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Abstract

Background: Bone loss induced by hypoxia is associated with various pathophysiological conditions, however, little is
known about the effects of hypoxia and related signaling pathways on osteoblast differentiation and bone formation.
Because bone marrow-derived mesenchymal stem cells (MSCs) survive under hypoxic conditions and readily differentiate
into osteoblasts by standard induction protocols, they are a good in vitro model to study the effects of hypoxia on
osteoblast differentiation.

Methodology/Principle Findings: Using human MSCs, we discovered TWIST, a downstream target of HIF-1a, was induced
under hypoxia and acted as a transcription repressor of RUNX2 through binding to the E-box located on the promoter of
type 1 RUNX2. Suppression of type 1 RUNX2 by TWIST under hypoxia further inhibited the expression of BMP2, type 2 RUNX2
and downstream targets of RUNX2 in MSCs.

Conclusions/Significance: Our findings point to the important role of hypoxia-mediated signalling in osteogenic
differentiation in MSCs through direct regulation of RUNX2 by TWIST, and provide a method for modifying MSC
osteogenesis upon application of these cells in fracture healing and bone reconstruction.
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Introduction

Bone loss induced by hypoxia is associated with various

pathophysiological conditions such as ischemia [1], vascular

diseases [2,3], and osteolytic bone metastases [4]. Although,

hypoxia was reported to control osteoclast size and numbers [5],

however, little is known about the effects of hypoxia on osteoblast

differentiation and bone formation.

RUNX2 (also known as CBFA1) is a master regulator of

skeletogenesis and its expression is required for the expression of

several downstream genes that are important for osteoblast

differentiation and maturation [6,7]. The major isoforms of

RUNX2 involved in osteogenesis are type1 (T1) and type2 (T2)

RUNX2. T1 RUNX2 is regulated by a proximal promoter P2 and

the translation begins from the exon2 amino acid sequences

(MRIPVD); whereas T2 RUNX2 is regulated by a distal promoter

P1 and translation begins from the exon1 amino acid sequences

(MASNSL). T1 RUNX2, chiefly expresses in early precursors of

osteoblasts and chondrocytes [8], and is upregulated by growth

factors such as fibroblast growth factor 2 (FGF2) to stimulate the

production of bone morphogenetic protein2 (BMP2). This then

enhances the transcription of T2 RUNX2 to stimulate osteoblast

differentiation and maturation [9].

The transcriptional response to hypoxia is mediated by the

hypoxia-inducible transcription factor (HIF-1), a heterodimer

consisting of the constitutively expressed aryl hydrocarbon

receptor nuclear translocator (ARNT) and the hypoxic response

factor HIF-1a. HIF-1a is regulated by the cellular O2 concentra-

tion and determines the transcriptional activity of HIF-1 [10].

Twist, a basic helix-loop-helix (bHLH) transcription factor, has

been known to promote tumor metastasis by inducing epithelial-

mesenchymal transition (EMT) [11]. Recently, Twist is known as

one of the downstream targets of HIF-1a and the HIF-Twist

pathway is involved in hypoxia-induced increase of metastasis in

head and neck cancer [12] and hypoxia-mediated inhibition of

replicative senescence and loss of stemness occurred upon

expansion of adult stem cells [13].

Human multipotent stromal cells or mesenchymal stem cells

(MSCs), capable of self renewal and differentiating into various

mesenchymal tissues [14], have emerged as a promising tool for
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clinical applications in, for example, cell-based therapy for

osteogenesis imperfecta [15] and tissue engineering in cartilage

and bone [16]. MSCs reside in bone barrow and are easily isolated

by plastic-adherence. They are the in vivo precursors of osteoblasts

and are readily induced to undergo osteoblastic differentiation by

standard induction protocols. Therefore they are a good non-

cancerous model to study osteogenic differentiation and bone

formation [12,17].

Because MSCs isolated from bone marrow, which is hypoxic in

nature (1–7% O2), survive under hypoxia [18], we used MSCs as the

cell model to study the underlying mechanism involved in hypoxia-

mediated inhibition of osteogenesis. Since the TWIST levels are

increased in MSCs cultured under hypoxic conditions, remain high

in freshly purified MSCs, and are downregulated following ex vivo

expansion, we specifically focused on the role of Twist in modulating

of osteogenesis of MSCs under hypoxic conditions [19,20]. Our

findings provide evidence that hypoxia inhibits MSC osteogenesis

through direct downregulation of RUNX2 by TWIST.

Results

Hypoxia inhibits osteogenic differentiation by MSCs
To understand the effects of hypoxia on osteogenic differenti-

ation, we induced bone marrow MSCs from three individual

donors in osteogenic induction medium (OIM) under normoxia

(21% O2) and hypoxia (1% O2). The expression of RUNX2 was

detected at 3 days of differentiation and the expression level was

greater under normoxia than hypoxia both as mRNA (Figure 1A)

and protein (Figure 1B) in all three MSCs. The iron chelator

desferrioxamine (DFX) has been shown to mimic hypoxic state in

regulating several hypoxia-responsive genes [21]. Similarly,

decreased RUNX2 expression was also noted in cells treated with

DFX (Figure 1C, D). Further both hypoxia and DFX induced a

decrease in the expression of RUNX2 downstream target genes,

such as alkaline phosphatase (AP), bone sialoprotein (BSP), collagen type I

alpha 1 (COL1A1), osteopontin (OP) and osteocalcin (OC), (Figure S1).

