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Abstract: This is a forward-looking approach that uses a multiple-criteria decision analysis (MCDA)
model as an assessment tool for risk identification. This study proposes an indifference threshold-
based attribute ratio analysis and technique for order preference by similarity to an ideal solution
(ITARA-TOPSIS)-based assessment model to identify critical failure modes in products and systems.
The improved indifference threshold-based attribute ratio analysis (ITARA) method can generate
more reliable weights for risk factors. In addition, the modified technique for order preference by
similarity to an ideal solution (TOPSIS) is used to obtain the risk levels of the failure modes. The gray
correlation coefficient is applied to replace the conventional Euclidean distance, and a new index
is used to determine the priority of failure modes. The determination of risk factors is based on
the failure mode and effect analysis (FMEA) theory, including severity, occurrence, and detection.
An important indicator, the expected cost, is also included in the framework. The case of a steam
turbine for a nuclear power plant is used to demonstrate the approach, and the analysis results
show that the proposed model is practical and effective. Moreover, the advantages of our integrated
model are illustrated through model comparisons and sensitivity analysis. This paper can help
decision-makers, risk engineers, and related researchers to better understand how a systematic risk
assessment can be conducted.

Keywords: MCDA; ITARA; TOPSIS; FMEA; risk assessment

1. Introduction

Risk assessment has grown into a separate scientific field over the course of about
40 years, with the establishment of principles, theories, and methods for how to conceptu-
alize, manage, and assess risk. These principles, theories, and methods still profoundly
affect the field of risk assessment. New risk assessment studies are constantly appearing,
as are significant contributions and new trends in this field. The development of newer,
more comprehensive and systematic risk diagnostic tools is the goal in the field of risk
management [1]. This involves two main types of tasks: first, to use risk assessment
technology to diagnose and explore the potential risk of specific activities, and second, to
probe generic risk research and development, related to ideas, theories, concepts, methods,
approaches, frameworks, models, and techniques to understand, diagnose, assess, com-
municate, manage, and summarize risk [2]. In general, the second type of study provides
the ideas, methodologies and tools to be used in the specific assessment issues found in
the first type of task. Simply put, faced with unknown risk events, decision-makers expect
to be able to accurately predict when the risk will occur and then formulate appropriate
preventive measures to reduce the damage caused by the risk [3].
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Public concern about the field of risk management has expanded in recent years,
while risk management has emerged as a systematic and comprehensive procedure to
protect human life. Nowadays, risk assessment methods that emphasize quantitative
analysis through mathematical logic are popular (e.g., diagrams or algorithms, hazard and
operability studies (HAZOPs), and fault tree analysis (FTA). However, it is difficult to collect
quantitative data for risk events that have not yet occurred, and even the characteristics,
factors, and causes of the events may be unclear [4]. Decision analysis is an alternate
approach to improve the accuracy of the risk identification process while determining
the optimal alternatives in a scientific manner. Specifically, expert-based decision support
systems can effectively obtain more reliable analysis results through the judgments and
ideas of experts [5].

In fact, most risk assessment issues involve many complex attributes, factors, and
limitations which form a typical multiple-criteria decision analysis (MCDA) problem [6].
The construction of a risk assessment model through MCDA includes three working
procedures, namely the construction of the assessment framework, the determination of
the weights of the risk factors, and the calculation of the risk scores of the potential failure
modes [7]. The creation of the assessment framework usually requires the review of a large
amount of literature and discussions with experts to construct assessment risk factors and
failure modes. The determination of the risk factor weights is a key step in the MCDA
process, because changing the weights may affect the analysis results of the failure modes.
Generally speaking, there are two methods for determining weights [8]. One is to obtain
subjective weights through information from expert interviews. Some practical issues still
need to rely on the subjective ideas of experts. The subjective weighting methods can
reflect the preferences of decision-makers so that the evaluation results tend to be what
they expect. For example, if a company’s business strategy is to reduce operation costs in
order to increase profits, then the cost consideration is to give a larger weight [9,10].

