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中 文 摘 要 ： 生產過程是完美無缺，在傳統的生產模式中是基本的假設，然而
，在現實的製造生產程序中，可能因操作人員的作業不當，及儀器
設備的保養維修不確實等因素，致使生產的物件不符合產品規格。
此外，傳統的生產模式中，製造商在收到原物料開始生產當下就須
立即付清該原物料費用；不過，現今的交易市場中，供應商往往會
提供允許延遲付款的優惠，以刺激買氣及獎勵購買者。因此，本研
究計畫將針對生產過程不完美及供應商允許延遲付款這兩項議題
，探討製造商的經濟生產批量模式。本研究計畫分為兩大部分。第
一部份：針對不合格品，製造商會全部進行修復使其完全符合產品
規格；探討在此生產策略及供應商提供允許延遲付款的優惠下，製
造商該如何擬定其生產計劃，才能使得每年的總成本最小。就上述
情況，本研究計畫將構建一數學模式，藉由模式的求解，決定製造
商的最佳生產批量、生產週期及總成本；接著，引用數值範例，驗
證模式的可行性，並且透過敏感度分析說明最佳生產策略在管理上
的運用及意涵。第二部份：實務上，針對不完美的生產過程，製造
商往往會對機器設備採行預防保養維修策略，及對顧客提供保證期
間的產品免費修復服務。考慮以上情形及供應商提供允許延遲付款
的優惠下，本研究計畫構建一數學模式，藉由模式的求解，提出使
製造商每年總成本達到最小的最佳生產策略。接著，運用數值範例
和敏感度分析，探討延遲付款、預防維修策略與保證期間的產品免
費修復服務對最佳生產批量、生產週期及總成本的影響，同時說明
此生產計劃在管理上的運用及意涵。

中文關鍵詞： 批量大小；經濟生產批量；預防維修；保證期間；信用交易

英 文 摘 要 ： This project will study economic production quantity (EPQ)
models for the manufacturer under imperfect production
process and permissible delay in payments. There are two
scenarios in this project. The first scenario: We assume
that all non-conforming items can be reworked and become to
conforming items, as well as, shortage are allowed and
completely backlogged. Based on the previous assumptions,
we will develop an EPQ model with imperfect production
process when the supplier provides a permissible delay in
payments. The purpose of this project is to find the
optimal production lot size and backorder level for
minimizing the manufacturer’s total inventory cost. The
proposed model is illustrated through numerical examples
and sensitivity analysis is reported. The second scenario:
Because machine breakdown is inevitable in the imperfect
production process, manufacturers frequently adopt the
preventive maintenance to guarantee that the machine does
not break down and runs up to a predetermined production up
time in real manufacturing system. Hence, we assume that a
regular preventive maintenance and free repair warranty
policies are adopted by the manufacturer. To reflect the
above assumptions and the permissible delay in payments
offered by supplier, we will develop an EPQ model with



imperfect production process, preventive maintenance and
free repair warranty policies when the supplier permits a
permissible delay in payments. The purposes of this project
are to find the optimal production policy for minimizing
the manufacturer’s total inventory. Numerical examples are
provided to illustrate the solution procedure. Sensitivity
analysis is carried out to discuss the influences of
preventive maintenance and free repair warranty policies on
the optimal solution and to investigate critical
parameters.

英文關鍵詞： Lot size; Economic production quantity; Preventive
maintenance; Warranty period; Trade credits
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Abstract 

  It is tacitly assumed that the products are all perfect, and the manufacturer must pay 
off as soon as the raw materials are received in the traditional production model. 
However, in the real manufacturing circumstance, the non-conforming items are 
produced due to imperfect production process, and a supplier frequently permits 
his/her manufacturers a delay of payment for attracting new purchasers and increasing 
sales in today’s competitive business environment. This project will study economic 
production quantity (EPQ) models for the manufacturer under imperfect production 
process and permissible delay in payments. There are two scenarios in this project. 
The first scenario: We assume that all non-conforming items can be reworked and 
become to conforming items, as well as, shortage are allowed and completely 
backlogged. Based on the previous assumptions, we will develop an EPQ model with 
imperfect production process when the supplier provides a permissible delay in 
payments. The purpose of this project is to find the optimal production lot size and 
backorder level for minimizing the manufacturer’s total inventory cost. The proposed 
model is illustrated through numerical examples. 

