ON THE＂FAIR＂GAMES PROBLEM FOR THE WEIGHTED GENERALIZED PETERSBURG GAMES
Author（s）：KUANG－HSIEN LIN，林光賢，TEN－GING CHEN，陳天進，LING－HUEY YANG and 楊玲惠
Source：Chinese Journal of Mathematics，Vol．21，No． 1 （MARCH 1993），pp．21－31
Published by：Mathematical Society of the Republic of China
Stable URL：https：／／www．jstor．org／stable／43836494
Accessed：26－11－2020 03：09 UTC

JSTOR is a not－for－profit service that helps scholars，researchers，and students discover，use，and build upon a wide range of content in a trusted digital archive．We use information technology and tools to increase productivity and facilitate new forms of scholarship．For more information about JSTOR，please contact support＠jstor．org．

Your use of the JSTOR archive indicates your acceptance of the Terms \＆Conditions of Use，available at https：／／about．jstor．org／terms

Mathematical Society of the Republic of China is collaborating with JSTOR to digitize， preserve and extend access to Chinese Journal of Mathematics

ON THE＂FAIR＂GAMES PROBLEM FOR THE WEIGHTED GENERALIZED PETERSBURG GAMES

KUANG－HSIEN LIN（ 林光賢 ），TEN－GING CHEN（陳天進 ） AND LING－HUEY YANG（ 楊玲惠 ）

ABSTRACT．Let $S_{n}=\sum_{j=1}^{n} a_{j} Y_{j}, n \geq 1$ ，where $\left\{Y_{n}, n \geq 1\right\}$ are i．i．d．r．v．＇s and $\left\{a_{n}, n \geq 1\right\}$ are real numbers．Interpreting $a_{n} Y_{n}$ as a player＇s winnings from the n－th game，a natural question is whether there is an entrance fee m_{n} to the n－th game such that $S_{n} / M_{n} \rightarrow 1$ in pr．，where $M_{n}=\sum_{j=1}^{n} m_{j}$ ．Suppose that $\left\{Y_{n}\right\}$ represent the winnings from a sequence of generalized Petersburg games， that is，$\left\{Y_{n}, n \geq 1\right\}$ are i．i．d．random variables with $P\left\{Y_{1}=q^{-k}\right\}=p q^{k-1}$ ， $0<p=1-q<1, k \geq 1$ ．It is shown that when $a_{n}>0, \forall n=1,2,3, \cdots$ and $\lim _{n \rightarrow \infty}\left[\left(\sum_{j=1}^{n} a_{j}\right) /\left(\max _{1 \leq j \leq n} a_{j}\right)\right]=\infty$ ，then there exist $\left\{M_{n}, n \geq 1\right\}$ such that $S_{n} / M_{n} \rightarrow 1$ in pr．．

1．INTRODUCTION

Consider a sequence of games and a sequence of independent random variables $\left\{X_{n}, n \geq 1\right\}$ where for each $n \geq 1, X_{n}$ represents a player＇s winnings from par－ ticipating in game n ．Suppose that the player pays the（nonrandom）entrance fee

Revised January 5， 1993.
AMS 1980 Subject Classifications：Primary 60F05，60F15．
Key words：Weighted sums，i．i．d．random variables，almost surely convergence，convegence in probability，accumulated entrance fees，fair solution，generalized Petersburg games，weighted gen－ eralized Petersburg games．
m_{n} for the opportunity to play the n-th game, $n \geq 1$. For the first n games, $S_{n}=\sum_{j=1}^{n} X_{j}$ represents the total winnings and $M_{n}=\sum_{j=1}^{n} m_{j}$ represents the total or accumulated entrance fees, $n \geq 1$. The sequence of entrance fees $\left\{m_{n}, n \geq 1\right\}$ is said to be "a fair solution in the weak (resp., strong) sense to the games" if $S_{n} / M_{n} \rightarrow 1$ in pr. (resp. $S_{n} / M_{n} \rightarrow 1$ almost surely (a.s.)).