Common tools for processing qualitative survey data include the analytic hierarchy
process (AHP) [11], Best Worst Method (BWM) [3], analytic network process (ANP) [12],
and stepwise weight assessment ratio analysis (SWARA) [13]. The other is to generate
objective weights from risk assessment data. For example, the entropy [14], standard
deviation, maximizing deviation, and criteria importance through intercriteria correlation
(CRITIC) method [15] all fall into this category. The determination of subjective weights
is deeply affected by the experts’ judgment. If experts lack the experience for answering
those subjective weighting methods, the results of the weights will be unreliable [8].
The objective weighting methods have the advantage of not needing to interview experts
like the subjective weighting methods do. Using the objective weighting methods can
effectively reduce the investigation time and cost of risk analysis. It can also avoid the bias
arising from the experts’ experience or limited information. The criteria weights obtained
by the objective weighting methods reflect the discriminative power of the criteria over
the evaluation system [14,15]. Frequently used method for the integration of risk scores in
recent years include Vlsekriterijumska Optimizcija i Kaompromisno Resenje (VIKOR) [16],
the technique for order preference by similarity to an ideal solution (TOPSIS) [7], preference
ranking organization method for enrichment evaluation (PROMETHEE) [17], complex
proportional assessment of alternatives (COPRAS) [4], weighted aggregated sum product
assessment (WASPAS) [18], and additive ratio assessment (ARAS) [19], among others,
which can be used to assess the risk scores and provide a basis for ranking the failure modes.
The current MCDA follows an important trend in the development of risk assessment
technology, that being to develop faster, more effective, and more reliable analysis models
for determining the risk factor weights and sorting the failure modes. It is thus a good
idea to combine MCDA with failure mode and effect analysis (FMEA). This theoretical
framework can be applied to analyze the risks and reliability of components, products,
structures, and systems [6]. Such methods have been applied, for example, for the reliability
analysis of computer numerical control rotary machines [3], damage detection of rotor
blades of an aircraft’s turbines [20], and robustness evaluation of audio products [7].
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A hybrid MCDA model was proposed by Sofuoğlu [21], who combined indifference
threshold-based attribute ratio analysis (ITARA) [22] with multiple methods to discuss
material selection issues. The model lays an excellent foundation for ITARA research. Our
study extends the ITARA-TOPSIS approach, which uses different concepts to improve
and apply it in the field of risk assessment. We propose a novel MCDA risk analysis
model that integrates the improved ITARA method and the modified TOPSIS technique.
The determination of risk factors is based on the FMEA theory, including severity, occur-
rence, and detection. An important indicator, the expected cost, is also included in the
study. It is feasible to identify the importance of these risk factors through ITARA. We im-
prove the rationality of the original ITARA [22] for practical applications and introduce
the standard deviation (SD) and the concept of the aspiration level into the calculation
process. The improved ITARA can not only reflect the differences between the alternatives,
but also understand the alternative performance to the aspiration level. In addition, the
modified TOPSIS is applied to calculate the final risk score of each failure mode. In the
conventional TOPSIS [23], the Euclidean distance is used to define the gap between the
two failure modes. The Euclidean distance is replaced by the gray correlation coefficient in
this study. This allows us to take the degree of correlation between failure modes under
multiple risk factors to obtain a more reliable gap measurement. Moreover, the ranking
index of TOPSIS developed by Kuo [24] can generate more reasonable ranking results.
The proposed model overcomes some of the limitations and shortcomings of previous
MCDA models and enhances the analysis capability of the model. The innovative features
of this model are outlined below:

1. The proposed model is new because it integrates an improved ITARA method with the
modified TOPSIS technique to overcome some shortcomings of conventional FMEA.
Reviewing the risk management literature, we found limited articles combining
ITARA with TOPSIS to formulate the risk analysis model;

2. This study improves the original ITARA method to more effectively identify critical
risk factors and generate more reliable weights. In addition, we replace the gray
correlation coefficient and aspiration level in the TOPSIS technique to obtain more
reasonable ranking results for the failure modes;

3. In this study, the input data is based on qualitative information from the expert
surveys, and the amount of data depends on the number of experts, failure modes,
and risk factors. The quality and efficiency of the solution obtained from the proposed
model are not affected by the amount of data;

4. The results of the sensitivity analysis of weight changes for the improved ITARA
method indicate that this MCDA model has the robustness for practical applications.

The remainder of this paper is organized as follows. Section 2 reviews the MCDA-
based risk assessment and the FMEA literature. Section 3 describes the proposed ITARA-
TOPSIS integrated assessment model. Section 4 introduces a real application to illustrate
the feasibility of this model. Section 5 discusses the findings and contributions of this study,
followed by a summary of the discussion and some directions for future research.

2. A Brief Literature Review of MCDM Combined with FMEA

There are many methods used in MCDA to analyze and rank the determined alterna-
tives or solutions with respect to the important criteria, factors, or indexes [25,26]. MCDA
allows for the simultaneous integration of qualitative information and quantitative data
and is particularly suitable for processing objective data or subjective judgments. Such an
approach is especially useful for environments where risk is uncertain or where experts or
decision-makers must rely upon opinions or judgments to expand their evaluation [5,27,28].

The main purpose of MCDA applied in risk management is to construct a structured
risk analysis framework and to enhance decision-makers’ understanding of specific deci-
sion risk issues. The following list includes a collection of risk management themes that
can be dealt with through MCDA [5,29]:
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• Screening risk improvement strategies: The time and cost of risk assessments are
considerable, so eliminating as many extraneous considerations as possible from
improvement programs is desirable.

• Classing and sorting risk prevention measures: Sometimes, risk prevention requires a
combination of several measures to maximize the effectiveness of its defense mechanism.

• Searching for the design, identity, or creation of a new alternative, strategy, or measure
to meet the goals: Establish an innovative, unique, or novel risk assessment framework
for specific issues.

• Detecting potential failure modes or failure factors: From expert interviews or in-
strument measurements, potential failure factors are summarized and ranked (from
highest to lowest, according to a chosen algorithm), and engineers design a product
or system of production and eliminate the cause of failure.

• Planning the optimal combination of parameters: Use multi-objective programming
tools to find the optimal parameter design and maximize product or system reliability.

Risk engineers will use different methods for risk assessment and internal reporting
in different problem situations [4]. Evaluation approaches used to determine the criteria,
guidelines, and factors include the checklist, brainstorming, HAZOP, FMEA, structured
what if technique (SWIFT), root cause analysis (RCA), primary hazard analysis (PHA),
FTA, event tree analysis (ETA), and Ishikawa diagram approaches [30].