 

1. Introduction 

In the classical economic production quantity (EPQ) model, a common unrealistic 
assumption is used that the products are all perfect. However, in the real 
manufacturing circumstance, the defective items are produced due to imperfect 
production process. To reflect the real-life situation, several scholars have developed 
various analytical models to study the EPQ model with imperfect production process. 
Rosenblatt and Lee (1986) were one of the early researchers who studied the effects of 
an imperfect production process on the optimal production cycle time for the classical 
economic manufacturing quantity (EMQ) model. Porteus (1986) introduced a 
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relationship between process quality control and lot sizing. Zhang and Gerchak (1990) 
presented joint lot sizing and inspection policy in an economic order quantity (EOQ) 
model with random yield. Cheng (1991) developed an EOQ model with 
demand-dependent unit production cost and imperfect production processes. 
Ben-Daya (2002) formulated an integrated model with joint determination of EPQ and 
preventive maintenance level under an imperfect process. Lin et al. (2003) examined 
an integrated production-inventory model for imperfect production processes under 
inspection schedules. Recently, Sana (2010) developed a production inventory model 
in an imperfect production process. Many related articles in EPQ models with 
imperfect quality items can be found in such as Salameh and Jaber (2000), Sana et al. 
(2007), Yoo et al. (2009), Sana (2011), Sarker et al. (2010), Sarker and Moon (2011), 
Sarker (2012) and their references. In addition, it is well-known that the total 
production-inventory costs can be reduced by reworking the imperfect quality items 
produced with a relatively smaller additional reworking and holding costs. Numerous 
studies on the problems of EPQ model with rework process have been discussed by 
Liu and Yang (1996), Hayek and Salameh (2001), Chiu (2003), Jamal et al. (2004), 
Chiu and Chiu (2006), Chiu (2008), Chiu et al. (2010), Taleizadeh et al. (2010) and 
their references.  
 
  In the imperfect production system, machine breakdown is inevitable. It is more 
economical for an enterprise to implement preventive maintenance. Many researchers 
have done considerable researches in this area. Meller and Kim (1996) studied the 
influence of preventive maintenance on system cost and buffer size. Abboud et al. 
(2000) developed an economic lot sizing model with consideration of random machine 
unavailability time. Sheu and Chen (2004) presented an EPQ model to discuss the 
optimal lot-sizing problem with imperfect maintenance and imperfect production. 
Zequeira et al. (2004) proposed a production-inventory model to determine the optimal 
buffer inventory and preventive maintenance for an imperfect production process. 
Gharbi et al. (2007) considered joint preventive maintenance and safety stocks in 
unreliable manufacturing systems. Recently, Widyadana and Wee (2012) developed an 
EPQ model for deteriorating items with preventive maintenance policy and random 
machine breakdown. Sana (2012) presented an production model with preventive 
maintenance and warranty period in an imperfect production system. 
 
  Actually, today trade credit is widespread and represents an important proportion of 
company finance. Businesses, especially small businesses, with limited financing 
opportunities, may be financed by their suppliers rather than by financial institutions 
(Petersen and Rajan, 1997). On the other hand, offering trade credit to retailers may 
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encourage the supplier sales and reduce the on-hand stock level (Emery, 1987). Goyal 
(1985) was the first to establish an EOQ model with a constant demand rate under the 
condition of a permissible delay in payments. Teng (2002) modified Goyal’s (1985) 
model by considering the difference between the selling price and purchase cost, and 
found that the economic replenishment interval and order quantity decrease under the 
permissible delay in payments in certain cases. Chang et al. (2003) developed an EOQ 
model with deteriorating items under supplier’s credits linked to ordering quantity. 
Numerous interesting and relevant paper related to trade credits such as Aggarwal and 
Jaggi (1995), Jamal et al. (1997), Chang (2004), Ouyang et al. (2005), Teng et al. 
(2005), Goyal et al. (2007), Liao (2008), Teng and Chang (2009), Chang et al. (2010) 
and so on. 
 
  Based on the previous discussions, the imperfect production process is inevitable in 
most practical production environment, as well as, the preventive maintenance is 
adopted by the manufacturer in order to avoid breakdown of the system. In addition, 
the trade credit is a widespread and popular payment method in real business 
transaction. In order to reflect the practical production environment and real market 
phenomena, the project will develop appropriate EPQ models with imperfect 
production process to find the optimal production policy for the manufacturer when 
the supplier offers a permissible delay in payments. 

 

Scenario I 

Notation and Assumptions 

  The following notation and assumptions will be adopted in this project.  