Induction under hypoxia also had an inhibitory effect on the

functional mineralization of MSCs both at 14 and 21 days of

osteogenic differentiation (Figure 1E).

Hypoxia inhibits expression of type1 RUNX2 and its
downstream targets

Similar to induction by FGF2 [9], MSCs induced in OIM that

contains dexamethasone, increased in T1 RUNX2 and BMP2

expression as early as 12 h after induction, followed by a delayed

increase in the expression of T2 RUNX2 at 24 h (Figure 2A).

Interestingly, noggin, a BMP2 antagonist, blocked the increase in

T2 but not T1 RUNX2 expression (Figure 2B), suggesting that T1

RUNX2 upregulated T2 RUNX2 expression occurred through

BMP2. To explore the key molecule that hypoxia or DFX targeted

to regulate osteogenesis, we first found both the expression of T1

and T2 RUNX2 were downregulated at 3 days under hypoxia

(Figure 2C). When examining the early effect of hypoxia, which

could be achieved with DFX treatment, we found T1 RUNX2 and

BMP2 were downregulated as early as 12 h, while T2 RUNX2, OC

and OP were only downregulated at 24 h after treatment

(Figure 2D, E). Further, the presence of BMP2 inhibited the

DFX-mediated downregulation of T2 RUNX2, OC and OP but not

T1 RUNX2 (Figure 2F).

Hypoxia downregulates type1 RUNX2 through the HIF-
1a-TWIST pathway

To examine the molecular mechanism that hypoxia mediated to

inhibit osteogenesis, we first demonstrated both HIF-1a and

TWIST were upregulated under hypoxia and DFX treatment

(hypoxia mimic condition) in MSCs from three individuals

(Figure 3A, B). To assess the role of TWIST in regulating

differentiation into osteoblasts, MSCs were transfected with over-

expression construct, pFLAG-TWIST (control: pFLAG-CMV1), or

shRNA construct, pSuper-TWIST-si (control: pSuper-Scramble) in

OIM both without and with 100 mM DFX (Hyp) for 2 days.

Interestingly, overexpression of TWIST suppressed the expression

of T1, T2 RUNX2, total RUNX2 and OC under normoxia

(Figure 3C), while a small effect was noted under hypoxia (Figure

S2A). In contrast, knockdown of TWIST stimulated the expression

of these genes under hypoxia (Figure 3D), while a small effect was

noted under normoxia (Figure S2B). These results suggested the

HIF-1a-TWIST pathway regulates osteogenesis by MSCs.

TWIST suppresses type 1 RUNX2 promoter activity
To demonstrate whether RUNX2 was directly regulated by

TWIST during osteogenesis, analysis of the human RUNX2 P2 (for

T1 RUNX2) and P1 (for T2 RUNX2) promoter activity was

performed using luciferase reporter constructs in a MSC cell line.

We first revealed the upregulation of P2 (Figure 4A, B) but not P1

promoter activity (Figure S3A) upon induction in OIM, while the

P1 promoter activity, consistent with a previous report [22], was

stimulated by overexpression of b-catenin [23] (Figure S3A)

Interestingly, DFX treatment or overexpression of TWIST

abrogated the upregulation of P2 promoter in a dose dependent

manner (Figure 4B). Similarly, DFX treatment or hypoxia or

overexpression of TWIST in 293T cells also downregulated the

promoter activity of P2 in a dose-dependent manner (Figure 4C).

However, DFX treatment or overexpression of TWIST did not

inhibit b-catenin-induced increase in the P1 promoter activity

(Figure S3A). These data suggest TWIST directly inhibited P2

promoter activity in MSCs undergoing osteogenic differentiation.

TWIST directly binds to RUNX2 P2 promoter
TWIST is reported to bind to the E-box motifs to regulate

transcription [24]. To identify the minimum promoter region

required for inhibition by TWIST, a series of 59 P2 promoter

deletion constructs were generated. Deletions of the 21502 to

21232, but not other regions, significantly inhibited the

suppressive effect of TWIST on the promoter activity (Figure

S3B). These findings suggest the existence of a TWIST-responsive

sequence in the 21502 to 21232 promoter region. To further find

where TWIST binds to pGL3-RUNX2 P2 (WT) promoter, site-

directed mutagenesis of the putative E-box in the P2 promoter

prevented suppression under TWIST was examined. The pGL3-

RUNX2 P2 (E1M) (distal first E-box mutation) and pGL3-

RUNX2 P2 (E1E5M) (first and fifth E-boxes double mutations) of

the P2 promoters significantly inhibited the TWIST-mediated

suppression of the promoter activity in a same degree in 293T,

while pGL3-RUNX2 P2 (E5M) did not inhibit any change on

TWIST effect (Figure 4D), suggesting the E1-box in the P2

promoter was the binding site for TWIST. To determine the E1-

box binding domain in TWIST, a construct with truncated 316–

492 a.a basic helix-loop-helix (bHLH), pFLAG-tbTWIST, was

transfected to 293T, truncation of the bHLH domain abrogated

the inhibition of P2 promoter activity by TWIST (Figure 4E).

