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Hypoperfusion of the infrapatellar 
fat pad and its relationship to MRI 
T2* relaxation time changes 
in a 5/6 nephrectomy model
Guo‑Shu Huang1,2, Yi‑Jen Peng3, Yu‑Juei Hsu4, Herng‑Sheng Lee3,5, Yue‑Cune Chang6, 
Shih‑Wei Chiang1, Yi‑Chih Hsu1, Ying‑Chun Liu1, Ming‑Huang Lin7 & Chao‑Ying Wang8*

The purpose of present study was to longitudinally investigate the alterations in infrapatellar fat pad 
(IPFP) vascularity in 5/6 nephrectomized rats by using dynamic contrast enhanced (DCE) MRI and IPFP 
degeneration by using MRI T2* relaxation time. Twelve male Sprague–Dawley rats were assigned 
to a control group and a 5/6 nephrectomy CKD group. The right knees of all rats were longitudinally 
scanned by 4.7 T MRI, and serial changes in the IPFP were assessed at 0, 8, 16, 30, and 44 weeks by 
DCE-MRI (parameters A, kel and kep) and MRI T2* mapping. After MRI measurements, knee specimens 
were obtained and evaluated histologically. The CKD group had IPFPs with lower blood volume A 
and lower permeability kep values from 16 weeks (p < 0.05), lower venous washout kel value from 
30 weeks (p < 0.001), and significantly higher T2* values reflecting adipocyte degeneration beginning 
at 16 weeks (p < 0.05). The histopathological results confirmed the MRI findings. Hypoperfusion and 
adipocytes degeneration related to CKD were demonstrated in a rodent 5/6 nephrectomy model. 
DCE parameters and MRI T2* can serve as imaging biomarkers of fat pad degeneration during CKD 
progression.

Chronic kidney disease (CKD) is a progressive condition leading to kidney function impairment and eventu-
ally renal failure1,2. The chronic kidney disease-mineral and bone disorder (CKD-MBD), a systemic disorder of 
mineral and bone metabolism due to CKD, manifests as calcium and phosphorus dysregulation, bone turnover 
disturbance, and vascular calcification3. A variety of musculoskeletal disorders were associated with it including 
renal osteodystrophy, osteoporosis, amyloid arthropathy and bone fractures3. Osteoarticular complications are 
common in patients with CKD and cause disability. Further implantation of arthroplasty due to OA such as hip 
and knee replacements may be needed at the end stage of CKD4. The prevalence of grade III or IV osteoarthritis 
(OA) in CKD patients aged 15–64 years (9.4%) was three times greater than in the normal population (3.0%). 
In hemodialysis patients, the incidence of OA is high (53.9%) and localized in all joints including the knee 
joint (24.7%)5–7. Moreover, the chronic musculoskeletal pain associated with CKD has mechanisms that are 
multi-factorial in nature8. The infrapatellar fat pad (IPFP) is regarded as having a pivotal role in the initiation 
and progression of knee OA, and is associated with pain severity9. Whether the OA and CKD-related OA have 
a similar etiology or represent two different entities remains unclear. Since knowledge about IPFP’s function in 
CKD is limited and needs clarification, investigation into the IPFP might be helpful to understand the complex 
pathogenesis of the CKD-related OA and find the possible methods of treating the pain.

The IPFP is a high vascularity extrasynovial adipose tissue in the knee joint, in close contact with the syn-
ovium. It has a network of vessels with numerous anastomoses and is supplied by a network of genicular arter-
ies surrounded by fibrous tissue10. Meanwhile, it is a source of cytokines such as interleukin (IL)-6 and tumor 
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necrosis factor (TNF)-α11,12, and adipokines9. Repetitive microtrauma after mechanical impingement of the 
IPFP may lead to ischemia, induce the abnormal distribution of substance P, and result in tissue inflammation 
or hemorrhage13. In regard to the pathogenesis of CKD-related OA, IPFP injury may develop and subsequently 
cause structural alteration of adipose tissue, or metabolic responses to adipocytokines. Accordingly, an examina-
tion of the change in IPFP might shed light on the pathophysiologic progression of CKD-related OA.