Notation: 

P production rate  

λ  demand rate 

K setup cost for each production run 

v purchasing cost of raw material per unit  

c production cost per item including purchasing cost and inspecting cost, c > v 

s selling price per unit, s > c  
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h holding cost per item per unit time, excluding the interest charge 

b shortage cost per item per unit time 

x the proportion of imperfect quality items produced, where 0 < x <1 

d the production rate of imperfect quality regular production process per unit 

time, where d = Px 

1P  the rate of reworking of imperfect quality items 

Rc  reworking cost for each imperfect quality item  

Q production lot size for each cycle 

B allowable backorder level 

T production cycle length 

1H  maximum level of on-hand inventory when regular production process stops 

H maximum level of on-hand inventory in units, when the reworking ends 

M permissible delay period offered by the supplier 

cI  the interest charged per dollar per unit time in stocks by the supplier 

eI  the interest earned per dollar per unit time 

TCi(Q, B) inventory total cost per cycle for case i, i = 1, 2, 3 

TCUi(Q,B) inventory total cost per unit time for case i, i.e., TCUi(Q,B)=TCi(Q,B)/T,  i = 

1, 2, 3. 

Assumptions: 
(1) Each product is made by a raw material. 
(2) Production rate for perfect items is larger than demand rate, i.e., ( x−1 )P >λ . 
(3) All imperfect quality items can be reworked and become to perfect items.  
(4) Shortages are allowed and completely backlogged.  
(5) The supplier provides the manufacturer a permissible delay in payments. During 

the trade credit period the account is not settled, generated sales revenue is 
deposited in an interest bearing account with interest rate eI . At the end of the 
permissible delay, the manufacturer pays off all units ordered, and starts paying 
for the interest charges on the raw material in stocks with interest rate cI . 

 



 4 

 

Mathematical formulation 
  The manufacturer buys all raw materials Q units per order from the supplier to 
product and the unit purchasing price of raw material is v. The supplier offers the 
manufacturer a permissible delay period M. A constant product rate P is considered 
during the regular production uptime. The process may generate x percent of 
imperfect quality items at a production rate d = Px. Thus, the produced items fall into 
two groups, the perfect and the imperfect. The production rate for perfect item 

Px)1( −  is larger than the demand rateλ . All imperfect quality items are assumed to 
be reworkable at a rate of 1P , and rework process starts when regular production 
process ends. In this situation, the production-inventory system follows the pattern 
depicted in Figure 1. From Figure 1, the expressions of production uptime 1t  and 2t , 
reworking time 3t , production downtime 4t , shortage permitted time 5t , the 
maximum levels of on-hand inventory 1H  and H, and the cycle length T are as 
follows: 

  1t  = 
λ−− dP

B , (1) 

2t  = 
λ−− dP

H1 , (2) 

  3t  = 
PP

dQ
P
xQ

11

= , (3) 

  4t = 
λ
H , (4) 

  5t  = 
λ
B , (5) 

  1H  = B
P
QdP −−− )( λ , (6) 

  H  = 1H + 31 )( tP λ− = Q B
PP

d
P

−







−−

1

1 λλ , (7) 

and 

  T = 54321 ttttt ++++ =
λ
Q . (8) 

In addition, for convenience, we let 1tta ≡ , 
P
Qtttb =+≡ 21 , 321 ttttc ++≡ = 

1P
xQ

P
Q
+ , and 4321 tttttd +++≡ = 

λ
BQ − . 
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    Figure 1: Graphical representation of the inventory system 

 

The inventory total cost per cycle consists of the following components: 
(a) The production cost is cQ. 
(b) The repair cost is xQcR . 
(c) The setup cost is K. 
(d) The holding cost is 

     h 
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
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(e) The shortage cost is )(
2 51 ttBb

+ = 







+

−− λλ
1

)1(
1

2

2

xP
bB . 

(f) Interest earned and interest charged  
Based on the values of M, at , and dt , we have the following three possible cases: 
(1) atM < , (2) da tMt <≤ , and (3) dtM ≥ .  
 

Case 1: atM <  
  In this case, the manufacturer starts production and replenishing shortage at time 0. 
As a result, the manufacturer accumulates revenue in an account that earns eI  per 
dollar per year starting from 0 to M. The interest earned per cycle is      

esI 2/)( 2MdP − . 

On the other hand, the manufacturer pays off all units sold by M at time M, keeps 
the profits, and starts paying for the interest charges on the items sold after M. The 
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interest charged per cycle is  

        cvI 



−−

−
)(2

)( 2

λλ dP
BdP + 

λ2

2Q QMQB
−−

λ
+ 



−
2

)( 2MdP . 