Electrophoretic mobility shift assays (EMSAs) using an oligo-

nucleotide containing the E1-box sequence from RUNX2 P2

promoter incubated with nuclear extracts of TWIST-overexpress-

ing 293T cells demonstrated the direct binding of TWIST to the

wild-type probe (TWIST E1-box sequences (TEB)) (Figure 4F,

lane 2, 8 and 14 v.s. no nuclear extract controls at Figure 4A, lane

1, 7 and 13). Competition by unlabelled wild type probe abolished

TWIST Inhibits RUNX2
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the binding activity (Figure 4F, lane 3–4, 9–12), but the mutated

probe did not show the same effect (Figure 4F, lane 5 and 6).

Addition of anti-TWIST antibodies, rather than isotype antibodies,

into TWIST-overexpressing nuclear extracts showed a supershifted

band in gel electrophoresis (Figure 4F, lane 15). To investigate

whether TWIST is directly associated with the RUNX2 P2 promoter

via binding to E1-box, we performed chromatin immunoprecipi-

tation (ChIP). PCR amplification (Figure 4G, left panel) and real-

time PCR (Figure 4G, right panel) showed that the fragments

containing the E1-box (180 bp) were immunoprecipitated with

TWIST antibody in a MSC cell line and 293T after transfection of

pFLAG-TWIST. However, an internal control of RUNX2

promoter (2943 to 2878) that does not contain the binding site

(Figure S4A) and the unrelated promoters of GAPDH (Figure S4B),

BCL-2 (Figure S4C) and NKG2A (Figure S4D) were not

immunoprecipitated with TWIST antibody. These data taken

together suggest TWIST downregulated P2 promoter activity by

direct binding through the bHLH domain to the E1-box in the P2

promoter.

Discussion

Oxygen (O2) is a substrate for energy production in the cell and

is a rapid regulator of cellular metabolism. Recent studies have

Figure 1. Hypoxia inhibits the expression of RUNX2 and the mineralization capacity of MSCs and zebrafish. MSCs form three
individuals (D1, D2, and D3) were induced in OIM under normoxia (Nor) or hypoxia (Hyp) (A, B) or treated with indicated concentration of DFX for 3
days (C, D) (n = 3). Cells were analyzed by quantitative RT-PCR (A, C) and Western blotting (B, D). Results are shown as the mean 6 SD values.
Significance was determined by Student’s t-test. (* p,0.05 and ** p,0.01 versus Nor or without DFX). E, MSCs without (CTR) or with induction in OIM
under normoxia or hypoxia for 14 or 21 days were stained by Alizarin Red S (ARS) and quantification of staining was performed by optic density (O.D.)
measurement at O.D.550 nm (n = 3).
doi:10.1371/journal.pone.0023965.g001
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also implicated O2 and its signal transduction pathways in

controlling cell proliferation, fate, and morphogenesis during the

development of many tissues [25], including the skeletal system

[26,27]. Hypoxia has recently been reported by us and others to

inhibit osteogenesis in MSCs and osteoblast [18,28,29], however

the detailed mechanism underlying the inhibition effects of

Figure 2. Expression of Type1 and Type2 RUNX2 in MSCs induced for osteogenic differentiation. Quantitative RT-PCR for mRNA levels of
indicated genes. A, MSCs were induced in OIM for indicated time period (n = 3). B, MSCs were induced in OIM without or with noggin treatment for
24 h (n = 3). C, MSCs were induced in OIM under normoxia (Nor) or hypoxia (Hyp) for 3day (n = 3). D, E, MSCs were induced in OIM or with indicated
concentration of DFX for indicated time period (n = 3). F, MSCs were induced in OIM in the presence of DFX without or with rhBMP2 for 24 h (n = 3).
Results are shown as the relative expression to GAPDH (mean 6 SD), and significance was determined by Student’s t-test. (* p,0.05 and ** p,0.01
versus black bar).
doi:10.1371/journal.pone.0023965.g002

TWIST Inhibits RUNX2
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hypoxia on osteogenesis is unknown. In the current study, we

discovered TWIST, a downstream target of HIF-1a, acts as a

transcription repressor of RUNX2 through binding to the E-box

located on the promoter of T1 RUNX2, leading to the suppression

of T1 RUNX2, followed by suppression of BMP2, T 2 RUNX2 and

downstream targets of RUNX2 in MSCs.