The literature review shows many risk assessment studies combining FMEA and
MCDA to develop various evaluation models for risk control and improvement in various
industries [31–33]. The FMEA method is an efficient tool for risk assessment and accident
prevention. It has been applied to discover, control, and eliminate recognized or potential
failure modes and to improve the robustness of complex systems [32]. In contrast to other
risk assessment methods, the major emphasis of FMEA is to engage in proactive treatment
of the product or system, rather than finding a solution after the risk has happened. This
can help risk engineers to adjust programs, increase compensating provisions, employ the
recommended ways, reduce the likelihood of failures, and avoid hazardous accidents [33].
Conventionally, the most common method for evaluating failure risk in FMEA is by
developing the risk priority number (RPN). The RPN is the product of the severity (S),
occurrence (O) and detection (D) difficulty rates. However, the crisp RPN method has
some limitations when applied in real-world cases. The shortcomings of the conventional
FMEA are listed below [3,4,32]:

• The three risk factors used in FMEA calculations do not encompass the entire range of
causal factors;

• Measuring risk factors (e.g., severity and detection) is very subjective, and a holistic
description of group opinion or judgment is lacking;

• The three factors are hard to precisely evaluate in numerical form;
• The three risk factors are often given equal relative weights;
• The mathematical formula for calculating the conventional RPN is questionable;
• RPN values are not continuous with many holes in the scaling, and there is no

mechanism to interpret the meaning of the differences between different RPNs;
• Different combinations of the three risk factors may lead to an identical RPN value,

causing some high-risk failure modes to be ignored;
• Many of the scores in the range of 1—1000 cannot be formed from the product of the

three risk factors;
• Small variations in each rating may lead to tremendously different effects on the RPN.

The FMEA method has been proven to be one of the most important analytical
tools for early preventative initiatives in a system, process, or service. However, the
limitations above might reduce the reliability of conventional FMEA. The ITARA-TOPSIS-
based assessment model was proposed to remedy these shortcomings in the conventional
FMEA method.

The three risk factors used in FMEA calculations do not encompass the entire range of
causative factors. Some decision-makers are taking the expected cost into account when
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making this type of decision [31]. Therefore, to comprehensively evaluate the failure modes,
the proposed FMEA described is not limited to the original three risk factors. The expected
cost is added in the model for risk analysis. The expected cost is the maintenance cost that
must be paid when the failure mode occurs. During the process of risk evaluation, experts
choose a linguistic term to describe the degree of four risk factors for every failure mode.
The corresponding linguistic term scores are shown in Table 1. For example, if the expert
considers that the expected cost to fix a specific failure mode is almost close to the original
price of the product, then the relative score for the expected cost (E) for the failure mode
is 10.

Table 1. Corresponding ratings of linguistic terms.

Severity Occurrence Detection Expected Cost Rating

No Almost never Almost certain Nearly no cost 1
Very slight Remote Very high Remote 2

Slight Very slight High Low 3
Minor Slight Moderately high Relatively low 4

Moderate Low Moderate Moderate 5
Significant Medium Low Moderately high 6

Major Moderately high Very low High 7
Extreme High Remote Very high 8
Serious Very high Very remote Extremely high 9

Hazardous Almost certain Absolute uncertainty Almost close to original price 10

3. The ITARA-TOPSIS-Based Integrated Assessment Model

This section introduces the proposed model and analysis procedures. First, the im-
proved ITARA method is developed to generate weights for the risk factors, and then the
modified TOPSIS method is used to integrate and rank the risk scores of the failure modes.

3.1. Improved ITARA

The original ITARA method proposed by Hatefi et al. [22] is applied to generate
objective weights for the risk factors. The importance of the risk factors is assigned based
on two parameters: dispersion logic (DL) and the indifference threshold (IT). The so-called
DL is mainly used to measure the degree of dispersion among failure modes. If the risk
rating dispersion of all failure modes in a risk factor is low, the generated weight will be
relatively small. This indicates that the criterion has little discriminative power on the
evaluation system (i.e., it cannot distinguish between good and bad alternatives). The IT
is a threshold value which indicates the degree of allowable dispersion among failure
modes. When the degree of dispersion between two adjacent failure modes is less than
the threshold, it means that the decision-makers can tolerate the gap. Conversely, when
the degree of dispersion exceeds the IT, it means that the corresponding risk factor has
significant discriminative power.

However, the original ITARA method only considers the distance between failure
modes and ignores their degree of separation relative to the aspiration level (lowest rating).
A simple example is to illustrate the shortcomings of the original ITARA method. Assume
that there are four failure modes. The risk ratings of four failure modes under the two
risk factors are {3, 1, 2, 2} and {9, 7, 8, 8}, and the lowest rating is 1. Although the internal
dispersions of the two sets of data are the same, they are significantly different from the
lowest rating. In the original ITARA method, the weights of the two criteria will be equal,
but this violates the principle of rationality for practical applications. The improved ITARA
method can effectively alleviate this shortcoming by adding the coefficient of variation
(CV) as a parameter to reflect the overall degree of dispersion. When the risk rating of the
failure mode is farther away from the lowest rating, the corresponding risk factor should be
assigned a higher weight, which means that this risk factor should be valued by decision-
makers. The improved ITARA method proposed in this study is a semi-objective weighting
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method, because some parameters in the calculation procedure need to be determined by
the decision-makers or experts. The steps of the improved ITARA method are discussed in
detail below.

