
Tame Transformation Signatures With
Topsy-Turvy Hashes

Jiun-Ming Chen
�

Bo-Yin Yang
�

Bor-Yuan Peng
��

Purdue University, W. Lafayette, Indiana, USA. <jmchen@math.purdue.edu>�
Tamkang University, Tamsui, Taiwan. <by@moscito.org>�

National Taiwan University, Taipei, Taiwan. <r0921022@ee.ntu.edu.tw>

Abstract

We introduce the new
���
	���
��

-based digital signature
scheme TTS (Tame Transformation Signatures). TTS is
a consequence of the public-key cryptosystem TTM (Tame
Transformation Method) and shares many of its superior
properties, resulting in low signature delays, fast verifica-
tion and high complexity. The commercial applications of
TTS is protected under the patent of TTM. TTS can either
be blended with currently fashionable hash functions (such
as MD5 and SHA-1) or its own related hash function TTH
(Topsy-Turvy Hash). We describe the principles and imple-
mentation of TTS and TTH, and analyze their properties –
both in absolute and comparatively to alternative schemes.

keywords: finite field, tame automorphism, digital sig-
nature, TTM, TTS, TTH

1. Introduction

Secure authorization and authentication of information
have been important and imminent problems in this age of
the Internet. Identity fraud and sometimes outright theft
runs rampant and many solutions have been proposed to
rein in these beasts. Most involve some form of digital sig-
natures and hash functions, hence faster and more secure
hashes and digital signature schemes will be of great ser-
vice in many ways.

In the course of this article, we will use the princi-
ples behind TTM (Tame Transformation Method, [14]) to
derive a new digital signature scheme TTS (Tame Transfor-
mation Signatures). We also introduce a new related hash
function TTH (Topsy-Turvy Hash). TTM, TTS, and TTH
all work on a finite field and have very similar designs. Due
to their common ancestry, they share many properties in-
cluding high complexity (security), ease of implementation
and good execution speed. The following is a summary of
the remaining sections:

Sec. 2. A brief recap of how Tame Automorphisms are
used to construct the current TTM cryptosystem and
the basic properties of TTM.

Sec. 3. Describing the basic ideas behind TTS (Tame
Transformation Signatures).

Secs. 4.–5. Two practical TTS implementations.

Secs. 6.–9. Qualitatitve and relative analysis of TTS.

Sec. 10. A new hash function TTH and its features.

2. Tame Automorphisms to TTM

A Tame Automorphism ����� 	����������� �!	��"���#� is usu-
ally given as a set of relations (where each $&% is a polyno-
mial, and the subscripts can be permuted):' �)(*+�-,' �.(*/�10 $ � 	 *2� � ,' �.(*/�10 $ � 	 *2�435*/� � ,

...
...

...' % (* % 0 $6% 	 * � 35* � 3�767�7835* %:9 � � ,
...

...
...' � (* � 0 $ � 	 *2�435*/�;3�767�7635* � 9 � � 7

Tame Automorphisms had been first researched in alge-
braic geometry, but its use was first proposed by T. Moh for
public-key cryptography infrastructure ([14]). They pos-
sess the desirable property that

1. A preimage � (� 9 � 	:�<� can be computed very
quickly by solving for each component serially, but:

2. an explicit polynomial form for � 9 � will be very hard
to write out in full, being of very high degree with
many, many terms:*2�=(' �&,*��>(' �@? $ � 	 *2� � ,* � (' � ? $ � 	 * � 3A* � � ,(' � ? $ � 	 ' � 3 ' � ? $ � 	 ' � �5� ,*CBD(' BE? $ B 	 * � 3A* � 3A* � �(' BE? $ B 	 ' � 3 ' � ? $ � 	 ' � � 3' �@? $ � 	 ' �&3 ' �
? $ � 	 ' � �F�5� ,

...
...

...* � (' � ? $ � 	 *+�-3A*/�43�76767�3A* � 9 � � ,(' � ? $ � 	 ' �-3 ' �
? $ � 	 ' � � 7�767 ' � 9 �1? $ � 9 � 	5G6G6GH�F� 7
When TTM was first proposed it had an LTL (linear-

tame-linear) form, with
� (���
	I�;
�� , � (KJ �<LNM�L J � 	 � �

(where L denotes composition, i.e. substitution). J � and J �
are affine (linear) and M is tame and homogeneous quadrat-
ics for each $�% , and an expansion rate of O during encryp-
tion. This is susceptible to attacks by P. Montgomery and
A. Sathaye (both unpublished) due to the fact that the first
coordinate in the tame portion is fixed (as is practically

the second coordinate, since $ � is essentially constricted
to * �� * �).