Previously, T2 RUNX2 was considered important for osteogen-

esis. Its expression is induced upon stimulation with BMP2 or

Figure 3. Hypoxia inhibits osteogenesis by MSCs through the HIF-1a-TWIST pathway. A, B, MSCs form three individuals (D1, D2, and D3)
were induced in OIM under normoxia (Nor) or hypoxia (Hyp) or treated with indicated concentration of DFX for 3 days. Cells were analyzed by
Western blotting. C, MSCs were transfected with control pFLAG-CMV1 or pFLAG-TWIST vector followed by induction in OIM without DFX treatment
(Nor) for 2 days (n = 3). D, MSCs were transfected with control pSuper-Scramble or pSuper-TWIST-si vector followed by induction in OIM in the
presence of 100 mM DFX (Hyp) for 2 days (n = 3). Cells were assayed by Western blotting and quantitative RT-PCR. Results are shown as the mean 6
SD values, and significance was determined by Student’s t-test. (* p,0.05 and ** p,0.01 versus control vector).
doi:10.1371/journal.pone.0023965.g003

TWIST Inhibits RUNX2
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Figure 4. TWIST inhibits Type 1 RUNX2 transcription via binding to its promoter. A, Genomic organization of the region flanking the
promoter region of human RUNX2 P2 (upper panel) and the schematic representation of the pGL3-RUNX2 P2 reporter construct. Transcription start
site, TSS. (B, C) Reporter assays showing, in a MSC cell line (B) or 293T (C), DFX, TWIST and exposure to hypoxia repress the RUNX2 P2 promoter
activity in a dose dependent manner (n = 3). b-galactosidase was used as a control of transfection efficiency. D, Mutational analysis of E1-box and E5-
box sites in the RUNX2 P2 promoter in 293T cells. Reporter constructs containing wild-type RUNX2 P2 (WT), E1-box (E1M) or E5-box (E5M) mutations,
or double mutations (E1E5M) were generated and used to analyze the importance of these sites in mediating repression by TWIST (n = 3). E,

TWIST Inhibits RUNX2
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activation of the canonical WNT and b-catenin/TCF1 pathways

[22]. However, the b-catenin-induced increase in P1 promoter

activity was not suppressed by DFX treatment or overexpression of

TWIST, suggesting hypoxia or TWIST did not inhibit P1 promoter

activity in MSCs undergoing osteogenic differentiation. Interest-

ingly, there are four E-boxes in the P1 promoter. Therefore it would

be interesting to clarify why TWIST did not inhibit the P1 promoter

activity. Although T1 RUNX2 is constantly expressed in various cells

including osteoblast, its expression is seldom, if ever, emphasized in

osteogenesis and bone formation [30]. The current data first

demonstrated the induction of T1 RUNX2 in MSCs undergoing

osteogenesis, and found a putative TWIST binding site, E1-box, in

the RUNX2 P2 promoter. To our knowledge, it has not been

demonstrated before that T1 RUNX2 is an important target for

controlling osteogenesis by hypoxia or HIF-1a-TWIST, an

important environment or signaling occurred during a lot of

pathophysiological conditions associated with normal development

and regeneration, or acquired and genetic diseases. Therefore,

signaling pathways or molecules that control the transcription of T1

RUNX2 may be modified to control MSC osteogenesis upon

application of these cells in treating bone diseases especially

associated with ischemia and hypoxic conditions.

The roles of HIF proteins and downstream signaling pathways

in skeletal development have recently been studied. The HIF-1

pathway has been identified as a key component in the coupling of

angiogenesis and osteogenesis during bone development and

regeneration [26,27]. Mice overexpressing Hif-1a in osteoblasts

through selective deletion of the von Hippel-Lindau gene (Vhl)

expressed high levels of Vegf and developed extremely dense,

heavily vascularized long bones. By contrast, mice lacking Hif-1a
in osteoblasts had the reverse skeletal phenotype of that of the Vhl

mutants both during skeletal development [27] and bone repairing

process [26]. Moreover, HIF-2a, independently of oxygen-

dependent hydroxylation, has recently been reported essential

for endochondral ossification of cultured chondrocytes and

embryonic skeletal growth, and important for development of

osteoarthritis in mice [31]. However, manipulation of HIF-1a
levels in osteoblasts in the calvarial bones did not influence the

formation of the flat bones of the skull [32]. In the current study,

we found HIF-1a activated TWIST, which in turn repressed

transcription of RUNX2 and inhibited osteogenic differentiation

in MSCs. Consistent with the in vitro study, exposure of zebrafish to

hypoxia or hypoxia-mimicking agent also induced the hif-twist

pathway and inhibited the in vivo bone formation [2nd paper].

Thus, the effects of HIF pathways on in vitro osteogenesis and in vivo

bone formation are context and situation-specific.