In the current work, attention will primarily be focused on the weighted i.i.d. case consisting of X_{n} 's of the form $a_{n} Y_{n}$ where $\left\{a_{n}, n \geq 1\right\}$ are real numbers and $\left\{Y_{n}, n \geq 1\right\}$ are i.i.d. random variables. Adler and Rosalsky [1, Theorem 3] provided a generalization of the Chow-Robbins Theorem [2] to the weighted i.i.d. case. They showed for i.i.d. random variables $\left\{Y_{n}, n \geq 1\right\}$ with

$$
\begin{equation*}
E\left|Y_{1}\right|=\infty, \quad n\left|a_{n}\right| \uparrow \quad \text { and } \quad \sum_{j=1}^{n} a_{j}=O\left(n\left|a_{n}\right|\right) \tag{*}
\end{equation*}
$$

then for each sequence of real numbers $\left\{M_{n}, n \geq 1\right\}$ either

$$
\liminf _{n \rightarrow \infty}\left|\frac{S_{n}}{M_{n}}\right|=0 \quad \text { a.s. } \quad \text { or } \quad \limsup _{n \rightarrow \infty}\left|\frac{S_{n}}{M_{n}}\right|=\infty \quad \text { a.s. }
$$

and, consequently, $P\left\{\lim _{n \rightarrow \infty} \frac{S_{n}}{M_{n}}=1\right\}=0$.
The classical Petersburg game may be described as follows: A fair coin is repeatedly tossed. If "heads" occur for the first time on the k-th toss, the player wins 2^{k} dollars. Thus, the player wins X dollars where $P\left\{X=2^{k}\right\}=2^{-k}, k \geq 1$. In [1], Adler and Rosalsky consider the case where the underlying coin need not be fair, that is, suppose "heads" occur with probability p where $0<p<1$. Let α be a fixed constant. For the n-th game, if "heads" occur for the first time on the k-th toss, the player wins $n^{\alpha} q^{-k}$ dollars where $q=1-p$. In other words, the winnings X_{n} from the n-th game are of the form $X_{n}=n^{\alpha} Y_{n}$, where $\left\{Y_{n}, n \geq 1\right\}$ are i.i.d. random variables with

$$
\begin{equation*}
P\left\{Y_{1}=q^{-k}\right\}=p q^{k-1}, \quad k \geq 1 \tag{1}
\end{equation*}
$$

In this paper, we consider the weighted generalized Petersburg games. While no fair solution exists in the strong sense when the hypotheses of $(*)$ are satisfied, we
try to find a fair solution in the weak sense. That is, for a sequence of real numbers $\left\{a_{n}, n \geq 1\right\}$ and i.i.d. random variables $\left\{Y_{n}, n \geq 1\right\}$ with $P\left\{Y_{1}=q^{-k}\right\}=p q^{k-1}$, $k \geq 1,0<p=1-q<1$, find conditions on $\left\{a_{n}, n \geq 1\right\}$ which ensure the existence of constants $\left\{M_{n}, n \geq 1\right\}$ for which

$$
\frac{\sum_{j=1}^{n} a_{j} Y_{j}}{M_{n}} \longrightarrow 1 \quad \text { in pr. }
$$

obtains. Under such conditions, $\left\{M_{n}, n \geq 1\right\}$ can be found explicitly (Adler and Rosalsky proved in the special case where $a_{n}=n^{\alpha}, n \geq 1, \alpha>-1$).

2. RESULTS

Let Y be distributed as in (1). We introduce some properties given by Adler and Rosalsky [1].

Lemma 1. ([1]): Let Y be a random variable with $P\left\{Y=q^{-k}\right\}=p q^{k-1}$, $k \geq 1,0<q=1-p<1$.
(i) For all $a>0, P\{Y>a\}<(q a)^{-1}$.
(ii) For all $a \geq 1, P\{Y>a\} \geq a^{-1}$.
(iii) For all $a \geq q^{-1}, E Y^{2} I(Y<a)=q^{-k-1}-q^{-1}<q^{-1} a$, where k is the largest integer such that $q^{-k} \leq a$.
(iv) For all $a \geq q^{-1}, E Y I(Y \leq a)=k p q^{-1}$, where k is the largest integer such that $q^{-k} \leq a$.

For a given sequence of positive weights $\left\{a_{n}, n \geq 1\right\}$, define, for each $x>0$, $u_{n}(x)$ as the expectation of the weighted random variable $a_{n} Y_{n}$ which is truncated at x, that is, $u_{n}(x)=E\left[a_{n} Y_{n} I\left(a_{n} Y_{n} \leq x\right)\right]$. In the following theorems, let

$$
A_{n}=\left\{x: \sum_{j=1}^{n} u_{j}(x) \geq x\right\}
$$

and

$$
M_{n}=\sup \left\{x: \sum_{j=1}^{n} u_{j}(x) \geq x\right\} .
$$

Theorem 1. Let $\left\{Y_{n}, n \geq 1\right\}$ be i.i.d. random variables. with $P\left\{Y_{1}=q^{-k}\right\}=$ $p q^{k-1}, k \geq 1,0<p=1-q<1$. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} a_{j}}{\max _{1 \leq j \leq n} a_{j}}=\infty \quad \text { and } \quad a_{n}>0, \quad \forall n=1,2,3, \cdots, \tag{2}
\end{equation*}
$$