Magnetic resonance imaging (MRI) provides detailed insight into arthritis pathology and is a unique tool for 
evaluating the structural changes of IPFP14,15. Dynamic contrast-enhanced MRI (DCE-MRI) can be applied to 
extract perfusion parameters from the signal intensity curves of tissues and detect the distribution of the contrast 
uptake through signal-intensity curve analysis16. Semi-quantitative perfusion parameters can be easily measured, 
but provide limited information regarding the physiological processes affected. The Brix pharmacokinetic model 
is a robust two-compartment model suitable for tissues with slow perfusion rate17. Three perfusion parameters 
can be extracted such as the amplitude, A, the elimination constant of the contrast medium from the plasma, 
kel, and the exchange rate constant from the extravascular extracellular space (EES) to plasma, kep. In previous 
reports, DCE-MRI has been used to study synovial vascularity and inflammation in diseases such as rheumatoid 
arthritis (RA)18 and osteoarthritis (OA)19, but few reports have examined its use to study the pathogenesis of 
CKD-related OA20. To clarify the hemodynamic response to CKD in the highly vascularized infrapatellar fat pad, 
longitudinal DCE-MRI was used to explore the role of perfusion at different stages of CKD. MRI T2* mapping 
has proven clinical utility as a tool for evaluating changes in the extracellular matrix composition of articular 
tissues including changes in hydration status and collagen21,22. In regard to the IPFP, a limited number of studies 
have proposed its potential as a reliable biomarker. Therefore, DCE-MRI and MRT T2* were used in our study to 
understand the pathophysiological processes underlying perfusion and compositional changes in IPFP after CKD.

We assumed that impaired vascularization and nutrient supply to the IPFP in CKD might be an important 
factor leading to IPFP degeneration. An animal model is needed to investigate longitudinal changes during 
CKD progression, and findings using this model are expected to apply to human beings in the future. Herein, 
the purposes of the present study were to (1) longitudinally investigate the relationship of DCE-MRI parameters 
and MRI T2* values to IPFP change in a rodent 5/6 nephrectomy model of CKD; (2) to assess the feasibility of 
using fat pad DCE-MRI parameters and MRI T2* values as imaging biomarkers of CKD-related OA progression; 
and (3) to analyse histopathological changes in IPFP. To the best of our knowledge this is the first study to assess 
infrapatellar fat pad changes as CKD progresses using longitudinal measurement of DCE-MRI parameters and 
MRI T2* values.

Results
No adverse events were found. As shown in Table 1, the success of CKD induction 8 weeks after 5/6 nephrectomy 
was biochemically confirmed. For all rats, the inter-observer correlation coefficient was high (DCE: ICC = 0.967, 
MRI T2*: ICC = 0.909). The intra-observer correlation coefficient of the DCE and MRI T2* values was 0.995 and 
0.908 respectively, indicating good reproducibility.

DCE‑MRI analysis.  Multiple linear regression was evaluated using the GEE method. At week 0, no sig-
nificant between-group difference was found in the three perfusion parameters A, kel, and kep (p values 0.387 to 
0.888). In the control group, perfusion parameters (A and kel) at 8, 16, 30, and 44 weeks were statistically signifi-
cantly decreased compared with their baseline values (p values 0.001 to < 0.001). Another perfusion parameter 
kep was significantly decreased at 16, 30, and 44 weeks (p values ranged from 0.002 to < 0.001). As compared to 
the control group, the CKD group demonstrated significantly lower perfusion parameters (A and kep) at 16, 30, 
and 44 weeks (p values 0.028 to < 0.001; Fig. 1a, b, Tables 2 and 3). Representative images can be seen in Fig. 2a,b. 
A significant decline can be observed in kel at 30 and 44 weeks (all p values < 0.001; Fig. 1c, Table 4).

MRI T2* analysis.  As shown in Fig. 1d and Table 5, multiple linear regression using the GEE method showed 
no significant between-group difference at week 0 (p value = 0.592). In the control group, no significant differ-
ence at week 8 (p values = 0.16) but increased MRI T2* value at 16, 30, and 44 weeks were observed compared 
to baseline values (p value 0.007 to < 0.001). The MRI T2* values in the CKD group, compared to those in the 

Table 1.   Urine and serum biochemical data in control and CKD rats. All units: mg/dl. *p value < 0.05.