• Step 1: Obtain the assessment matrix X.

Assume that there are m failure modes (Mi) assessed through n risk factors (Cj) to
obtain the assessment matrix X, as shown in Equation (1). Here, an aspiration level (xaspire, j)
is added as an item:

X =
[
xij
]
=


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn
xaspire,1 xaspire,2 · · · xaspire,n

, i = 1, 2, . . . , m; j = 1, 2, . . . , n (1)

where xij represents the risk rating of the ith failure mode under the jth risk factors.

• Step 2: Set the indifference threshold (ITj).

The decision-makers formulate a reasonable ITj for risk factors, j = 1, 2, . . . , n. ITj
reflects the allowable range of decision-makers for the degree of dispersion.

• Step 3: Calculate the normalized matrix A.

Normalization can unify the assessment units of all risk factors, so the range of
elements in the matrix A is between 0 and 1, as shown in Equation (2):

A =
[
aij
]
=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

aaspire,1 aaspire,2 · · · aaspire,n

, i = 1, 2, . . . , m; j = 1, 2, . . . , n (2)

where aij =
xij

∑m
i=1 xij

.

Here, NITj can also be obtained through the normalization of ITj, as shown in Equation (3):

NITj =
ITj

∑m
i=1 xij

, j = 1, 2, . . . , n (3)

• Step 4: Sort the elements of matrix A (ascending order).

Under the same risk factors, the elements in matrix A are sorted in ascending order to
form matrix β, as shown in Equation (4). Here, the rows of matrix β do not represent the m
failure modes, which are used as the base of the normalized values to assess the weights of
risk factors. The aspiration level βaspire,j must be the minimum value, so it will be sorted as
the first one:

β =
[
βij
]
=


βaspire,1 βaspire,2 · · · βaspire,n

β11 β12 · · · β1n
β21 β22 · · · β2n

...
...

. . .
...

βm1 βm2 · · · βmn

, i = 1, 2, . . . , m; j = 1, 2, . . . , n (4)

• Step 5: Calculate the dispersion degree of the adjacent values in each column.

The dispersion degree of the adjacent values in each column can be defined by
Equation (5):

γij = βi+1,j − βij (5)
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• Step 6: Determine the distance between γij and NITj.

When γij > NITj, the degree of dispersion between the adjacent values in each
column is beyond the acceptable range of the decision-makers. Therefore, δij is used to
represent the distance between γij and NITj. Conversely, when γij ≤ NITj, it means that
γij is not significant, so δij is set to 0. The calculation is as shown in Equation (6):

δij =

{
γij − NITj , γij > NITj

0 , γij ≤ NITj
(6)

• Step 7: Generate the weights of the risk factors.

The original ITARA method only calculated the distance between the adjacent values
in each column. It did not consider the deviation among the failure modes. Therefore, the
CV parameter is added to generate a set of reliable weights, as shown Equation (7):

wj = α

(
vj

∑n
j=1 vj

)
+ (1− α)

(
cvj

∑n
j=1 cvj

)
(7)

where vj =
(

∑m
i δ2

ij

) 1
2 and cvj =

σj
xj

. Here, the calculation of the standard deviation σj, and
the average xj does not include the aspiration level, while α is a proportional parameter
whose range is between 0 and 1. In general, when the decision-makers consider the
importance of the distance of two neighbors and the CV simultaneously, the α is set to 0.5.
If the decision-makers focus on the distance between two neighbors, α will be set to a value
greater than 0.5.

3.2. Modified TOPSIS

The TOPSIS is an effective MCDA method that is used to integrate the performance
values of the solutions. The technique mainly determines positive and negative ideal
solutions (PIS and NIS) in the solution combinations. Then, we calculate the relative
position of each solution by measuring the gaps between each solution and the PIS and
NIS. The best solution is closest to the PIS and farthest away from the NIS. The TOPSIS
has been widely used in many practical decision-making problems [34]. However, it uses
the Euclidean distance to define the distance, which is not suitable for multi-dimensional
data [35], and it lacks the amount of information needed to measure potential uncertainty.
In order to overcome the above problems, this study uses the gray correlational coefficient
to determine the distance between each solution and the PIS and NIS. This is a method
for judging the degree of correlation between solutions based on the similarity of multi-
dimensional geometric shapes [36].

After the weights of the risk factors are generated by the improved ITARA method,
the modified TOPSIS is used to prioritize the failure modes. The procedures of the modified
TOPSIS for determining the ranking of the failure modes is outlined below.

• Step 1: Obtain the assessment matrix X.

This is the same as Step 1 in the improved ITARA method.

• Step 2: Calculate the normalized matrix Y.

Here, the highest rating (y∗j = 10) is used as the denominator instead of the maximum
value used in the previous method (y∗j = max

i
xij). This can truly reflect the real gap.

The normalized matrix Y (Equation (8)) is indicated as follows:

Y =
[
yij
]
=


y11 y12 · · · y1n
y21 y22 · · · y2n

...
...

. . .
...

ym1 ym2 · · · ymn

, i = 1, 2, . . . , m; j = 1, 2, . . . , n (8)
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where yij =
xij
10 .

• Step 3: Derive the weighted normalized matrix F.