To ameliorate this flaw, current implementations of
TTM ([14]) use an LTTL (linear-tame-tame-linear) form1� (� B L � � L � � L � � 	 � � . The components � � and � B are
affine (linear), but � � is from

� �
to
��P

with QSRUT . It
is really a Tame Automorphism in

� P
applied after the

canonical embedding
� � �V��P

(i.e. pad * �;W �&3�76767�35* P
with zero’s). Again all displacements $ % are homogeneous
and quadratic. The major deviation concerns � � �
� ���

, which is a specially constructed Tame Automorphism�XPE�Y��P
with this form (where O�R[Z\R]T):' �)(*2�!0_^+� 	 */�;3F*��;36767�763F* P � ,' �.(*��`0_^/� 	 */�;3F* B 36767�763F* P � ,

... (...'�a (* a 0b^ a 	 * a W �;3�76767635* P � ,' a W � (* a W � ,

... (...' P (* P ,
such that the degrees of the polynomials ^Cc ’s are suit-
ably large2 but the composition � �dL � � � � � � � P
are quadratic in each component of the image. Thus,� (� B L � �@L � �EL � � looks like a generic quadratic withT degree-2 equations of Q variables each, and is given in
the composite form as the public key. To get this desirable
form, we need T to be substantially larger than Q . Trade-
offs must be made between encryption time (e 	 Q+T � , or
proportional to the square of encryption block-size and the
expansion rate) and safety. E.g. a current implementations
of TTM uses Q (�4f and T (Kgih , multiples of 4 being eas-
ier on the programmer (on current computer architectures).

The private key is the collection of all information
built into each of the � % modified in such a way to maxi-
mize decryption speed.

Improved as above, TTM is secure and speedy to the
point where it can be used on its own and not in conjunction
with a symmetric cipher. In more traditional PKI, a pub-
lic key cryptosystem is only used to exchange the session
key, and such is the case for the well-known SSH (Secure
Shell) and PGP (Pretty Good Privacy) protocols. In its cur-
rent form, TTM remains a “strong cryptosystem” under all
known attacks (see Sec. 9. and [15]-[18] for more details).

In retrospect, one might marvel at some of the similar-
ities in the design of AES(Rijndael) and TTM/TTS. Both
work on

���
	��;
��
and include both linear and non-linear

operations. The linear operations have a diffusive effect,
quickly mixing all components and masking underlying al-
gebraic relations; but the non-linear operations are neces-
sary to disrupt the structure of linear mappings (otherwise
the result of a mapping will be determined by the result
on a basis of the space). AES uses the action of taking
a multiplicative inverse as the non-linear operation and in
TTM/TTS we use quadratic polynomial substitutions.

1In principle, the TTM encryption map can be jAkml5l�lnk<j with one
or more k ; more k ’s can be added as security dictates; in practice this is
seldom necessary.

2 o&p�q#r �ts o&p�q�r �uswv , the other r6x ’s are a handful of cubics.

Further information on TTM can be found at
http://www.usdsi.com. We do want to stress that
computations pertaining to Tame Automorphisms (as well
as other tame-like mappings) can be greatly accelerated
using SIMD (Single Instruction Multiple Data) operations,
available (say) via Motorola’s AltiVec technology. See [13]
for one such implementation for TTM.

3. Basic Idea behind TTS

To sign a message digitally, one takes its digest (hash) value
according to some agreed hash function (in the well-known
PGP protocol, this is SHA-1), then run that hash value
through a signature function (for PGP, this is RSA-1024
or -2048). The result is the digital signature. During au-
thentication, the recipient substitutes the signature into a
“verification trap-door function” and compares the result
with the message digest (using the same hash function). If
they are the same, the message is presumed “clean”.

Message Hash
Function

Signature
Function Signaturedigest

(a) Signing a message (with private key)

Message

Signature

Hash
Function

Verification
Function

Compare

value
check

digest

(b) Verifying a signature (with public key)

Figure 1. Digital Signature and Authentication

T. Moh’s seminal paper [14] sketched how to derive
digital signature schemes using the same principles behind
TTM (i.e. Tame Automorphisms) known to yield strong
cryptosystems with good properties, but our article is the
first time that the details have been fleshed out and Tame
Transformation proposed as the centerpiece of digital sig-
nature infrastructure without any mathematical cloud.