Urine or serum test Control group CKD group

Urine

Color of sample Colorless Yellow

Protein (Pro) 48.33 ± 20.41 475.00 ± 150*

Urobilinogen (URO) 2.75 ± 0.95 3.00 ± 1.00

Serum

Creatinine (Cr) 0.25 ± 0.06 0.80 ± 0.10*

Blood urea nitrogen (BUN) 13.95 ± 1.77 29.88 ± 5.05*

Calcium (Ca) 7.32 ± 1.30 8.80 ± 0.69

Phosphorus (P) 4.46 ± 0.35 7.83 ± 1.77*
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control group, were not significantly different at week 8 (p values = 0.111) but significantly higher at 16, 30, and 
44 weeks (p values 0.024 to < 0.001). Higher signal intensity is shown in the MRI T2* map presented in Fig. 2c,d.

Correlation analysis.  The DCE perfusion parameter A and MRI T2* values of infrapatellar fat pad were 
correlated for the control and CKD groups. The Spearman correlation coefficient between the perfusion param-

Figure 1.   Bar charts showing the three perfusion parameters and MRI T2* values for IPFP of the control and 
CKD groups. The perfusion parameters (a) A (unit: a.u.), (b) kep (unit: min−1), and (c) kel (unit: min−1) and 
the MRI T2* value (d) were measured in all rats at weeks 0, 8, 16, 30, and 44. Asterisks indicate significant 
differences (p < 0.05). Regarding (a) and (b) respectively perfusion parameters A (blood volume) and kep 
(permeability), significantly decreasing values can be found from week 16 to 44 in the CKD group. Regarding 
wash out parameter kel (c), decreasing values were observed at 30 and 44 weeks. (d) MRI T2* values were 
significantly higher from week 16 to 44 in the CKD group (p < 0.05).

Table 2.   Comparisons of perfusion parameter A between control and CKD groups over 44 weeks by GEE 
multiple linear regression. B: regression coefficient.

Parameters B SE 95% Wald CI p value

Parameter A

Intercept 12.017 0.4699 11.096 12.938 < 0.001

CKD versus Control − 0.083 0.5912 − 1.242 1.075 0.888

Compare the changes at each time point to week 0 in control group

[Week = 44] versus [Week = 0] − 2.203 0.4733 − 3.131 − 1.276 < 0.001

[Week = 30] versus [Week = 0] − 1.882 0.3321 − 2.533 − 1.231 < 0.001

[Week = 16] versus [Week = 0] − 1.198 0.3637 − 1.911 − 0.485 0.001

[Week = 8] versus [Week = 0] − 0.547 0.2088 − 0.956 − 0.137 0.009

Compare the changes between CKD and control groups at each time point

[Week = 44] − 3.615 0.8864 − 5.352 − 1.878 < 0.001

[Week = 30] − 3.637 0.7939 − 5.193 − 2.081 < 0.001

[Week = 16] − 1.630 0.5196 − 2.648 − 0.612 0.002

[Week = 8] 0.463 0.5022 − 0.521 1.448 0.356
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Table 3.   Comparisons of perfusion parameter kep between control and CKD groups over 44 weeks by GEE 
multiple linear regression. B: regression coefficient.