 
Case 2: da tMt <≤  

Since da tMt <≤ , the interest earned per cycle is  

  esI 







−−

−+
)(22

22

λ
λ

dP
BMBM . 

On the other hand, the interest charged per cycle is  

cvI 







+−−++ MBMQQBMBQ

λ
λ

λλ 222

222

. 

 
Case 3: dtM ≥  

In this case, the manufacturer receives the total revenue at time dt , and is able to 
pay the supplier the total purchase cost at time M. Since dt  is shorter than or equal to 
the credit period M, the manufacturer faces no interest charged. On the other hand, the 
interest earned per cycle is  

      esI 







++−

−−
−

− MQQBQ
dP

BdP
λλλλ 2)(2

)( 22

. 

According to the above arguments, we can obtain the inventory total cost per cycle 
as follows: 
TCi(Q, B) = production cost + repair cost + setup cost + holding cost + shortage cost + 

interest charged – interest earned,  i = 1, 2, 3. 
 
Case 1: atM <  
TC1(Q, B)  

= KMQvIxQccQ cR +−+ + )( ec sIvI −
2

)( 2MdP −  

     + ( ) 2

/1
1

2
1 BvIhb

Px
x

c++







−−
−
λλ

QB
vIh c 






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λλ
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2
1

2
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vI
P

h c








+






 −

λ
λ

λ
. (9) 

Hence, the inventory total cost per unit time is  
TCU1(Q, B) = TC1(Q, B)/T 

=
Q2
1



 Qλ2 ( MvIxcc cR −+ )+ Kλ2 +λ )( ec sIvI − 2)1( MxP − QBvIh c )(2 +−  
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+ ( )cvIhb ++ 







−−
−

Px
x

/1
1

λ
2B + 


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For convenience, we let 
G1  ≡  MvIxcc cR −+ , 

U1 ≡  ( )cvIhb ++ 







−−
−
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x

/1
1

λ
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P
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
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λ1 > 0 and W1 ≡  cvIh+ > 0. 

Then, Equation (10) can be rewritten as  

TCU1(Q, B) = 
Q2
1











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WV .                                      (11) 

Case 2: da tMt <≤  
TC2(Q, B)  

= KMQvIxQccQ cR +−+ + 2/)( 2MsIvI ec λ−  

    + ( ) 2

/1
1

2
1 Bhb

Px
x
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λ
.               (12) 

Hence, the inventory total cost per unit time is 
TCU2(Q, B) = TC2(Q, B)/T 

= 
Q2
1



 Qλ2 ( MvIxcc cR −+ )+ Kλ2 + 22)( MsIvI ec λ− QBvIh c )(2 +−  
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
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For convenience, we let 
G2 = G1 ≡  MvIxcc cR −+  

U2 ≡  ( )hb + 
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
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/1
1
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+ cvI + 
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1
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λ > 0, 



 8 

V2 = V1 ≡  cvI
P

h +





 −

λ1 > 0 and W2 = W1 ≡  cvIh+ > 0. 

Then, Equation (13) can be rewritten as  
TCU2(Q, B) 

  = 
Q2
1
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Case 3: dtM ≥  
TC3(Q, B)  

= KMQsIxQccQ eR +−+  
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Hence, the inventory total cost per unit time is 
TCU3(Q, B) = TC3(Q, B)/T 

= 
Q2
1



 Qλ2 ( xcMsIc Re +− )+ Kλ2 QBsIh e )(2 +−  
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For convenience, we let 
G3 ≡  xcMsIc Re +−  

U3 ≡  ( )esIhb ++ 







−−
−

Px
x

/1
1

λ
 = ( )esIhb ++ 








−−

−
λPx

Px
)1(

)1( > 0, 

V3 ≡  esI
P

h +





 −

λ1 > 0 and  W3 ≡  esIh+ > 0. 