A weighted normalized matrix is obtained by multiplying the risk factor weights by
the normalized matrix Y, as shown in Equation (9):

Y =
[

fij
]
=


y11 · w1 y12 · w2 · · · y1n · wn
y21 · w1 y22 · w2 · · · y2n · wn

...
...

. . .
...

ym1 · w1 ym2 · w2 · · · ymn · wn

, i = 1, 2, . . . , m; j = 1, 2, . . . , n

(9)

• Step 4: Set the PIS and NIS.

In risk management, the aspiration level is the minimum risk rating, which is regarded
as the PIS (Equation (10)). On the other hand, the highest risk rating is the NIS (Equation (11)):

r∗ =
(

r∗1 , r∗2 , . . . , r∗j , . . . , r∗n
)
=
(
1 · w1, 1 · w2, . . . , 1 · wj, . . . , 1 · wn

)
(10)

r− =
(

r−1 , r−2 , . . . , r−j , . . . , r−n
)
=
(
10 · w1, 10 · w2, . . . , 10 · wj, . . . , 10 · wn

)
(11)

• Step 5: Calculate the gray correlation coefficient of each failure mode in relation to the
PIS and NIS.

The gray correlation coefficient of the failure mode i in relation to the PIS and NIS is
calculated using Equations (12) and (13), respectively. The ρ is called the distinguished
coefficient, which reduces the influence of the maximum absolute difference and adjusts the
difference of the correlation coefficient. ρ ∈ [0,1], and in general, ρ is set as 0.5. The larger
the value of ρ is, the smaller the disintegration capability is:

v∗i =
n

∑
j=1

min
i

∣∣∣ fij − r∗j
∣∣∣+ ρ max

i

∣∣∣ fij − r∗j
∣∣∣∣∣∣ fij − r∗j

∣∣∣+ ρ max
i

∣∣∣ fij − r∗j
∣∣∣
 (12)

v−i =
n

∑
j=1

min
i

∣∣∣ fij − r−j
∣∣∣+ ρ max

i

∣∣∣ fij − r−j
∣∣∣∣∣∣ fij − r−j

∣∣∣+ ρ max
i

∣∣∣ fij − r−j
∣∣∣
 (13)

• Step 6: Calculating the closeness coefficient (CCi).

The CCi is the TOPSIS ranking index, ranging in value from −1 to 1. Kuo [24]
provided a novel ranking index to overcome the shortcomings of the conventional TOPSIS,
as presented as Equation (14):

CCi = w+

(
v−i

∑m
i=1 v−i

)
− w−

(
v∗i

∑m
i=1 v∗i

)
(14)

where v∗i and v−i are the gray correlation coefficient between the failure mode and the
PIS and NIS, respectively. The two values are the main parameters for constructing the
CCi. The larger the CCi (or the larger the v−i ), the closer the failure mode i is to the NIS,
which also means that it has a higher risk. Here, w+ and w− are the weights for v−i and v∗i ,
respectively, and w+ + w− = 1 is required. Generally, when the decision-makers do not tend
to value the PIS or NIS, both w+ and w− will be set to 0.5 [24].

4. Demonstration of the Model Using a Real Case

The proposed model was applied for the analysis of a steam turbine for a power plant.
Today, there are approximately 448 active nuclear power plants in 31 countries around the
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world. Nuclear power plants are a type of highly efficient energy output infrastructure,
emitting almost no greenhouse gases or carbon dioxide. However, the cost of nuclear
power plant construction is very high, and the demand for imported technology is also
high. The maintenance costs are higher than other energy supply facilities. Steam turbines
are an essential component, and their reliability is important to the operation of the power
plant. A steam turbine is essentially a heat engine that performs mechanical work, using
steam as the working fluid. Compared with the traditional reciprocating type of steam
engines, steam turbines have a greatly improved heat transfer efficiency. Power plants that
use steam turbines are commonly known as thermal power plants. They are particularly
suitable for fossil fuel-fired thermal power and nuclear power plants. About 80% of the
world’s electricity is generated by steam turbine engines [37]. To save costs and ensure the
reliability of such turbine systems, it is necessary to evaluate the potential failure modes
and implement risk assessment.

4.1. Background Description

The effectiveness and practicability of the proposed model was demonstrated by
using data from a nuclear power plant in Taiwan. We used the risk factors defined by the
FMEA framework as the assessment criteria, including the S, O, D, and E [3,6,7]. The initial
decision group consisted of 24 experts, including professors, government regulators, man-
agers, and power plant engineers in related professions. Every expert had many years of
experience in the energy industry. Currently, there are two major nuclear power plants in
operation in Taiwan. If an unplanned downtime accident occurs at a nuclear power plant,
it will have a serious impact on societal activities. Since the pieces of nuclear power plant
equipment are numerous and complex, the most critical component, the steam turbine, was
selected for investigation. The experts identified nine major potential failure modes in the
steam turbine for the nuclear power plant: high temperature of the engine (M1), a clogged
lubricating oil system (M2), foreign objects (M3), fracture of the vane (M4), a loose valve
(M5), bearing damage (M6), a broken chassis (M7), mechanical transmission breakdown
(M8), and rotor breakdown (M9).