In a public-key cryptosystem one releases an injec-
tive function (the encryption map) whose trap-door inverse
(the decryption map) is hard to find. In a digital signa-
ture scheme, the verification map released is an inverse to a
hard-to-find injective trap-door (the signing map). Just fine
for a symmetric cryptosystem like RSA, but the LTTL-form
TTM encryption mapping is no longer a bijection (not sur-
jective!) and cannot be used directly for digital signatures.

In TTS, we follow the theory in [14] and switch back
to a LTL format for the mapping. The general idea is as
follows: the message or hash value is padded out in a cer-
tain way before a tame transformation is applied. Again
before and after the tame transformation there is an affine
mapping portion.

Padding is a necessary evil because a simple LTL
scheme will be relatively unsafe. If we pad zeros after

each message, we obtain the scheme TTS-0; if we pad
random numbers in front of each message, we get TTS-
r. Via padding we maintain the kernel as (the identity plus)
a homogeneous quadratic with the same nice properties as
Tame Automorphisms.

4. TTS-0

TTS-0 is a basic implementation of digital signatures using
Tame Automorphisms. The signature length is the (digest)
hash length plus 4 bytes.

4.1 Signing a Message

In a basic version of TTS-0, the 24-byte signature � (� 9 �� L � 9 �� L � 9 �� 	:�N� comes from a 20-byte digest value
from the following component maps:

� � � � � B �Y� � B 3 � ��zy � � 0"{#|#,� � � � � B �Y� �F} 3 � �� Tame-like Map of (�);� � � � �F} �Y� �F} 3 � ��zy � � 0"{�~A7
The Tame-like Transform portion � � is given by:' } (* } 0�� } *CB�* �F} 0]� } */�8* ��� 0�� } *
 * ��� 0"� } * ��} * ��� 3' � (* � 0�� � *���* �F} 0]� � */�8* ��� 0�� � *���* ��� 0"� � * �F� * ��� 3' � (* � 0�� � * } * � 0]� � * �F} * ��� 0�� � * �5� * �F� 0�� � * � B�* ��� 3' �.(*/�10��i�6*2�8*��10]���6*����8*����`0��8�6*2�5�6*/�5}`0��i�8*2� � *����-3' B (* B 0�� B *C}�*��10]� B *2��*/�`0�� B *+� � *��F}`0�� B *2�
 */�F��3' � (* � 0�� � *C}�*��10]� � *2��* B 0�� � *+� � *�����0�� � *2� � */�F��3' � (* � 0�� � *C}�* B 0]� � *2��* � 0�� � */�8*/�`0�� � *��F}�*/�F��3' � (* � 0�� � *C}�* � 0]� � *2��* � 0�� � */�8* B 0�� � *�����*/�F��3'
 (*
 0��
 C}� � 0]�
 2�� � 0��
 /�8 � 0��
 ��� B 3' �.(*/�10��i�6* } *��10]���6* � *
 0��8�8* � */�`0����6* � *��43' ��} (* ��} 0"� ��} * � *��`0�� ��} * � *
 0�� ��} *CB�*��10�� ��} *��6*���3' ��� (* �F� 0"� ��� * � * ��} 0]� ��� *CB�*��`0"� ��� */�6*
 0�� ��� */�8*/�;3

...
...

...'�� (* � 0"� � * � 9
 * � 9 �!0]� � * � 9 � * � 9 �0K� � * � 9 � * � 9 �
0"� � * � 9 � * � 9 B 3
...

...
...' � �.(* � �`0"� � �8* ��� * �
 0�� � �6* �5� * � �0K� � ��* �5� * � �`0�� � �6* � B�* � ��7

It is readily visible from the above formulas that� If * �5} (�* ��� (�* ��� (�* �F� (f then this is a Tame
Automorphism; and� the first ten equations are pretty much constructed ad
hoc post hoc to provide for distinct quadratic square-
free terms for all equations; but� the second half of these equations are formed in a reg-
ular manner; and� can use any number of equations above 10.

Example: For a 16-byte message digest (as in
MD5) and 20-byte signature, the number of equa-
tions in the regular pattern is decreased by 4 and	 * � �;3A* � ��3�* �
 3A* � � � replaces

	 * �F} 3�* ��� 3A* �F� 3�* ��� � .
Each of the coefficients � % 3C� % 3A� % 3C� % can be chosen

freely as long as it is non-zero. The linear mappings can
also be chosen arbitrarily except that we pick (compute) {#�
of the affine (linear) mappings so that the resulting mapping� � L � � L � � has no constant part. Essentially, the freely
chosen coefficients are stored in a form for fast execution
of the signing code as the private key.