then
(i) there exists an integer N_{0}, such that $A_{n} \neq \phi, \forall n \geq N_{0}$.
(ii) $A_{n} \subset A_{m}, \forall m \geq n \geq N_{0}$.
(iii) M_{n} is finite for each fixed $n \geq N_{0}$, and $M_{n} \uparrow \infty$.
(Throughout, the symbol \log denoted the logarithm to the base q^{-1}.)
Proof. (i) For all $x \geq q^{-1}$, Lemma 1(iv) ensures that

$$
p q^{-1}(\log x-1)<E Y_{1} I\left(Y_{1} \leq x\right) \leq p q^{-1} \log x .
$$

Therefore, for each $j=1,2,3, \cdots, n$,

$$
a_{j} p q^{-1}\left(\log a_{j}^{-1} x-1\right)<u_{j}(x)=E a_{j} Y_{j} I\left(a_{j} Y_{j} \leq x\right) \leq a_{j} p q^{-1} \log a_{j}^{-1} x,
$$

and hence,

$$
\begin{align*}
\sum_{j=1}^{n}\left[a_{j} p q^{-1}\left(\log a_{j}^{-1} x-1\right)\right]-x & <\sum_{j=1}^{n} u_{j}(x)-x \\
& \leq \sum_{j=1}^{n}\left[a_{j} p q^{-1} \log a_{j}^{-1} x\right]-x . \tag{3}
\end{align*}
$$

Let

$$
h_{n}(x)=\sum_{j=1}^{n}\left[a_{j} p q^{-1}\left(\log a_{j}^{-1} x-1\right)\right]-x,
$$

and

$$
g_{n}(x)=\sum_{j=1}^{n}\left[a_{j} p q^{-1} \log a_{j}^{-1} x\right]-x .
$$

Then we can rewrite (3) as

$$
\begin{equation*}
h_{n}(x)<\sum_{j=1}^{n} u_{j}(x)-x \leq g_{n}(x) . \tag{3}
\end{equation*}
$$

Also, we note that $h_{n}(x)$ has a maximun value at $x_{0}^{(n)}=p q^{-1} \sum_{j=1}^{n} a_{j} \log e$, and $h_{n}\left(x_{0}^{(n)}\right)=p q^{-1}\left[\sum_{j=1}^{n} a_{j} \log \left(\frac{\sum_{j=1}^{n} a_{j}}{a_{j}} \frac{p \log e}{e}\right)\right]$.

Now, condition (2) implies that, for a given fixed $0<p<1$, there exists an integer N_{0} such that

$$
\frac{\sum_{j=1}^{n} a_{j}}{\max _{1 \leq j \leq n} a_{j}} \geq \frac{e}{p \log e}, \quad \forall n \geq N_{0}
$$

Hence for each $n \geq N_{0}$

$$
h_{n}\left(x_{0}^{(n)}\right)=p q^{-1}\left[\sum_{j=1}^{n} a_{j} \log \left(\frac{\sum_{j=1}^{n} a_{j}}{a_{j}} \frac{p \log e}{e}\right)\right] \geq 0 .
$$

Therefore, by (3) , we get

$$
A_{n}=\left\{x: \sum_{j=1}^{n} u_{j}(x) \geq x\right\} \neq \phi, \quad \forall n \geq N_{0}
$$

(ii) Since $u_{j}(x) \geq 0, \forall j$, we have $\sum_{j=1}^{m} u_{j}(x) \geq \sum_{j=1}^{n} u_{j}(x) \geq x, \forall m \geq n \geq N_{0}$.