Then, Equation (16) can be rewritten as  

TCU3(Q, B) = 
Q2
1















−

2

3

3
3 Q

U
W

BU + QG32λ + λK2 +














− 2

3

2
3

3 Q
U
W

V .       (17) 

 
Theoretical results 
  In this section, simple algebraic manipulations and an arithmetic-geometric mean 
inequality approach are used to find the optimal production lot size and backorder 
level. The arithmetic-geometric mean inequality is: if a > 0 and b > 0, then 

abba ≥+ 2/)( , and the inequality holds when ba = . 
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Case 1: atM <  

For minimizing TCU1(Q, B) in Equation (11), we let 
2

1

1








− Q

U
WB = 0, then  

          Q
U
WB

1

1= . (18) 

Substituting Equation (18) into Equation (11), it gets 
TCU1(Q) ≡  TCU1(Q, B) 

= 1Gλ +
Q

MxPsIvIK ec

2
)1()(2 2−−+ λλ

+
1

2
111

2
)(

U
QWVU − .          (19) 

The arithmetic-geometric mean inequality is used as optimization method to minimize 
the inventory total cost per unit time. Therefore, we obtain the optimal production lot 
size (say 1Q ) is given by 

1Q  = 2
111

2
1 ])1()(2[

WVU
MxPsIvIKU ec

−
−−+ λλ

,                   (20) 

and the optimal backorder level (say 1B ) can be obtained as 

 1
1

1
1 Q

U
WB = = 

1

1

U
W

2
111

2
1 ])1()(2[

WVU
MxPsIvIKU ec

−
−−+ λλ

.            (21) 

Case 2: da tMt <≤  
Similarly, for minimizing TCU2(Q, B) in Equation (14), we let 

 
2

22

2 )(







 −
+−

U
MsIvI

Q
U
WB ec λ

= 0,  

then      Q
U
WB

2

2=
2

)(
U

MsIvI ec λ−
− . (22) 

Substituting Equation (22) into Equation (14), it gets 
TCU2(Q) ≡  TCU2(Q, B) 

   = 
Q2
1












 −
+ Q

U
MsIvI

WG ec

2
22

)(
2

λ
λ 22)( MsIvI ec λ−+ 







 −
−

2

1
U

sIvI ec  

            + λK2  +














− 2

2

2
2

2 Q
U
WV , 

= 222 /)( UMsIvIWG ec λλ −+ + 
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+
Q

UsIvIUMsIvIK ecec

2
/)()(2 22

22 +−−+ λλ
+

2

2
222

2
)(

U
QWVU − .         (23) 

It is similar to the arguments as in Case 1, the arithmetic-geometric mean inequality 
can be used as optimization method to minimize the inventory total cost per unit time. 
That is, we obtain the optimal production lot size (say 2Q ) is given by 

2Q  = 2
222

2
22

2 )()(2
WVU

sIvIUMsIvIUK ecec

−
+−−+ λλ

,              (24) 

and the optimal backorder level (say 2B ) can be obtained as 

 2
2

2
2 Q

U
WB =

2

)(
U

MsIvI ec λ−
−  

    =
2

2

U
W

2
222

2
22

2 )()(2
WVU

sIvIUMsIvIUK ecec

−
+−−+ λλ

2

)(
U

MsIvI ec λ−
− .      (25) 

Case 3: dtM ≥  

Likewise, for minimizing TCU3(Q, B) in Equation (17), we let 
2

3

3








− Q

U
W

B = 0, 

then  

          Q
U
W

B
3

3= . (26) 

Substituting Equation (26) into Equation (17), it gets 

TCU3(Q) ≡  TCU3(Q, B) = 3Gλ +
Q
Kλ +

3

2
333

2
)(

U
QWVU −

.                   (27) 

Using the arithmetic-geometric mean inequality, we obtain the optimal production lot 
size (say 3Q ) is given by 

3Q  = 2
333

32
WVU

UK
−
λ

,                                       (28) 

and the optimal backorder level (say 3B ) can be obtained as 

            3
3

3
3 Q

U
W

B =  = 
3

3

U
W

2
333

32
WVU

UK
−
λ

.                         (29) 
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Scenario II 
 
Notation: 

P production rate  
D demand rate, where P >D 
A setup cost for each production run 
C production cost per unit item including purchasing cost and 

inspecting cost 

0C  cost per unit time for preventive maintenance 
S selling price per unit  

hC  holding cost per unit item per unit time, excluding the interest 
charge 

SC  shortage cost per unit item per unit time 

WC  repair cost for warranty per unit item 

RC  reworking cost for each non-conforming item  
τ  time elapsed after which the production process shifts to the 

out-of-control state, which is a random variable  
)(τf  probability density function of τ  

N number of non-conforming items 

1θ  probability of non-conforming items when the production process 
is in the in-control state 

2θ  probability of non-conforming items when the production process 
is in the out-of-control state, where 0 < 1θ < 2θ <1 

T total replenishment time 
g fraction of total products that are non-conforming items 
w warranty period 

)(1 xh  failure rate function of conforming items 
)(2 xh  failure rate function of non-conforming items 

M permissible delay period offered by the supplier 

cI  interest charged per dollar per unit time in stocks by the supplier 

eI  interest earned per dollar per unit time 
TC total inventory cost per cycle 

 
Assumptions: 

(1) Demand rate and production rate are constant over time. 
(2) Products are sold with a warranty policy. 
(3) A free repair warranty policy is adopted. 
(4) All non-conforming items can be reworked immediately in a parallel 
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manufacturing system.  
(5) The regular preventive maintenance guarantees that the probability of a 

breakdown of the manufacturing system during the production run time 
is zero.  