4.2. Using Modified ITARA to Generate the Weights of the Risk Factors

After the major potential failure modes were identified, subjective ratings from experts
of each failure mode respective to each risk factor were obtained from the questionnaire.
We used the following questions to assist experts in making appropriate assessments of
failure modes: (1) What is the severity of the damage to the steam turbine after the failure
mode occurs? (2) What is the probability of this failure mode occurring? (3) How easy is it
to detect the failure mode before it occurs? (4) What are the associated repair costs after the
failure mode occurs? All experts followed these questions to complete the questionnaire.
The initial questionnaire of Expert 1 is shown in Table A1 in Appendix A. The average
assessment matrix of 24 experts is presented in Table 2 (Equation (1)). For the four risk
factors, the expert-given threshold ITj was set to 0.5. From Equations (2)–(6), Tables 3–6
can be obtained.

Through Equation (7), the α was set to 0.65 (jointly decided by 24 experts), and the
weights of the risk factors could be obtained as follows: wS = 0.2853, wO = 0.2212, wD
= 0.2120, and wE = 0.2815, respectively, as shown in Table 7. Severity was rated as the
most important risk factor in this case. In terms of the gap between adjacent values in
each risk factor, the expected cost had the highest level of discrimination in the evaluation
system (vE = 0.0629). Although the expected cost was not the top factor, it was ranked in
second place, which indicates that cost consideration was necessary in a steam turbine risk
assessment system. In fact, the company made budget allocations for regular steam turbine
maintenance. Overall, the importance of these risk factors was ranked as S � E � O � D.
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Table 2. The assessment matrix X and the indifference threshold ITj.

Mi S O D E

M1 5.590 3.475 2.470 4.865
M2 8.160 4.330 3.155 5.425
M3 8.120 4.975 5.065 4.980
M4 9.340 2.865 4.125 6.120
M5 6.185 5.250 3.770 4.605
M6 7.420 3.900 3.255 5.390
M7 6.770 3.415 3.705 5.040
M8 7.070 4.160 3.735 5.395
M9 8.815 3.720 3.080 7.010

Aspire 1 1 1 1
ITj 0.5 0.5 0.5 0.5

Table 3. The normalized matrix A and the normalized threshold NITj.

Mi S O D E

M1 0.0816 0.0937 0.0740 0.0976
M2 0.1192 0.1167 0.0946 0.1089
M3 0.1186 0.1341 0.1518 0.0999
M4 0.1364 0.0772 0.1237 0.1228
M5 0.0903 0.1415 0.1130 0.0924
M6 0.1084 0.1051 0.0976 0.1082
M7 0.0989 0.0921 0.1111 0.1011
M8 0.1033 0.1122 0.1120 0.1083
M9 0.1287 0.1003 0.0923 0.1407

Aspire 0.0146 0.0270 0.0300 0.0201
NITj 0.007 0.013 0.015 0.010

Table 4. The Matrix β (sorted results of matrix A).

S O D E

Sort 1 0.0146 0.0270 0.0300 0.0201
Sort 2 0.0816 0.0772 0.0740 0.0924
Sort 3 0.0903 0.0921 0.0923 0.0976
Sort 4 0.0989 0.0937 0.0946 0.0999
Sort 5 0.1033 0.1003 0.0976 0.1011
Sort 6 0.1084 0.1051 0.1111 0.1082
Sort 7 0.1186 0.1122 0.1120 0.1083
Sort 8 0.1192 0.1167 0.1130 0.1089
Sort 9 0.1287 0.1341 0.1237 0.1228

Sort 10 0.1364 0.1415 0.1518 0.1407

Table 5. The degree of dispersion between adjacent values in each column γij.

S O D E

Sort 2-1 0.0670 0.0503 0.0441 0.0723
Sort 3-2 0.0087 0.0148 0.0183 0.0052
Sort 4-3 0.0085 0.0016 0.0022 0.0023
Sort 5-4 0.0044 0.0066 0.0030 0.0012
Sort 6-5 0.0051 0.0049 0.0135 0.0070
Sort 7-6 0.0102 0.0070 0.0009 0.0001
Sort 8-7 0.0006 0.0046 0.0010 0.0006
Sort 9-8 0.0096 0.0174 0.0106 0.0139

Sort 10-9 0.0077 0.0074 0.0282 0.0179
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Table 6. The distance between γij and NITj (δij).

S O D E

1 0.0597 0.0368 0.0291 0.0623
2 0.0014 0.0013 0.0033 0.0000
3 0.0012 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000
6 0.0029 0.0000 0.0000 0.0000
7 0.0000 0.0000 0.0000 0.0000
8 0.0023 0.0039 0.0000 0.0039
9 0.0004 0.0000 0.0132 0.0078

Table 7. The results obtained with the improved indifference threshold-based attribute ratio analysis
(ITARA) method.

S O D E

vj 0.0599 0.0370 0.0321 0.0629
cvj 0.1636 0.1899 0.2049 0.1356
wj 0.2853 0.2212 0.2120 0.2815

Rank 1 3 4 2

4.3. Using Modified TOPSIS to Integrate the Risk Ratings of the Failure Modes

The risk assessment of a product or system is a difficult and complex task., especially
for evaluation in an environment with many failure modes and risk factors. A systematic
and scientific analysis model is needed to measure the risk of failures. The TOPSIS is
effective for dealing with this type of problem because it explores the distance between
each failure mode and the PIS and NIS when determining the priority for improvement.
The calculation procedures of the proposed modified TOPSIS are described in Section 3.2.

The concept of the aspiration level is introduced into TOPSIS in this study. Using
Equations (8) and (9), the normalized matrix Y and the weighted, normalized matrix F can
be obtained, as shown in Tables 8 and 9.