Bialek et al. demonstrated Twist inhibited DNA binding and

gene activation by Runx2 via the interaction with Runt domain

through a Twist box in the carboxy-terminus, while Runx2

expression was not affected in mice carrying Twist heterozygosity

[24]. The current data found overexpression and knockdown of

TWIST increased and decreased the expression of RUNX2 both

as mRNA and protein, respectively. The discrepancy between

these two studies may be due to the suppression of Twist

expression by Twist heterozygosity in mice is not sufficient to

downregulate Runx2. The negative role of TIWST in regulating

osteogenesis has also been implicated in phenotypic abnormalities

seen in human disorders with TWIST mutation, such as Saethre–

Chotzen syndrome [33,34], an autosomal dominant disorder with

characteristic abnormalities in craniosynostoses resulting from

premature closure of cranial sutures, short stature, and develop-

mental limb deformities (syndactyly and polydactyly). Future

exploration of the TWIST signaling pathways may help in

developing strategies to control osteogenesis and skeleton devel-

opment through RUNX2 suppressions. In conclusion, these data

suggest the important roles of TWIST in regulating RUNX2

expression and controlling MSC osteogenesis. Further exploration

of the molecules or signaling pathways that are involved in

TWIST regulation may provide new strategies for modifying these

cells in treating fracture healing and bone reconstruction.

Methods

Cell culture and oxygen deprivation
The Primary MSCs were gifted by Dr. D.P. Prockop, isolated as

previously described [35] and grown in CCM [MEM (Gibco) with

16.6% FBS, 100 U/ml penicillin, and 10 mg/ml streptomycin] at

37uC under 5% CO2 atmosphere. The medium was changed

twice a week and subcultured at 1:5 at subconfluence. For hypoxic

conditions, cells were cultured in a gas mixture composed of 94%

N2, 5% CO2, and 1% O2 or treated in medium containing 30 or

100 mM of DFX that mimics the hypoxic conditions by inhibiting

the hydroxylation of a prolyl residue that is essential for the

ubiquitination of HIF-1a.

Induction and histochemical studies
For osteogenic differentiation, cells were reseeded at 104 cells/

cm2 and induced in osteogenic induction medium [OIM: a MEM

supplemented with 16.6% FBS, 50 mg/ml ascorbate-2 phosphate

(Nacalai, Kyoto, Japan), 1028 M dexamethasone (Sigma) and

10 mM b-glycerophosphate (Sigma)] under normoxic and hypoxic

conditions or treated with DFX. After induction in OIM, cells

were fixed and stained with Alizarin Red S (Sigma) for 30 min to

show osteogenic differentiation. Following wash five times with

PBS, stained cultures were photographed and quantification of

calcium deposition was made by extracting Alizarin Red S staining

with 10% cetylpyridinium chloride and measuring the O.D. of the

extract at 550 nm using an ELISA reader (Sepctra MAX 250;

Molecular Devices, Sunnyvale, CA).

Plasmid constructions
The pFLAG-CMV1, pFLAG-TWIST, pSuper-scramble-si and

pSuper-TWIST-si plasmids were gifts from Muh-Hwa Yang

(University of National Yang-Ming University) [16]. The

Truncation of the bHLH (basic and helix loop helix) domain (tb TWIST) inhibits TWIST-mediated repression of RUNX2 P2 promoter activity. (n = 3).
Each ratio was normalized to the control (pGL3 basic vector), and significance was determined by Student’s t-test. (* p,0.05 and ** p,0.01 versus
control without DFX, TWIST or exposure to hypoxia). EMSA and ChIP assays demonstrate TWIST binds to the E-box motif in the RUNX2 P2 promoter
(21324 to 21144). F, Oligonucleotides for EMSA were the 28 bp probe from the RUNX2 P2 promoter, which contained a TWIST E1-box sequence
(TEB). Nuclear extracts prepared from 293T cells, transiently transfected with pFLAG-TWIST, were incubated with [a-32P]-CTP-labelled probe before
electrophoresis. No protein extracts: (lane 1, 7 and 13). Competition assays were performed in the presence of excess wild type (WT) (lane 3, 4, 9–12)
or mutation type (MT) (lane 5 and 6) of unlabelled oligonucleotides containing the TBE. The supershift assay was performed in the presence of an
isotype (lane 14) or anti-TWIST antibody (lane 15), and the position of supershifted bands is indicated (arrow). G, ChIP analysis of MSCs and 293T after
transfection of pFLAG-TWIST. The two chromatins were incubated either without antibodies, with an anti-TWIST antibody or with isotype IgG
antibody. The two samples with 180 bp fragment of the E1-box in the RUNX2 P2 promoter were amplified by PCR (left panel) and were also
quantified with quantitative RT-PCR (right panel). Input, 2% of total input lysate. Results are shown as the mean 6 SD values.
doi:10.1371/journal.pone.0023965.g004

TWIST Inhibits RUNX2
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pSG5HA b-catenin and pRC/CMV-LacZ plasmids were gifts from

Fung-Fang Wang (University of National Yang-Ming University)