(6) The supplier provides the manufacturer a permissible delay in payments. 
During the trade credit period the account is not settled, generated sales 
revenue is deposited in an interest bearing account with interest rate eI . 
At the end of the permissible delay, the manufacturer pays off all units 
ordered, and starts paying for the interest charges on the raw material in 
stocks with interest rate cI . 

 
Mathematical formulation 
  The manufacturer buys all raw materials Q units per order from the supplier to 
product and the unit purchasing price of raw material is C. The supplier offers the 
manufacturer a permissible delay period M. A constant product rate P is considered 
during the regular production uptime. The production-inventory system follows the 
pattern depicted in Figure 2. From Figure 2, the expressions of production uptime 1t  
and 2t , production downtime 3t , shortage permitted time 4t , and the cycle length T 
are as follows: 

  1t  = 
DP

B
−

, (30) 

2t  = 
DP

B
P
Q

−
− , (31) 

  3t  = 
D
B

PD
QDP
−

− )( , (32) 

  4t = 
D
B , (33) 

and 

  T = 4321 tttt +++ =
D
Q . (34) 

In addition, for convenience, we let 1tt A ≡ , 
P
QtttB =+≡ 21  and 321 ttttC ++≡ = 

D
BQ − . 
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        Figure 2: Graphical representation of the inventory system 
 
 

The number of non-conforming item N can be obtained as 





+<−++
+≥+

=
 if,)2(

 if,)(

212122

21211

ttttPP
ttttP

N
tθtθ
tθ

.                              (35) 

The expected value of N is given by  

∫∫
+∞

+
−++++= 21

21 0 2121211 )()]([))()()(
tt

tt
dfttPPdfttPNE tttθtθttθ  

∫
+

−+−++= 21

0 2112211 )()()()(
tt

dfttPttP tttθθθ .                      (36) 

The fraction of non-conforming item of the total produced is 

)(
)(

21 ttP
NEg
+

=  

  ∫
+

−+
+
−

+= 21

0 21
21

12
1 )()(

tt
dftt

tt
ttt

θθ
θ  

∫ =−
−

+=
PQ

Qgdf
P
Q

PQ
/

0
12

1 )()()(
/

τττθθθ .                              (37) 

The probability of a product failing within the warranty period [0, w] is  
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∫∫ +−=
ww

W dxxhgdxxhgP
0 20 1 )()()1(  

21)1( gWWg +−=  

gWWW )( 121 −+= , 

where dxxhW
w

∫= 0 11 )(  and ∫=
w

dxxhW
0 22 )( .                          (38) 

 
The inventory total cost per cycle consists of the following components: 
(1) The setup cost = A. 
(2) The production cost = CQttCP =+ )( 21 . 

(3) The cost of maintenance = 
DP

QDPCttC )()( 0430
−

=+ . 

(4) The expected free repair cost for warranty = 

)]()([)( 12121 QgWWWQCPttPC WWW −+=+ . 

(5) The expected rework cost = QQgCttPgC RR )()( 21 =+ . 
(6) The holding cost = 

( ) ]
2
1)(

2
1[ 2

2

2
2
2 t

D
DPtDPCh

−
+−  

2
22

)( t
D

PDPCh
−

=  

]1
)(22

)([
)(2

])([ 22
2

QB
D

B
DPD

PQ
DP

DPC
DPDP
BPDPQC hh −

−
+

−
=

−
−−

= . 

(7) The shortage cost is )(
2 41 ttBCS + =

DDP
PBC

DDP
PBBC Ss )(2)(2

2

−
=

−
= . 

(8) Interest earned and interest charged  
Based on the values of M, At , and Ct , we have the following three possible cases: 

(1) AtM < , (2) CA tMt <≤ , and (3) CtM ≥ .  

Case 1: AtM <  

  In this case, the interest earned per cycle IE1 is 

2
)(]

2
)(

2
[

222

1
MDPSIMDPDMSIIE ee

−
=

−
+= . 