Parameters B SE 95% Wald CI p value

Parameter kep

Intercept 12.807 0.5961 11.638 13.975 < 0.001

CKD versus Control 0.357 0.6274 − 0.873 1.586 0.570

Compare the changes at each time point to week 0 in control group

[Week = 44] versus [Week = 0] − 2.747 0.5628 − 3.850 − 1.644 < 0.001

[Week = 30] versus [Week = 0] − 1.998 0.4180 − 2.818 − 1.179 < 0.001

[Week = 16] versus [Week = 0] − 1.565 0.5153 − 2.575 − 0.555 0.002

[Week = 8] versus [Week = 0] − 0.627 0.3932 − 1.397 0.144 0.111

Compare the changes between CKD and control groups at each time point

[Week = 44] − 2.523 0.6794 − 3.855 − 1.192 < 0.001

[Week = 30] − 3.030 0.5418 − 4.092 − 1.968 < 0.001

[Week = 16] − 1.250 0.5704 − 2.368 − 0.132 0.028

[Week = 8] 0.153 0.4359 − 0.701 1.008 0.725

Figure 2.   The demonstrated perfusion parameter A and MRI T2* maps of infrapatellar fat pad in control and 
CKD rats. The DCE-MRI (amplitude A) maps of infrapatellar fat pad in both groups. The color-coded images 
show significant hypo-perfusion in the CKD group (b) as compared to the control group (a), especially in 
the outer margin. Compared to the control group (c), the CKD group (d) had significantly higher T2* values 
(p < 0.05).
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eter A and the MRI T2* value was ρ =  − 0.724 (p < 0.001) in the control group, indicating significant negative 
correlation, and ρ =  − 0.815 in the CKD group (p < 0.001; Fig. 3), indicating negative correlation of even greater 
significance.

Histologic analysis.  In hematoxylin and eosin stained sections, the artery of the infrapatellar fat pad dem-
onstrated a normal appearance in the control group, but mildly increased wall thickness, intimal edema, and 
vascular smooth muscle hyperplasia in the CKD group (Fig. 4a,b). The fat pad adipose tissue had a normal 
appearance in the control group but was characterized by prominent synovial lining, increased fibrous sep-
tum material, small vessels proliferation, and irregular enlargement of adipocytes in the CKD group, reflecting 
myxoid degeneration of the infrapatellar fat pad (Fig. 4c–f).

Discussion
A relationship between hypoperfusion of the IPFP and its degeneration was identified in this animal CKD study. 
Change in perfusion parameters and T2* values during CKD progression was demonstrated. The DCE-MRI 
and MRI T2* changes were confirmed histopathologically. Furthermore, we demonstrated the vasculopathy of 
the IPFP and the feasibility of using longitudinal DCE-MRI and MRI T2* values in a rodent 5/6 nephrectomy 
model. For human subjects, this information could be potentially useful for in vivo investigation of knee osteo-
dystrophy in CKD-MBD.

The IPFP is thought to play a role in the initiation and progression of knee osteoarthritis23. Any form of 
impingement such as acute or repetitively chronic microtrauma and synovitis will cause fat pad enlargement 
and inflammation. Except for OA-related biomechanical impingement, known as Hoffa’s disease, flow deficit is 
considered the possible contributor to injury24. In DCE-MRI with pharmacokinetic model analysis, the perfu-
sion parameter A is a composite factor that reflects intrinsic vascularization, flow resistance, and interstitial 

Table 4.   Comparisons of perfusion parameter kel between control and CKD groups over 44 weeks by GEE 
multiple linear regression. B: regression coefficient.

Parameters B SE 95% Wald CI p value

Parameter kel

Intercept 0.399 0.0221 .356 0.443 < 0.001

CKD versus Control − 0.026 0.0305 − 0.086 0.033 0.387

Compare the changes at each time point to week 0 in control group

[Week = 44] versus [Week = 0] − 0.066 0.0148 − 0.095 − 0.037 < 0.001

[Week = 30] versus [Week = 0] − 0.058 0.0119 − 0.081 − 0.034 < 0.001

[Week = 16] versus [Week = 0] − 0.040 0.0115 − 0.062 − 0.017 0.001

[Week = 8] versus [Week = 0] − 0.007 0.0030 − 0.013 − 0.001 0.016

Compare the changes between CKD and control groups at each time point

[Week = 44] − 0.100 0.0256 − 0.151 − 0.050 < 0.001

[Week = 30] − 0.094 0.0216 − 0.136 − 0.052 < 0.001

[Week = 16] − 0.027 0.0235 − 0.073 0.019 0.249

[Week = 8] − 0.006 0.0167 − 0.038 0.027 0.734

Table 5.   Comparisons of T2* values between control and CKD groups over 44 weeks by GEE multiple linear 
regression. B: regression coefficient.