Table 8. The normalized matrix Y (modified technique for order preference by similarity to an ideal
solution (TOPSIS)).

Mi S O D E

M1 0.559 0.348 0.247 0.487
M2 0.816 0.433 0.316 0.543
M3 0.812 0.498 0.507 0.498
M4 0.934 0.287 0.413 0.612
M5 0.619 0.525 0.377 0.461
M6 0.742 0.390 0.326 0.539
M7 0.677 0.342 0.371 0.504
M8 0.707 0.416 0.374 0.540
M9 0.882 0.372 0.308 0.701

The gray correlation coefficients between the failure mode Mi and the PIS (lowest risk)
and NIS (highest risk) can be determined (v* and v−) according to Equations (10)–(14), as
shown in Tables 10 and 11. It was confirmed that the gray correlation coefficient between
the less risky failure mode and the PIS must be larger. Conversely, its gray correlation
coefficient with the NIS must be smaller. The sum of the CCi was equal to 0. When the
CCi was greater than 0, it indicated the set among all the failure modes with higher risk,
because their assessment results were closer to the high-risk scenario. Table 12 shows
the results of the calculation combining the improved ITARA method and the modified
TOPSIS. The priority for failure mode improvement is M3 �M9 �M4 �M2 �M8 �M5
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�M6 �M7 �M1. Figure 1 shows a visualization of our evaluation results, which clearly
illustrates the relative risk level. Obviously, M3, M9, M4, and M2 are all high-risk failure
modes, and engineers should set improvement measures to eliminate or control them.

Table 9. The weighted normalized matrix F.

Mi S O D E

M1 0.159 0.077 0.052 0.137
M2 0.233 0.096 0.067 0.153
M3 0.232 0.110 0.107 0.140
M4 0.266 0.063 0.087 0.172
M5 0.176 0.116 0.080 0.130
M6 0.212 0.086 0.069 0.152
M7 0.193 0.076 0.079 0.142
M8 0.202 0.092 0.079 0.152
M9 0.251 0.082 0.065 0.197

r* 0.029 0.022 0.021 0.028
r− 0.285 0.221 0.212 0.281

Note: The “*” and “−” symbol represent the positive and negative ideals, respectively.

Table 10. The gray correlation coefficient of the failure mode i in relation to the positive ideal
solution (PIS).

Mi S O D E v*

M1 1.000 0.867 1.000 0.962 3.830
M2 0.773 0.731 0.836 0.890 3.231
M3 0.776 0.654 0.574 0.946 2.951
M4 0.700 1.000 0.679 0.814 3.193
M5 0.936 0.626 0.729 1.000 3.292
M6 0.827 0.794 0.817 0.894 3.332
M7 0.881 0.879 0.739 0.938 3.438
M8 0.855 0.755 0.735 0.893 3.238
M9 0.731 0.824 0.852 0.733 3.139

Note: The “*” symbol represent the positive ideals.

Table 11. The gray correlation coefficient of the failure mode i in relation to the negative ideal
solution (NIS).

Mi S O D E v−

M1 0.433 0.824 0.770 0.726 2.754
M2 0.708 0.900 0.820 0.782 3.211
M3 0.701 0.968 1.000 0.737 3.406
M4 1.000 0.777 0.902 0.865 3.544
M5 0.476 1.000 0.870 0.703 3.049
M6 0.599 0.860 0.828 0.778 3.065
M7 0.527 0.819 0.865 0.743 2.954
M8 0.558 0.884 0.867 0.779 3.088
M9 0.845 0.845 0.814 1.000 3.504

Note: The “−” symbol represent the negative ideals.
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Table 12. The calculation results from the modified TOPSIS.

Mi v* v− CC Rank

M1 3.830 2.754 −0.0164 9
M2 3.231 3.211 0.0017 4
M3 2.951 3.406 0.0098 1
M4 3.193 3.544 0.0082 3
M5 3.292 3.049 −0.0022 6
M6 3.332 3.065 −0.0026 7
M7 3.438 2.954 −0.0063 8
M8 3.238 3.088 −0.0006 5
M9 3.139 3.504 0.0084 2

Note: The “*” and “−” symbol represent the positive and negative ideals, respectively.
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5. Discussion and Conclusions

This proposed ITARA-TOPSIS model is suitable for qualitative research on risk as-
sessment in various fields. A review on the MCDA-based hybrid FMEA models for risk
management showed only limited articles that considered the inclusion of expected costs
for risk maintenance. Although the expected cost is not the top-ranked risk factor, it does
affect the failure mode ranking. To the best of our knowledge, this is the first time the
ITARA-TOPSIS model has been developed for risk assessment in MCDA research. The de-
veloped model is compared with several previous models, including the conventional
FMEA, the FMEA with expected costs, AHP-SAW (simple additive weighting method),
and the original ITARA -TOPSIS method. Table 13 presents the calculation results for the
five models and their failure mode rankings. The results of the FMEA that considers the
expected cost are obviously different from those of the conventional FMEA. Although
the top failure mode is same, the second-ranking failure modes are M5 and M9, respec-
tively. Moreover, the ranking results obtained with the five methods are different. As
mentioned in Section 1, the integrated model proposed in this study should be more reliable
and effective than the other four methods because it considers more practical conditions
and requirements.
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Table 13. Failure mode rankings of the five models.