The interest charged per cycle IC1 is 
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]
2

)(
2

))(([
22

1
MtDMtDPCIIC CA

c
−

+
−−

=  

]
2)(22

[ 2
22

MPMQ
D

QB
DPD

PB
D

QCIc +−−
−

+= . 

Case 2: CA tMt <≤  

In this case, the interest earned per cycle IE2 is 

}
2

)])[(
2

{
2

2
BMtMDMSIIE A

e
+−

+=  

]
)(22

[
22

DP
BMBDMSIe −

−+= . 

The interest charged per cycle IC2 is 

]
222

[])(
2

[
222

2
2 MBMQDM

D
QB

D
B

D
QcIMtDCIIC cCc +−+−+=−= . 

Case 3: CtM ≥  

In this case, the interest earned per cycle IE3 is 







 +−

+
+−

=
2

])[(
2

])[(
3

CCA
e

DtMtMBMtMSIIE  

   = eSI 







−

−−+
DDP

PB
D

Q
D

QBMQ
)(22

22

. 

The interest charged per cycle IC3 is zero, that is IC3 = 0. 
 

According to the above arguments, we can obtain the inventory total cost per cycle 
as follows: 
TCi(Q, B) = setup cost + production cost + maintenance cost + warranty cost + rework 

cost + holding cost + shortage cost + interest charged – interest earned,  
i = 1, 2, 3. 

 

Case 1: AtM <  

TC1(Q, B) = A +CQ +
DP

QDPC )(
0

− + )]()([ 121 QgWWWQCW −+ + QQgCR )( + 



 16 

          ]1
)(22

)([ 22 QB
D

B
DPD

PQ
DP

DPCh −
−

+
− +

DDP
PBCS )(2

2

−
 

          + ]
2)(22

[ 2
22

MPMQ
D

QB
DPD

PB
D

QCI c +−−
−

+
2

)( 2MDPSIe
−

− .       

Hence, the inventory total cost per unit time is  
TCU1(Q, B) = TC1(Q, B)/T 

          = AD + CD +
P

DPC )(
0

− + )]()([ 121 QgWWWDCW −+ + DQgCR )( + 

            ]
)(22

)([ 2 BB
DPQ

PQ
P
DPCh −

−
+

− +
QDP

PBCS )(2

2

−
 

            + ]
2)(22

[ 2
2

M
Q

PDMDB
DPQ

PBQCI c +−−
−

+
Q

DMDPSIe 2
)( 2−

− . (39) 

 

Case 2: CA tMt <≤  

TC2(Q, B) = A +CQ +
DP

QDPC )(
0

− + )]()([ 121 QgWWWQCW −+ + QQgCR )( + 

          ]1
)(22

)([ 22 QB
D

B
DPD

PQ
DP

DPCh −
−

+
− +

DDP
PBCS )(2

2

−
 

          + ]
222

[
222

MBMQDM
D

QB
D

B
D

QcIc +−+−+  

]
)(22

[
22

DP
BMBDMSIe −

−+− . 

Hence, the inventory total cost per unit time is  
TCU2(Q, B) = TC2(Q, B)/T 

          = AD + CD +
P

DPC )(
0

− + )]()([ 121 QgWWWDCW −+ + DQgCR )( + 

            ]
)(22

)([ 2 BB
DPQ

PQ
P
DPCh −

−
+

− +
QDP

PBCS )(2

2

−
 

             + ]
222

[
222

Q
DMBMD

Q
MDB

Q
BQCIC +−+−+ . 

             
Q
D

DP
BMBDMSIe ]

)(22
[

22

−
−+− .                      (40) 

 

Case 3: CtM ≥  

TC3(Q, B) = A +CQ +
DP

QDPC )(
0

− + )]()([ 121 QgWWWQCW −+ + QQgCR )( + 
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          ]1
)(22

)([ 22 QB
D

B
DPD

PQ
DP

DPCh −
−

+
− +

DDP
PBCS )(2

2

−
 

          eSI− 







−

−−+
DDP

PB
D

Q
D

QBMQ
)(22

22

. 

Hence, the inventory total cost per unit time is  
TCU3(Q, B) = TC3(Q, B)/T 

          = AD + CD +
P

DPC )(
0

− + )]()([ 121 QgWWWDCW −+ + DQgCR )( + 

            ]
)(22

)([ 2 BB
DPQ

PQ
P
DPCh −

−
+

− +
QDP

PBCS )(2

2

−
 

            eSI− 







−

−−+
QDP

PBQBMD
)(22

2

.                         (41) 

 

Optimal solutions 

Our objective is to minimize the inventory total cost per unit time TCUj(Q, B), j= 

1, 2, 3, which is a function of Q and B. The necessary conditions to make total cost 

per unit time minimum are  

0
),(
=

∂

∂

Q
BQTCU j , and 0

),(
=

∂

∂

B
BQTCU j , j = 1, 2, 3.                 (42) 

Solve equations for Q and B in (42). 