[12,23]. The human RUNX2 P1 promoter (2767,+31) and P2

promoter (21502,+12) were constructed by PCR amplification of

the 293T DNA using the primer pairs:

pGL3-RUNX2 P1 F9: 59-GTGGTACCGAATAATTTCAG-

CATT-39 and pGL3-RUNX2 P1 R9: 59-TGAGCTCCCAGTA-

CAAGAGTTTT-39; pGL3-RUNX2 P2 F9: 59-GTGGTACCAG-

GAAGGCTTTATTGATT-39 and pGL3-RUNX2 P2 R9: 59-

GGAGCTCCCTACATAAAACAGGAAAC-39. Each fragment

of the pGL3-RUNX2 P1 (799 bp) or pGL3-RUNX2 P2 (1515 bp)

promoter was subcloned into the pGL3 vector (Promega). A series

of 59 promoter deletion constructs (21232,+12, 21032,+12,

2852,+12 and 2687,+12) were generated by PCR and cloned

into the KpnI-SacI sites of the pGL3 basic vector. The primer pairs

used included 21232 F9:59-GC GGTACC TATTGGGAA-

CATGGAATT-39; 21032 F9:59-GC GGTACC AGGAAGACA-

TGGAAATAA-39; 2852 F9:59-TT GGTACC TTAGCTGACT-

CAGGTTAAA-3; 2687 F9:59-GC GGTACC GACACAAGA-

CATAATAGAAC-3; +12 R9:59-G GAGCTC CCTACATA-

AAACAGGAAAC-39. Underlined nucleotides indicate restric-

ftion enzyme sites. The pGL3-RUNX2 P2 E1-box and E5-box

mutants were generated from pGL3-RUNX2 P2 (WT) using Gene

TailorTM Site-Directed Mutagenesis System (Invitrogen) with the

following primer pairs: E1WT:59-AGAAATCTACTGTAATAT-

GCCAATTGTATTGGGAAC-39 and 59-GCATATTACA GT-

AGATTTCT TAACAGTGTG-39-; E1M: 59-AGAAATCTAC-

TGTAATATGCACGCGATATTGGGAAC-39 and 59-GCAT-

ATTACA GTAGATTTCT TAACAGTGTG-39 E5WT:59-AG-

TATGTCATTCCAGGATGGCAGATGGGACACAAGA-39

and 59-CCATCCTGGA ATGACATACT TGACTGCTTA-39;

E5M:59-AGTATGTCATTCCAGGATGGACGGGTGGACAC-

AAGA-39 and 59-CCATCCTGGA ATGACATACT TGACT-

GCTTA-3. Double underlined nucleotides indicate wild-type and

mutated E-boxes. The PCR products, were subcloned into the

KpnI-SacI sites of the pGL3 basic vector to create pGL3-RUNX2

P2 (E1M), (E5M) and (E1E5M) constructs. The pFLAG-tbTWIST

plasmid was generated by inserting a 537 bp fragment, which

truncated the bHLH (342,518th) of pFLAG-TWIST (equal to

316,492th of human TWIST mRNA), into the EcoRI/BamHI sites

of the pFLAG-CMV1 vector.

RNA extraction and quantitative RT-PCR
Total RNA was prepared by using the Trizol reagent

(Invitrogen) according to the manufacturer’s specifications. First

strand cDNA was synthesized using Superscript III (Invitrogen),

Random primer (Invitrogen), 10 mM DTT (Invitrogen), and

RNaseOUT ribonuclease RNase inhibitor (Invitrogen). The

protocol of quantitative RT-PCR was performed using cDNA as

the template in a 20-ml reaction mixture containing FastStart

SYBR Green Master (Roche Applied Science) and a specific

primer pair of each cDNA according to the published sequences:

Human GAPDH F9: CTCTGCTCCTCCTGTTCGACA

Human GAPDH R9: ACGACCAAATCCGTTGACTC

Human ALK-P F9: CCCAAAGGCTTCTTCTTG

Human ALK-P R9: CTGGTAGTTGTTGTG AGCAT

Human BMP2 F9: TTCCACCATGAAGAATCTTTGGA

Human BMP2 R9: CCTGAAGCTCTGCTGAGGTGAT

Human BSP F9: AACCTACAACCCCACCACAA

Human BSP R9: AGGTTCCCCGTTCTCACTTT

Human COL1A1 F9: GACATGCTCAGCTTTGTGGA

Human COL1A1 R9: CTTTGTCCACGTGGTCCTCT

Human OC F9: GACTGTGACGAGTTGGCTGA

Human OC R9: CTGGAGAGGAGCAGAACTGG

Human OP F9: TTTTCTGGATCCTCCATTGC

Human OP R9: CAAAAGCCATATGCTGCTCA

Human T1 RUNX2 F9: GGCAGTCGGCCTCATCAAA

Human T1 RUNX2 R9: ACAAGTTAGCGAAGTGGCCG

Human T2 RUNX2 F9: GGTTAATCTCCGCAGGTCAC

Human T2 RUNX2 R9: GTCACTGTGCTGAAGAGGCT

Human RUNX2 F9: GGAGTGGACGAGGCAAGAGTTT

Human RUNX2 R9: AGCTTCTGTCTGTGCCTTCTGG

Analysis of the results were carried out using the software

supplied with the ABI Step One Real-Time PCR System machine

and each expression was calculated relative to the human GAPDH

(delta CT) and then relative to controls (delta delta CT) using the

fluorescence threshold of the amplification reaction and the

comparative CT method.

Protein extraction, western blot analysis
The cells were rinsed with PBS and lysed in 0.2 ml of protein

extraction reagent (M-PER, Pierce, Rockford, Illinois) plus

protease inhibitor cocktail (HaltTM, Pierce) for 5 min on ice.

