ⊕ σ 2
u InT (a diagonal matrix of dimension q)

D � −λc

σc
In ⊕ −λw

σw

⊕ −λu

σu
InT (a diagonal matrix of dimension q)

� � Iq

Proposition 2.3.1 of GDG says that linear combinations of jointly CSN random
variables are jointly CSN. Generically, suppose that Z~CSNp,q(μ,Σ, D, ν,�) and
letA bem× p,m ≤ p, rank(A)�m. Then AZ ~CSNm,q(μA,ΣA, DA, ν,�A), where
μA � Aμ,ΣA � AΣ A′, DA � DΣ A′Σ−1

A ,�A � �+DΣD′ −DΣ A′Σ−1
A AΣD′.

In our case, ε � Aξ where A is nT × q and is defined as follows:

A � [B1, B2, B3]

B1 � In ⊗ 1T , where 1T is a T × 1 vector of ones(so B1 is of dimension nT × n)

B2 � 1nT (nT × 1)

B3 � InT (nT × nT )

Therefore, ε ∼ CSNnT ,q(μA,ΣA, DA, ν,�A) and the density of ε is

f (ε) � CAϕnT (ε;μA,ΣA)Φq(DA(ε − μA); ν,�A) (A1)

where C−1
A � Φq

(
0; ν,�A + DAΣAD′

A

)
.

Some of these arguments of the density can be simplified. For example, μA � 0,

ν � 0, and ΣA � σ 2
u InT + σ 2

c

(
In ⊗ 1T 1

′
T

)
+ σ 2

w1nT 1
′
nT . However, DA and �A are

rather complicated, and, importantly,�A does not have any special algebraic structure
(e.g., block diagonal) that would allow the dimensionality of the integral implicit in
the cdf Φq(DAε; 0,�A) to be reduced. So we are left with the task of evaluating the
joint cdf of a multivariate normal of dimension q � n(T + 1) + 1. This is not likely to
be practical.
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