Parameters B SE 95% Wald CI p value

T2* values

Intercept 15.937 .1708 15.602 16.271 < 0.001

CKD versus Control − 0.115 0.2147 − 0.536 0.306 0.592

Compare the changes at each time point to week 0 in control group

[Week = 44] versus [Week = 0] 1.582 0.1889 1.211 1.952 < 0.001

[Week = 30] versus [Week = 0] 1.437 0.2369 0.972 1.901 < 0.001

[Week = 16] versus [Week = 0] 0.487 0.1809 0.132 0.841 0.007

[Week = 8] versus [Week = 0] 0.355 0.2526 − 0.140 0.850 0.160

Compare the changes between CKD and control groups at each time point

[Week = 44] 3.860 0.3320 3.209 4.511 < 0.001

[Week = 30] 1.093 0.4000 0.309 1.877 0.006

[Week = 16] 0.535 0.2377 0.069 1.001 0.024

[Week = 8] 0.455 0.2851 − 0.104 1.014 0.111
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volume17,25. The decrease in parameter A value in our results may reflect impaired vascularization caused by 
atherosclerotic change in the supplying vessels. The kel is a constant that mirrors the washout rate of contrast 
medium from the interstitium. In our results, the decreasing elimination constant kel may indicate impaired renal 
function due to venous obstruction in the 5/6 nephrectomy model. The permeability parameter kep is the rate 
constant of contrast medium transfer between the interstitial and the plasma compartments. In our study, the 
significant decrease in kep from week 16 may imply vascular dysfunction in CKD26. Although no previous study 
ever described the pathophysiology of vascular insufficiency in the fat pad in CKD, fat pad vascularity may play 
a role in the progression of CKD.

Ballegaard et al. demonstrated the feasibility of DCE-MRI to quantify IPFP inflammation in arthritic knees19. 
Besides, MRI T2* techniques utilize intrinsic water as a surrogate marker to investigate the integrity of the 
extracellular matrix27,28. In the present study, MRI T2* was a good imaging biomarker to monitor sequential 
change in the IPFP of our 5/6 nephrectomy model as well. An increase in MRI T2* relaxation time from week 
16 may reflect extracellular matrix changes resulting from small vessel proliferation with mild myxoid change29. 
Although the value of MRI T2* in the IPFP is rarely reported in prior study, increased T2* values within the 
fat pad indicate inflammation, edema, or hemorrhage in Hoffa’s disease14,30. The impact of flow deficit is not as 
direct in CKD-related OA as in Hoffa’s fat pad impingement, however, the responses of the two diseases (when 
assessed by MRI T2*) are identical. Reduced perfusion of IPFP may possibly lead to subtle ischemia, and induce 
the abnormal distribution of substance P, adipose tissue inflammation, and edema eventually31,32. Moreover, MRI 
T2* increased simultaneously when DCE parameter A decreased at week 16, which demonstrates the relationship 
of changed IPFP blood flow to fibrosis and degeneration of adipocytes. Histopathological examination confirmed 
the presence of fat pad degeneration.

Additionally, in the progression of CKD, age effects should be considered especially in vascular disease. In 
the present report, three perfusion parameters (A, kel, and kep) were significantly decreased at week 16, 30, and 
44 in control rats, which indicates that perfusion declines in aging animals. Hence, the relationship we observed 
between hypoperfusion of infrapatellar fat pad and structural change in CKD rats was age-independent. In week 
16 (in rats aged 24 weeks), the deficit in blood flow may be caused by restriction of feeding. To allow all rats of 
different ages to fit into the MR bore, which is limited in size, we restricted food intake to prevent the rats from 
becoming overweight. A possible change in vascularity due to smaller IPFP size may exist33,34. However, the 
control and CKD groups were fed in the same manner, and the feeding conditions should be the same. In sum-
mary, non-mechanical flow changes in CKD caused degenerative changes in the IPFP. The possible mechanism 

Figure 3.   The correlation of perfusion parameter A (a.u.) and MRI-T2* value (msec) in control rats (inverted 
triangles) and CKD rats (black circles). All symbols represent measurements made in the right knee joint. 
Correlations between perfusion parameter A values and MRI-T2* values in the IPFP were significantly negative 
in the control and CKD groups (p < 0.001). The CKD group, compared to control group, had a higher negative 
correlation coefficient (ρ =  − 0.815) between perfusion parameter A and MRI-T2* (p < 0.001).
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may be direct chronic hypoxia of adipocytes resulting from flow deficiency. The highly vascularized IPFP is an 
endocrine tissue that secretes adipokines35, therefore it is susceptible to hemodynamic change36. Poor oxygena-
tion and nutrition might further disturb adipokine secretion, disrupt distribution of substance P, and cause fat 
pad inflammation and degeneration. In the future, further molecular studies should address the pathogenesis 
of vascular insufficiency in the fat pad.