Protein concentrations were determined using the BCA assay

(Pierce). After being heated for 5 min at 95uC in a sample buffer,

aliquots of the cell lysates were run on a 10% SDS polyacrylamide

gel. Proteins were transferred to PVDF membrane filters. The

filter was blocked for 1 h with TBS containing 5% nonfat dry milk

and 0.05% Tween 20 and then incubated overnight at 4uC with

the primary antibodies. The filter was washed 3 times for 10 min

each with TBS containing 0.05% Tween 20. Bound primary

antibodies were detected by incubating for 1 h with horseradish

peroxidaseconjugated goat anti-mouse or anti-rabbit IgG (BD

PharMingen, San Diego, CA). The filter was washed and

developed using a chemiluminescence assay (Perkin Elmer Life

Science, Inc., Boston, MA). Densitometric analysis was carried out

using Image Master 2D Elite software (Amersham Biosciences).

Anti human HIF-1a (H-206, sc-10790), TWIST (H-81, sc-15393),

RUNX2 (C-19, sc-8566) and ACTIN (I-19, sc-1616) antibodies

were purchased from Santa Cruz Biotechnology.

Transfections
Transfections were performed by electroporation using the

Nucleofector system (Amaxa Biosystems, Koln, Germany). In

brief, 46105 cells were resuspended in 80 ml Human MSC

Nucleofector solution (Amaxa Biosystems) at room temperature

followed by addition of 20 ml of Human MSC Nucleofector

solution containing 4 mg of DNA The transfection was carried

out under the program C-17 of the Nucleofector device, as

recommended by the manufacturer. The transfected cells were

then suspended in an appropriate volume of 20% FBS

supplemented DMEM-LG medium and seeded for further

culture. After 24 h of incubation, the medium was replaced by

OIM and cells were cultured for another 2 days without or with

DFX. The efficiency of transfection as evaluated by the

expression of EGFP in cells transfected with pMaxGFP vector

was more than 50%.

Transient transfection and luciferase assays
The reporter constructs were co-transfected into human

embryonic kidney cancer cells, 293T (ATCC-CRL-11268,

Manassas, VA) or immortalized MSC line with different

expression vectors and internal control plasmids using Lipofeta-

mine 2000 reagent (Invitrogen) under normoxic, hypoxic or

hypoxia-mimicking conditions. At 48 h post transfection, enzyme

activity was measured using the Dual-Luciferase Reporter Assay

(Promega).
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Electrophoretic mobility shift assay (EMSA)
Nuclear extracts were obtained from 293T cells transfected with

pFLAG-TWIST. The specific activity of the [a-32p]-labeled

probes used in the assays was adjusted to 104 CPM/1.25 pmole

DNA. The probe was incubated at 25uC for 30 min with 5 mg of

nuclear extract in a buffer consisting of 10 mM Tris-HCl, pH 7.5,

50 mM KCl, 5 mM dithiothreitol, 10% glycerol, 1 mg poly dI/

dC), bromophenol blue/50% glycerol in a total volume of 20 ml.

Samples were loaded on 5% polyacrylamide gels and run at 150 V

for 2 h in 16TBE buffer. The gels were dried and exposed to x-

ray film. All unlabeled competitor oligonucleotides were added

before incubation with labeled oligonucleotides. For supershift

assay, anti-human TWIST polyclonal antibody (1 mg) (Abcam,

ab50581) was added at 4uC for 1 day before the addition of

labeled oligonucleotides. Densitometric analysis of the DNA-

protein complexes was performed on the captured images using

the typhoon 8600 and ImageMaster VDS software (Amersham

Biosciences).

Chromatin immunoprecipitation assay (ChIP)
To demonstrate the binding of TWIST protein to the E1-box of

RUNX2 P2 promoter, the ChIP assay was performed with a

commercial kit (Upstate Biotechnology; Lake Placid, NY; www.