Therefore, $A_{n} \subset A_{m}, \forall m \geq n \geq N_{0}$.
(iii) For fixed $n \geq N_{0}$,

$$
g_{n}(x)=\sum_{j=1}^{n}\left[a_{j} p q^{-1} \log a_{j}^{-1} x\right]-x \rightarrow-\infty, \quad \text { as } \quad x \rightarrow \infty
$$

Thus, by (3) ${ }^{\prime}$,

$$
M_{n}=\sup \left\{x: \sum_{j=1}^{n} u_{j}(x) \geq x\right\} \text { is bounded away from infinity }
$$

To prove $M_{n} \uparrow \infty$ as $n \rightarrow \infty$, note that (by (ii))

$$
A_{n} \subset A_{m}, \quad \forall m \geq n \geq N_{0}
$$

and thus

$$
M_{n} \leq M_{m}, \quad \forall m \geq n \geq N_{0}
$$

Finally, under the definition of M_{n} and $x_{0}^{(n)}$, we have

$$
M_{n}=\sup A_{n} \geq x_{0}^{(n)}=p q^{-1}\left(\sum_{j=1}^{n} a_{j}\right) \log e
$$

and this ensures that $M_{n} \rightarrow \infty$, as $n \rightarrow \infty$; since

$$
\frac{\sum_{j=1}^{n} a_{j}}{\max _{1 \leq j \leq n} a_{j}} \rightarrow \infty \quad \text { if and only if } \quad \sum_{j=1}^{n} a_{j} \rightarrow \infty \quad \text { and } \quad \frac{a_{n}}{\sum_{j=1}^{n} a_{j}} \rightarrow 0
$$

for positive numbers $\left\{a_{n}\right\}$.
Theorem 2. Let $\left\{Y_{n}, n \geq 1\right\}$ be i.i.d. random variables with $P\left\{Y_{1}=q^{-k}\right\}=$ $p q^{k-1}, k \geq 1,0<p=1-q<1$. For a sequence $\left\{a_{n}, n \geq 1\right\}$ of positive real numbers, if $\lim _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} a_{j}}{\max _{1 \leq j \leq n} a_{j}}=\infty$, then
(i) $\frac{M_{n}}{\max _{1 \leq j \leq n} a_{j}} \rightarrow \infty$, as $n \rightarrow \infty$.
(ii) $\frac{\sum_{j=1}^{n} u_{j}\left(M_{n}\right)}{M_{n}} \rightarrow 1$, as $n \rightarrow \infty$.
(iii) $\sum_{j=1}^{n} a_{j}=o\left(M_{n}\right)$.

Proof. (i) We recall that

$$
M_{n}=\sup A_{n} \geq x_{0}^{(n)}=p q^{-1}\left(\sum_{j=1}^{n} a_{j}\right) \log e,
$$

that is, $\quad \frac{M_{n}}{\max _{1 \leq j \leq n} a_{j}} \geq \frac{p q^{-1}\left(\sum_{j=1}^{n} a_{j}\right) \log e}{\max _{1 \leq j \leq n} a_{j}}$.
Now, letting $n \rightarrow \infty$ and using $\lim _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} a_{j}}{\max _{1 \leq j \leq n} a_{j}}=\infty$
we conclude that (i) is true.
(ii) Since

$$
M_{n}=\sup \left\{x: \sum_{j=1}^{n} u_{j}(x) \geq x\right\}
$$

then either

$$
\begin{equation*}
\frac{\sum_{j=1}^{n} u_{j}\left(M_{n}\right)}{M_{n}}=1 \quad \text { or } \quad \frac{\sum_{j=1}^{n} u_{j}\left(M_{n}\right)}{M_{n}}>1 \geq \frac{\sum_{j=1}^{n} u_{j}\left(M_{n}^{+}\right)}{M_{n}} \tag{4}
\end{equation*}
$$

In the latter case, it follows

$$
\begin{align*}
0 & \leq\left|\frac{\sum_{j=1}^{n} u_{j}\left(M_{n}\right)}{M_{n}}-\frac{\sum_{j=1}^{n} u_{j}\left(M_{n}^{+}\right)}{M_{n}}\right| \leq \sum_{j=1}^{n} P\left\{Y_{n} \geq a_{j}^{-1} M_{n}\right\} \tag{5}\\
& \leq \sum_{j=1}^{n}\left(q a_{j}^{-1} M_{n}\right)^{-1}=q^{-1} \frac{\sum_{j=1}^{n} a_{j}}{M_{n}} .
\end{align*}
$$