Several limitations exist in our results. Even though atherosclerosis is associated with many risk factors such 
as aging, hypertension, diabetes, hyperphosphatemia, hyperparathyroidism, and hypervitaminosis D, our pro-
spective animal study did not control for many factors such as parathyroid hormone and other factors. Second, 
the study was performed in male rats, and gender differences should be considered. Third, in order to reduce 
the number of animals sacrificed, a sham group was not included in our experiment. Fourth, the IPFP inflam-
mation is a source of anterior pain in osteoarthritis. Its linkage to anterior pain has not been investigated in our 
animal model. Fifth, the size and various parts of the IPFP were not evaluated in our study. The vertical and 
horizontal clefts were not excluded in ROI analysis, which will introduce bias into the results. Sixth, quantitative 
immunohistochemical evaluation of specific biomarkers was not done.

In conclusion, hypoperfusion of the infrapatellar fat pad was associated with CKD, as evidenced by changes 
in DCE values, MRI T2* values, and histopathologic features in a 5/6 nephrectomy model. The age-independent 
decrease in three DCE-MRI parameters (values A, kep and kel) and increase in MRI T2* values were progressive 
over time in CKD. DCE MRI and MRI T2* could be reliable imaging biomarkers for monitoring the progression 
of CKD-related infrapatellar fat pad hypoperfusion.

Methods
Ethical statement for this experimental study.  Study experiments were performed in accordance with 
the guidance for the Care and Use of Laboratory Animals of the U.S. National Institutes of Health. Our study 
was carried out in compliance with the ARRIVE guidelines. The study protocol was reviewed and approved by 
the Committee on the Ethics of Animal Experiments of the National Defense Medical Center (Permit Number: 

Figure 4.   Histopathological staining of the infrapatellar fat pad in the control and CKD groups. A relatively 
increased vessel wall thickness of infrapatellar fat pad can be observed in the CKD group (b) as compared to 
control group (a). While fat pad tissues in the control group (c, e) have a relatively normal appearance, in the 
CKD group (d, f), they exhibit adipocyte degeneration with myxoid change. [(a–d) × 200, (e,f) × 400].
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IACUC-12-259), Taipei, Taiwan. Isoflurane anesthesia was used to perform all animal procedures and 3R prin-
ciples were followed in all animal experiments.

Animal experiments.  Twelve male Sprague–Dawley rats at 8 weeks of age, weighing about 300 g, were 
arbitrarily allocated into two groups (n = 6 for each group): rats without any surgery or treatment procedure 
served as group 1 (the control group) and rats with CKD induced by two-step 5/6 nephrectomy served as group 
2 (the experimental group)37. At different times after kidney surgery, urine and blood samples and right knee MR 
images were acquired. The protocol is illustrated in Fig. 5. The right knees of all rats were longitudinally scanned 
by MRI, and serial changes in the infrapatellar fat pad were assessed at 0, 8, 16, 30, and 44 weeks by DCE-MRI 
and MRI T2* mapping.

All rats were anesthetized by inhalation of a 5% isoflurane mix administered at an oxygen flow rate of 5 L/
min and placed into a body holder. A maximum of 3 rats were housed in one cage in a specific pathogen-free 
environment. The animals were maintained under a 12 light/12 dark cycle, 21 ± 2 °C temperature, and 50 ± 5% 
humidity and fed 5053-PicoLab Rodent Diet 20 with restriction. All animals were carefully monitored prior to, 
during, and after the experiment. The MRI experiment was performed in a 4.7 T magnet (Bruker, Ettlingen, 
Germany) equipped with a receiver quadrature surface coil, which was placed above the right knee joint, while 
1–2% isoflurane at 2 L/min oxygen flow was provided to maintain anesthetic depth.

DCE‑MRI of infrapatellar fat pad.  DCE-MRI was done by utilizing a fast gradient recalled echo (GRE) 
sequence with TR/TE = 115.5/4.47  ms, NEX = 1, matrix size = 128 × 128, FOV = 30 × 30 mm2, slice thick-
ness = 0.65 mm, flip angle = 60°, bandwidth = 37.9 kHz, and acquisition time = 19 min 43 s. After 0.2 mmol/kg 
gadobutrol bolus injection manually (Gadovist; Bayer, Berlin, Germany), 7 sagittal slices and 80 serial dynamic 
images were acquired.