upstatebiotech.com) using the manufacturer’s protocol with minor

adjustments. The MSCs and 293T transfected with pFLAG-

TWIST were grown to confluence, and formaldehyde was added

directly to the culture medium at a final concentration of 1%

followed by incubation for 20 min at 37uC.The cells were washed at

4uC in PBS, lysed on ice for 10 min in lysis buffer [10 mM Tris

HCl, pH 8.0, 1% SDS] containing phosphatase and protease

inhibitors. The lysates were sonicated three times for 30 sec under

optimized conditions to produce average DNA fragments of 1 kb

(Branson Sonifier 450), and the debris was removed by centrifuga-

tion. The supernatant was split into several aliquots. One aliquot of

the soluble chromatin was saved at 220uC for preparation of input

DNA, and the remainder was diluted 10 times in immunoprecip-

itation (IP) buffer [10 mM Tris HCl, pH 8.0, 0.1% SDS, 1% Triton

X-100, 1 mM EDTA, and 150 mM NaCl] containing phosphatase

and protease inhibitors, and incubated overnight (4uC) with

polyclonal antibody to human TWIST (H-81, sc-15393) (Santa

Cruz Biotechnology). DNA–protein complexes were isolated on

salmon sperm DNA linked to protein A agarose beads and eluted

with 1% SDS, and 0.1 M NaHCO3. Cross-linking was reversed by

incubation at 65uC for 5 h. Proteins were removed with proteinase

K, and DNA was extracted with phenol/chloroform, redissolved

and PCR-amplified with E1-box of T1 RUNX2 promoter primers

F9: 59- CATAGTGAAGGCGTGTTGC -39 and R9:59- GC-

TACTCCCTCCTTTGTCAAG-39; which gave a product length

of 180 bp. The primers for the internal control of T1 RUNX2

(2943 to 2878) promoter are F9: 59- GGGCAGGATCTTGG-

CAATG -39 and R9: 59-GCTGGTGCAGATCCTTCACTG-39

(product: 66 bp). The primers for the unrelated promoters of

GAPDH are F9: 59-TTGAACCAGGCGGCTGCGGA-39 and

R9:59-GGAGGCTGCG GGCTCAATTT-39 (product: 188 bp);

the primers for the unrelated promoters of BCL-2 are F9: 59-

TTGTAGTGTGTATGCCCTG-3and R, 59-CGGAACACTT-

GATTCTGGTG-39(product: 162 bp); and the primers for the

unrelated promoters of NKG2A are F9: 59- ACCAACTAAGTGA-

CACACTTTC-39and R: 59- AGGAAATTCTACACATGGGC-

39 (product: 151 bp). The cycling parameters were 35 cycles, with

each cycle consisting of denaturing at 94uC for 30 sec, annealing at

60uC for 30 sec, and elongating at 72uC for 30 sec, with additional

10 min incubation at 72uC after completion of the last cycle. The

TWIST binding site was detected in E1-box of the T1RUNX2. All

resulting precipitated DNA samples were also quantified with

quantitative RT-PCR. Data were expressed as the percentage of

input DNA.

Supporting Information

Figure S1 Hypoxia inhibits the expression of RUNX2
downstream genes in MSCs induced for osteogenic
differentiation. MSCs were induced in OIM under normoxia

(Nor) or hypoxia (Hyp) (A–E) or treated with DFX (F–H) at

indicated concentration for 3 days. Cells were analyzed by

quantitative RT-PCR for downstream genes of RUNX2, such as

alkaline phosphatase (ALK-P), bone sialoprotein (BSP), collagen type I alpha

1 (COL1A1), osteopontin (OP), and osteocalcin (OC) (n = 3). Results are

shown as the relative expression to GAPDH (mean 6 SD), and

significance was determined by Student’s t-test. (* p,0.05 and

** p,0.01 versus Nor or without DFX).

(TIF)

Figure S2 TWIST inhibits RUNX2 expression in MSCs
undergoing osteoblast differentiation. A, MSCs were

transfected with control pFLAG-CMV1 or pFLAG-TWIST vector

followed by induction in OIM in the presence of 100 mM DFX

(Hyp) for 2 days (n = 3). B, MSCs were transfected with control

pSuper-Scramble or pSuper-TWIST-si vector followed by induction

in OIM without DFX treatment (Nor) for 2 days (n = 3). Cells were

assayed by Western blotting and quantitative RT-PCR. Results are

shown as the mean 6 SD values, and significance was determined by

Student’s t-test. (* p,0.05 and ** p,0.01 versus control vector).

(TIF)

Figure S3 Treatment with DFX and overexpression
with TWIST induce no changes in Type 2 RUNX2
transcription. A. Genomic organization of the region flanking

the promoter region of human RUNX2 P1 (upper panel) and the

schematic representation of the pGL3-RUNX2 P1 reporter

construct. Transcription start site, TSS. Reporter assays showing,

in a MSC cell line, b-catenin but not osteogenic differentiation

enhances the RUNX2 P1 promoter activity. Treatment with DFX

and overexpression with TWIST do not repress the RUNX2 P1

promoter activity (n = 3). b-galactosidase was used as a control of

transfection efficiency. B. Deletion analysis of various regions in

the RUNX2 P2 promoter. Reporter constructs containing wild-

type RUNX2 P2 (21502), with deletion of 21502,21232

(21232), 21232,21032 (21032). 21032,2852 (2852) or

2852,2687 (2687) were generated and used to analyze the

importance of these regions in mediating the repression of

RUNX2 P2 promoter activity by TWIST in 293T cells (n = 3).

(TIF)

Figure S4 Unrelated fragments were used as internal
control in ChIP analysis. ChIP analysis of MSCs after

transfection with pFLAG-TWIST. The chromatin was incubated

with anti-TWIST antibody. The internal control of T1RUNX2

promoter (2943 to 2878) that does not contain the binding site

(Figure S4A) and three unrelated promoters, GAPDH (Figure

S4B), BCL-2 (Figure S4C) and NKG2A (Figure S4D) were

amplified by PCR (upper panel) and quantified with quantitative

RT-PCR (lower panel). Input, 2% of total input lysate. Results are

shown as the mean 6 SD values.

(TIF)
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