Now, by (i) and the fact that $E Y_{n}=\infty, \forall n$, we have

$$
\begin{aligned}
0 & \leq \frac{\frac{1}{M_{n}} \sum_{j=1}^{n} a_{j}}{\frac{1}{M_{n}} \sum_{j=1}^{n} u_{j}\left(M_{n}\right)}=\frac{\sum_{j=1}^{n} a_{j}}{\sum_{j=1}^{n} a_{j} u^{*}\left(a_{j}^{-1} M_{n}\right)} \\
& \leq \frac{1}{u^{*}\left(M_{n} / \max _{1 \leq j \leq n} a_{j}\right)} \rightarrow 0
\end{aligned}
$$

where

$$
u^{*}(x)=E Y_{1} I\left(Y_{1} \leq x\right)
$$

Therefore, we get $\lim _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} u_{j}\left(M_{n}\right)}{M_{n}}=1$.
(iii) As in the proof of (ii), we have

$$
0 \leq \frac{\sum_{j=1}^{n} a_{j}}{\sum_{j=1}^{n} u_{j}\left(M_{n}\right)} \leq \frac{1}{u^{*}\left(M_{n} / \max _{1 \leq j \leq n} a_{j}\right)} \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty
$$

Note that

$$
\frac{\sum_{j=1}^{n} a_{j}}{M_{n}}=\frac{\sum_{j=1}^{n} a_{j}}{\sum_{j=1}^{n} u_{j}\left(M_{n}\right)} \frac{\sum_{j=1}^{n} u_{j}\left(M_{n}\right)}{M_{n}} .
$$

It follows from (ii) that

$$
\sum_{j=1}^{n} a_{j}=o\left(M_{n}\right)
$$

One preliminary lemma 2 will be established before stating the main results.
Lemma 2. Let $\left\{X_{n}, n \geq 1\right\}$ be independent random variables and $\left\{b_{n}, n \geq 1\right\}$ be real numbers with $0<b_{n} \uparrow \infty$. Then

$$
\begin{equation*}
\frac{1}{b_{n}}\left[\sum_{j=1}^{n} X_{j}-\sum_{j=1}^{n} E X_{j} I\left(\left|X_{j}\right| \leq b_{n}\right)\right] \longrightarrow 0 \quad \text { in pr. } \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=1}^{n} P\left\{\left|X_{j}\right|>b_{n}\right\}=o(1) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\text { (ii) } \quad \frac{1}{b_{n}^{2}} \sum_{j=1}^{n} E X_{j}^{2} I\left(\left|X_{j}\right| \leq b_{n}\right)=o(1) \tag{8}
\end{equation*}
$$

Proof. To prove (6), set

$$
X_{j}^{\prime}=X_{j} I\left(\left|X_{j}\right| \leq b_{n}\right), \quad Z_{j}^{\prime}=X_{j}^{\prime}-E X_{j}^{\prime}
$$

Then (ii) entails

$$
\frac{1}{b_{n}} \sum_{j=1}^{n} Z_{j} \longrightarrow 0 \quad \text { in pr. }
$$

since $\forall \varepsilon>0$,

$$
\begin{aligned}
P\left\{\left|\frac{1}{b_{n}} \sum_{j=1}^{n} Z_{j}\right|>\varepsilon\right\} & \leq \frac{\sum_{j=1}^{n} E\left(X_{j}^{\prime}\right)^{2}}{\left(\varepsilon b_{n}\right)^{2}} \\
& =\frac{\sum_{j=1}^{n} E X_{j}^{2} I\left(\left|X_{j}\right| \leq b_{n}\right)}{\left(\varepsilon b_{n}\right)^{2}} \longrightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. That is,

$$
\begin{equation*}
\frac{1}{b_{n}}\left[\sum_{j=1}^{n} X_{j}^{\prime}-\sum_{j=1}^{n} E X_{j} I\left(\left|X_{j}\right| \leq b_{n}\right)\right] \longrightarrow 0 \quad \text { in pr.. } \tag{9}
\end{equation*}
$$

Next we will show that

$$
\sum_{j=1}^{n} X_{j}-\sum_{j=1}^{n} X_{j}^{\prime} \longrightarrow 0 \quad \text { in pr. }
$$

It follows from the first condition that

$$
P\left\{\sum_{j=1}^{n} X_{j} \neq \sum_{j=1}^{n} X_{j}^{\prime}\right\} \leq \sum_{j=1}^{n} P\left\{X_{j} \neq X_{j}^{\prime}\right\}=\sum_{j=1}^{n} P\left\{\left|X_{j}\right|>b_{n}\right\}=o(1) .
$$

Therefore, for all $\varepsilon>0$,

$$
P\left\{\left|\sum_{j=1}^{n} X_{j}-\sum_{j=1}^{n} X_{j}^{\prime}\right|>\varepsilon\right\} \leq P\left\{\sum_{j=1}^{n} X_{j} \neq \sum_{j=1}^{n} X_{j}^{\prime}\right\} \longrightarrow 0, \quad \text { as } \quad n \longrightarrow \infty
$$