We can now compute � 9 �� (i.e. solve for �) with the
conditions * �F} (�* ��� (�* ��� (�* ��� (f . Clearly, given
any digest

�
, we can compute the signature � quickly under

these constraints.

4.2 Verifying a Message

Given a message
y

and its digital signature � , we hash its
digest value

� (�� 	�y�� and check to see if
� (� � L � � L� � 	 � � . If yes, the message is presumed genuine else it is

rejected as likely fake. The composite � ���� mapping is a
generic quadratic set of polynomials without any constant
terms. ' % (���<� % � 0"� �% � 3��u(f 367�767 O�� 7
The upper triangular matrices � % and vectors � % (suitably
modified for speed) are stored as the public key. (See Ta-
ble 1 for the sizes of keys).

5. TTS-r

This implementation utilizes 8 random elements from
� (���
	��;
��

and the signature will be 8 bytes longer than the
hash value. 64 bits from a sufficiently random bitstream
is needed; without dedicated hardware, the best source is
Operating System level entropy collection based on I/O
latency, as in the pseudodevice files /dev/random or
/dev/urandom in various free Unices.

TTS-r is slightly unusual in that the same message
may not result in the same signature. In practice this is not
a problem.

5.1 Signing a Message

Without loss of generality, take
�

to represent a 24-byte
(192 bits) hash value. We obtain the signature � (� 9 �� L� 9 �� L � 9 �� 	n�<� , an 32-byte string, with the following com-
ponent maps:

� � � � �F� �z� ��� 3 � ��zy � � 0�{ | ,� � � � �F� �z� � B 3 � �� Tame-Transform of
	 � � ,� � � � � B �z� � B 3 � ��zy � � 0�{ ~ 7

The Tame Transform portion � � is given by:' } (* } (Uniform Random Variable in
� ,

...
...

...' � (* � (Uniform Random Variable in
� ,

'
 (*
 0"�
 �}6 � 0]�
 +�� � 0"�
 ��6 � 0��
 /�6 B ,' � (* � 0"� � *+��*
 0]� � */�8* � 0"� � *��6* � 0�� � * B * � ,
...

...
...' � (* � 0�� � * � 9
 * � 9 � 0�� � * � 9 �6* � 9 �0�� � * � 9 ��* � 9 � 0�� � * � 9 �6* � 9 B#3

...
...

...' ��� (* ��� 0�� ��� * ��� * �5} 0]� ��� * � B�* � �0�� ��� * � ��* �
 0�� ��� * � ��* � �;,
where

� ('
 3 ' �;36767�763 ' ��� � �¡� � B (note subscripts), and� (* } 3F* � 36767�763F* ��� �¢� � 9 �� 	n�<�[£¤� �F� will be con-
structed during the signing process by solving the above
equations. The signing portion or private key is given by
the information in each part of the composite � 9 �� L � 9 �� L� 9 �� , and during the process each step is evaluated sepa-
rately. As we will be shown below (see Sec. 8.), it’s pos-
sible to take certain shortcuts in the signing process.

5.2 Verifying a Message

Verifying in TTS-r is nearly identical as in TTS-0. The ver-
ification mapping or public key is given by the composite
of � �¥L � �¥L � � . This also evaluates to a generic set of
quadratic relations' % (���<��%+� 0"� �% � 3��u(�hA367�7675¦ O 7
The matrices �§% and the vectors � % therein are then
recorded as the public key. We should mention again that
normally there would be a constant term for each ' % except
that we adjust {�� above to zero out them all. Key sizes
(mildly larger than when using TTS-0 with the same hash
function) can be found in Table 1.

TTS-0 TTS-r
equations 16 20 24 16 20 24
variables 20 24 28 24 28 32

message (bits) 128 160 192 128 160 192
signature (bits) 160 192 224 192 224 256

linear terms 20 24 28 24 28 32
quad. terms 210 300 406 300 406 528
terms per eq. 230 324 434 324 434 560

public key #par 3680 6480 10416 5184 8680 13440

linear-1 #coeff 420 600 812 600 812 1056
TAME #coeff 64 80 96 64 80 96
linear-3 #coeff 272 420 600 272 420 600

private key #par 756 1100 1508 936 1312 1752

Table 1. Basic key lengths for TTS-0 and TTS-r

6. Flexibility

Both TTS variants can be easily adapted to any size of hash
value. For example, in TTS-r, a hash of O�¨ f bits or twenty
bytes (using a

� �
©�ª� �5}
Tame Automorphism) would

be chosen for compatibility with SHA-1, with a
�;� g -bit

(28 bytes) signature; a similar construction for MD5 with

a 128-bit hash value would generate a O�� � -bit signature
in TTS-r (and O�¨ f bits in TTS-0). If necessary, “trampo-
lines” (data created to be programs) corresponding to other
hash sizes can be created on the fly in response to the user’s
needs.