The imaging data were post-processed by MIStar software (Apollo Technology, North Melbourne, Australia). 
Three quantitative perfusion parameters, amplitude (A), elimination constant (kel), and permeability rate con-
stant (kep) were estimated from a pixel-wise analysis of the infrapatellar fat pad ROI as shown in Fig. 6. The 
signal intensities within the ROI were averaged and transformed to concentration–time data25. Afterward, the 
concentration–time data (Ct) were fitted to the Brix pharmacokinetic model by using a nonlinear least-square 
curve fitting algorithm17. Three perfusion parameters were generated based on the model and obtained from 
the fitted time-signal intensity curve.

MRI T2* of infrapatellar fat pad.  MRI T2* was measured by a fast GRE sequence with shorter mini-
mal echo time (TE). Seven sagittal slices were collected using a multi-slice and multi-echo fast GRE sequence 
with TR = 600 ms, 8 TEs = 3.5, 8.5, 13.5, 18.5, 23.5, 28.5, 33.5, and 38.5 ms, NEX = 12, matrix size = 256 × 192, 
FOV = 30 × 30 mm2, slice thickness = 0.65, flip angle = 30°, bandwidth = 69.4 kHz, and acquisition time = 30 min 
43 s.

The single-exponential, least-squares curve-fitting method was chosen to analyse the MRI T2* relaxation 
time of the infrapatellar fat pad and reduce fitting errors in low signal-to-noise images38. The spin density (M0) 
and apparent transverse relaxation time (T2*) were determined after fitting the signal magnitude to a mono-
exponential decay model. The infrapatellar fat pads were manually drawn from first-frame MRI T2* images. 
To reduce the discrepancies in the manual positioning of the ROIs, the ROIs were drawn by two image analysts 
(CYW: 21 years of experience, SWC: 11 years of experience) and were confirmed by a musculoskeletal radiolo-
gist with over 30 years of experience (GSH). Results shown in this study are the mean of two measurements.

Figure 5.   Flow chart of the experimental design. In vivo MRI scan (including DCE-MRI and MRI-T2*) was 
performed in Groups 1 and 2 at week 0, 8, 16, 30, and 44 after surgery in Group 2, indicated by arrows. At week 
44, all rats were sacrificed and underwent histological analyses.
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Histologic analysis.  At week 44, all rats were sacrificed for removal of the right knee joint. The samples 
were fixed in 10% buffered formalin for 12 h, and decalcified at room temperature in a rapid decalcifier with 
ethylene-diamine-tetra-acetic acid (EDTA) for 24 h (Nihon Shiyaku Industries, Osaka, Japan). The IPFP of the 
knee joint was removed, paraffin-embedded, and cut into 3-µm slices for hematoxylin and eosin (HE) staining. 
The vessels and IPFP tissues of both groups were evaluated to verify the findings of DCE-MRI and MRI T2*. All 
histologic analyses were carried out by a senior pathologist YJP (with 21 years of experience) and confirmed by 
HSL (with over 30 years of experience).

Statistical analysis.  The differences in urine and blood sample values between the control and CKD groups 
were analysed by using the Student t-test. The mean value and 95% confident interval (CI) of DCE-MRI and 
MRI T2* values were calculated in both groups. To take into account the within-subjects’ dependency (due to 
repeated measurement), the GEE (generalized estimating equation) method’s multiple linear regression model 
was used, with groups (control and CKD), time (0, 8, 16, 30, and 44 weeks), and their interaction terms included 
in the model to compare between-group differences in the changes in longitudinal DCE-MRI and MRI T2* from 
week 039. The correlation between MR T2* values and perfusion parameter A was further analysed by using the 
Spearman correlation coefficients. The reproducibility of the DCE and MRI T2* measurements was assessed by 
the inter-class correlation coefficient (ICC), and the values > 0.75 were interpreted as good. All analyses were 
done by using the SPSS v26.0 software (SPSS Inc., Chicago, IL, USA). A p value of < 0.05 was regarded as statisti-
cally significant.
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