Hence

$$
\begin{equation*}
\frac{1}{b_{n}}\left[\sum_{j=1}^{n} X_{j}-\sum_{j=1}^{n} X_{j}^{\prime}\right] \longrightarrow 0 \quad \text { in pr. } \tag{10}
\end{equation*}
$$

Combining (9) with (10), we conclude that

$$
\frac{1}{b_{n}}\left[\sum_{j=1}^{n} X_{j}-\sum_{j=1}^{n} E X_{j} I\left(\left|X_{j}\right| \leq b_{n}\right)\right] \longrightarrow 0 \quad \text { in pr. }
$$

Under the condition (2), it will be shown that (6) is true if $\left\{X_{n}\right\}$ and $\left\{b_{n}\right\}$ are replaced by $\left\{a_{n} Y_{n}\right\}$ and $\left\{M_{n}\right\}$, respectively. And with this, the main result can be established.

Theorem 3. Let $\left\{Y_{n}, n \geq 1\right\}$ be i.i.d. random variables with $P\left\{Y_{1}=q^{-k}\right\}=$ $p q^{k-1}, k \geq 1,0<p=1-q<1$, and let $\left\{a_{n}, n \geq 1\right\}$ be a sequence of positive real numbers.

$$
\text { If } \lim _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} a_{j}}{\max _{1 \leq j \leq n} a_{j}}=\infty \quad \text { then } \quad \frac{1}{M_{n}} \sum_{j=1}^{n} a_{j} Y_{j} \longrightarrow 1 \text { in pr. . }
$$

Proof. By Lemma 1 (i) and (iii), we have

$$
\begin{gathered}
\sum_{j=1}^{n} P\left\{a_{j} Y_{j}>M_{n}\right\} \leq \sum_{j=1}^{n}\left(q a_{j}^{-1} M_{n}^{-1}\right)=\frac{\sum_{j=1}^{n} a_{j}}{q M_{n}}, \\
\frac{1}{M_{n}^{2}} \sum_{j=1}^{n} E\left(a_{j} Y_{j}\right)^{2} I\left(a_{j} Y_{j} \leq M_{n}\right) \leq \frac{\sum_{j=1}^{n} a_{j}}{q M_{n}}
\end{gathered}
$$

Now conditions (7) and (8) follow directly from Theorem 2 (iii), whence via Lemma 2

$$
\begin{equation*}
\frac{1}{M_{n}}\left[\sum_{j=1}^{n} a_{j} Y_{j}-\sum_{j=1}^{n} E a_{j} Y_{j} I\left(a_{j} Y_{j} \leq M_{n}\right)\right] \longrightarrow 0 \quad \text { in pr. } \tag{11}
\end{equation*}
$$

Finally, combining (11) with Theorem 2 (ii), we have

$$
\frac{1}{M_{n}} \sum_{j=1}^{n} a_{j} Y_{j} \longrightarrow 1 \quad \text { in pr. }
$$

REFERENCES

1. A. Adler and Rosalsky, On the Chow-Robbins "fair" games problem, Bull. Inst. Math. Acad. Sinica., 17 (1989), 211-227.
2. Y. S. Chow and H. Robbins, On sums of independent random variables with infinite moments and "fair" games, Proc. Nat. Acad. Sci. U.S.A., 47 (1961), 330-335.
3. Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Matingale, Springer-Verlag, New York, 1988.
4. W. Feller, Note on the law of large numbers and "fair" games, Ann. Math. Statist. 16 (1945), 301-304.
5. W. Feller, A limit theorem for random variables with infinite moments, Amer. J. Math., 68 (1946), 257-262.
6. W. Feller, An Intruduction to Probability Theory and Its Applications, Vol I, 3rd ed., John Wiley, New York, 1968.
7. W. Feller, An Intruduction to Probability Theory and Its Applications, Vol II, 2nd ed., John Wiley, New York, 1971.
8. B. Jamison, S. Orey and W. Pruitt, Convergence of weighted averages of independent random variabes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 4 (1965), 40-44.
9. R. A. Maller, Relative stability and the strong law of large numbers, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 43 (1978), 141-148.
10. B. A. Rogozin, Relatively stable walks, Theor. Probability Appl., 21 (1976), 375379.

Department of mathematical Sciences
National Chengchi University
Taipei, Taiwan, R.O.C.

Department of mathematical Sciences
National Chengchi University
Taipei, Taiwan, R.O.C.

Ta Tung JR. College of Commerce
Chiayi, Taiwan, R.O.C