Q
BQTCU

∂
∂ ),(1 = )()( 12 QgWWDCW ′− + DQgCR )(′ +

P
DPCh 2

)( −  

              2

2

)(2
)(

QDP
PBCC Sh −

+− + ]
)(22

1[ 2

2

QDP
PBCIC −

−  

              + 2

2

2
)(

Q
DMDPSIe

− = 0.                                (43) 

B
BQTCU

∂
∂ ),(1 = ]1

)(
)[( −

−
+

QDP
PBCIC Ch +

DDP
PBCS )( −

= 0.              (44) 

 

Q
BQTCU

∂
∂ ),(2 = )()( 12 QgWWDCW ′− + DQgCR )(′ +

P
DPCh 2

)( −  
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               2

2

)(2
)(

QDP
PBCC Sh −

+− + ]
2

[ 2

22

Q
BQCIC

−  

               + ]
2

2)[( 2

22

Q
DMBMDCISI Ce

+
− 2

2

)(2 QDP
DBSIe −

− = 0.      (45) 

B
BQTCU

∂
∂ ),(2 = ]1

)(
[ −

− QDP
PBCh +

DDP
PBCS )( −

+ ]1[ −
+
Q
DMBCIC  

              
Q
D

DP
BMSIe ]

)(
[

−
−− = 0.                             (46) 

Q
BQTCU

∂
∂ ),(3 = )()( 12 QgWWDCW ′− + DQgCR )(′ +

P
DPCh 2

)( −  

               2

2

)(2
)(

QDP
PBCC Sh −

+− ]
)(22

1[ 2

2

QDP
PBSIe −

+−− = 0.     (47) 

B
BQTCU

∂
∂ ),(3 = ]1

)(
[ −

− QDP
PBCh +

DDP
PBCS )( −

]
)(

1[
QDP

PBSIe −
−− = 0.   (48) 

Using Equations (44)-(48), the optimal solution ),( ** BQ can be obtained. 

Substituting ),( ** BQ  into (39), (40) and (41), the optimal total cost per unit time 

),( **
1 BQTCU , ),( **

2 BQTCU  and ),( **
3 BQTCU can be determined, respectively. 

 
Numerical Example 

Example 1: Consider a production system with the following data: P = 10,000,λ = 

2,000, 1P = 600, K = 750, v = 1.5, c = 2, Rc = 0.5, s = 4, b = 0.25, h = 0.2, x = 0.05, M 

= 0.3, cI = 0.09 and eI = 0.05 in appropriate units. Using the proposed results above, 

the optimal solutions are obtained as follows: optimal production cycle length *T =  

2.249, optimal production lot size *Q = 4498, optimal backorder level *B = 2039, 

and the optimal manufacturer’s inventory total cost TCU( *Q , *B ) = 4613.06.  

 

Example 2: Consider a production system with the following data: P = 10,000, D = 

2,000, A = 750, C = 2, 0C = 0.5, S = 4, RC = 1.5, s = 4, SC  = 0.25, hC  = 0.2, 
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WC = 0.15, w = 1, 1θ  = 0.10, 2θ = 0.20, ττ 5.05.0)( −− ef , 2
1 15.0)( xxh = , 

2
2 45.0)( xxh = , M = 0.3, cI = 0.13 and eI = 0.07 in appropriate units. Using the 

proposed results above, the optimal solutions are obtained as follows: optimal 

production cycle length *T = 2.522, optimal production lot size *Q = 5044, optimal 

backorder level *B = 1988, and the optimal manufacturer’s inventory total cost 

TCU( *Q , *B ) = 4569.98. 

 
Conclusions 
    In order to reflect the real manufacturing circumstance and the practical business 

behavior, firstly, we establish two mathematical models to study the optimal 
production policy for an EPQ inventory system with imperfect production processes 
under permissible delay in payments, complete backlogging and preventive 
maintenance. Next, a simple algebraic manipulation and an arithmetic-geometric 
mean inequality method are employed to determine the optimal production lot size 
and backorder level. Finally, numerical examples are given to illustrate the 
theoretical results.  
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