Conventional FMEA
Conventional

FMEA (Including
Expected Costs)

AHP-SAW Original ITARA
-TOPSIS Our Proposed Model

Mi RPN Rank RPN Rank SAW Rank CC Rank CC Rank

M1 47.980 9 233.424 9 4.257 9 0.072 9 −0.0164 9
M2 111.475 3 604.752 4 5.482 4 0.361 7 0.0017 4
M3 204.611 1 1018.962 1 5.893 3 0.672 1 0.0098 1
M4 110.381 4 675.533 3 5.896 2 0.629 2 0.0082 3
M5 122.417 2 563.729 6 5.021 7 0.401 5 −0.0022 6
M6 94.193 7 507.701 7 5.187 6 0.339 8 −0.0026 7
M7 85.658 8 431.716 8 4.891 8 0.388 6 −0.0063 8
M8 109.851 5 592.645 5 5.248 5 0.445 4 −0.0006 5
M9 100.999 6 708.001 2 5.964 1 0.488 3 0.0084 2

In order to examine the robustness of the modified TOPSIS, a sensitivity analysis is
performed by changing the weights of w+ and w− to observe the ranking results. The w+

is adjusted from 0.1 to 0.9, with a proportional change in the w− weight (w− = 1 − w+).
From the sensitivity analysis results shown in Figure 2, it can be seen that the top failure
mode (in run 1 to 6) is still M3. However, the top rank is changed after run 6, indicating the
importance of w+ and w−. This study recommends that decision-makers set both w+ and
w− to be 0.5. Since the core concept of TOPSIS considers the importance to PIS and NIS at
the same time, using extreme weight combinations may produce biased results.
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The weights obtained by the improved ITARA method are based on inherent infor-
mation, and the index or factor weights are determined by a more objective method. In
other words, the proposed method is not only able to consider the weight of every factor,
but also determine the weights from a semi-objective point of view. Severity is the most
important risk factor from those selected by the 24 decision-makers. Those failure modes
identify what needs to be improved first and where to reduce the severity of damage in the
system or product.

The steam turbine is the key mechanism for energy conversion in nuclear power
plants. Based on the information provided by the 24 engineers and professionals, the
factors were selected for the model. The analysis results of the ITARA-TOPSIS integrated
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assessment model showed that foreign objects (M3), rotor breakdown (M9), and fracture of
the vane (M4) were the top three failures leading to the malfunction of the stream turbine.
The modified TOPSIS can obtain the relative risk level of the failure modes through the
ranking index (CCi). The purpose of the results of the FMEA is to provide engineers
with directions for improvement and take proactive measures before an accident occurs.
For the above three failure modes, this study conducted in-depth interviews with the
experts to illustrate the prevention methods. For M3, better protective nets and fences are
constructed to prevent smaller foreign objects from falling in and increase the number
of environmental cleanings. For M9 and M4, more detailed checklists are planned to
check the two failure modes and prevent unexpected shutdowns. In addition, structural
engineers are recommended to use more durable materials to increase the robustness of
the steam turbine.

This study makes a contribution to MCDA risk assessment research. This paper not
only develops a comprehensive assessment framework for risk management issues, but
also proposes a novel, integrated MCDA model to analyze the risk of the failure modes.
The three risk factors from FMEA theory are severity, occurrence, and detection. We also
included the expected cost as an additional risk factor to make the set of guidelines more
complete. The improved ITARA method requires decision-makers or experts’ limited input
to determine the criteria weights and uses existing risk rating data to generate the weights of
the factors. The existing TOPSIS was also modified to improve its practicality. It is feasible
to replace the Euclidean distance with the gray correlation coefficient to determine the
multi-dimensional geometric distance more accurately. Moreover, the sensitivity analysis
and model comparison provide evidence showing the effectiveness and robustness of the
proposed model. The procedures described in this paper can be applied to other MCDA
issues, as long as the risk factors are added or modified according to different products
or systems. We compiled the research results into a report, which was submitted to the
maintenance department of a nuclear energy company. They confirmed that this report
would be beneficial to the improvement of product reliability.

Although the ITARA-TOPSIS integrated assessment model is innovative and effective,
there are still some shortcomings and limitations. First, the model may be too complex for
decision-makers in non-MCDA-related fields to apply. It is expected that some software
programs can be developed to help decision-makers using this hybrid model. Second,
researchers can apply the model to other industries to compare with the current results.
Finally, the interaction among the failure modes has not been discussed in this study.
Future work can analyze the effects of interaction among failure modes to identify the most
influential failure mode.

Author Contributions: H.-W.L. designed the research and wrote the paper. C.-C.H. and C.-N.H.
collected the data, verified the model, and administered the project. J.J.H.L. co-wrote and made
revisions to the paper. All authors have read and agreed to the published version of the manuscript.

Funding: No external funding was received for this research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: All authors declare that they have no conflict of interest.



Mathematics 2021, 9, 239 16 of 17

Appendix A

Table A1. The initial questionnaire obtained by Expert 1.

Mi S O D E

M1 6 3 2 3
M2 10 4 4 5
M3 7 3 3 5
M4 10 2 9 6
M5 4 3 3 4
M6 8 5 3 3
M7 5 3 2 3
M8 7 3 5 5
M9 10 2 3 6
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