TTS can be adapted for higher level of security by
adding more square-free quadratic terms. This will not af-
fect the speed of verification, just increase the size of the
private key and slightly slow the signing speed.

7. A Comparative Study

TTS (and TTH) like current implementations of TTM work
with the affine spaces over the finite field

���
	���
��
. We ven-

ture our humble opinion that small working sizes associ-
ated with finite fields can be easier implemented effectively
than alternatives with very large working sizes, such as the
astronomically big groups used by RSA, ECC, ElGamal
and their relatives. AES (see [1] and [7]), favorite sym-
metric cryptosystem du jour based on the Rijndael block
cipher, is also based on computations over the very same
finite field

���
	��;
��
.
���@	I�4
��

is a natural choice for being
convenient computationwise and allowing compatible sub-
fields of

���
	I� B �
and
���@	�� � �

(thus making for easier prac-
tical implementation with reasonably-sized keys).

7.1 Comparison to traditional PKI

Most extant PKI (Public Key Infrastructure) are based on
RSA. RSA signatures are much larger (usu. 1024 or 2048
bits, much larger than in finite-field-based schemes). Sign-
ing a message under RSA is also significantly slower than
under TTS, as is generating a key pair. All in all, there are
distinctive advantages to use TTS rather than RSA. The su-
periority is more pronounced against (say) the even slower
DSA/DSS (based on discrete logarithms). The length of
keys is a common bugbear of multivariate quadratic
cryptography. In Sec. 8. we see how this problem can
be mostly alleviated in practice.

7.2 Brief Comparison against other multi-
variate Schemes

TTS belongs to the multivariate quadratic finite-field-based
family of signature schemes as do two of the five NESSIE
([19]) digital signature scheme candidates, QUARTZ ([4])
and SFLASH ([5]). In any scheme of this type, to verify a
message means substitutions into a set of quadratic polyno-
mials much like encrypting a message in any such Public
Key Cryptosystem, and hence they all use comparable time
and resources. Indeed both QUARTZ and SFLASH performs
similarly here.

However, signing a message is really like decrypting
a message under an analogous cryptosystem, and here we
see substantial performance differences (Table 2). TTS is
structured so that signing is also substitutions, hence it is
easy to code and quick to run. SFLASH (based on «m¬ 9t9)
is more troublesome in this aspect. The signing procedure
for QUARTZ, equivalent to the decrypting process of HFE
from which it is derived, is based on solving equations in

a largish finite field, and as such is hard to code for and
snail-paced in comparison. One can see from Table 2 that
TTS shines against (at least) these rival schemes for digital
signatures.

QUARTZ SFLASH TTS-0 TTS-r
Signature (bits) 128 259 192 224
Public key (kB) 71 15.4 6.4 8.6
Private key (kB) 3 2.4 1.1 1.3

Generate keys (sec) ­�® ­¢¯ ­[¯�°�± � ­K¯�°;± �
Signing speed (sec) ­¢¯�° ²-³ ´¶µ·¯�° ± � ­¢¯�° ±#¸ ­K¯�° ±#¸

Verifying speed (sec) ­[¯�°;± � ¹ µ·¯�°;±#¸ ­¢¯�°;± � ­K¯�°;± �
Table 2. Comparison of signature schemes (execution
times on a Pentium III/500, non-optimized).

As mentioned in Sec. 2., the underlying algebraic
structure is why TTS signs and generates keys faster than
SFLASH or QUARTZ. Certainly the use of

���@	�� � �
in

SFLASH (instead of
���@	I�
 �

) precludes exploiting the ex-
istence of intermediate field extensions. Embarassingly,
QUARTZ can fail to sign a message (very low probability),
and the culprit is again the underlying structure.

It is often said, also, that variable terms in the central
non-affine map as TTM/TTS have (as opposed to SFLASH,
with a simple fixed central portion) is a plus. SFLASH can
thus be subjected to the kind of attack tailored by Stein-
wandt et al ([23]-[25]).

8. Key Size Reduction

As can be seen from Sec. 7., TTS keys (while still shorter
than SFLASH keys) are longer than RSA keys. This is not
significant for modern general-purpose hardware, but can
definitely be a problem for embedded applications. Since
an embedded cryptosystem application, such as a smart
card, principally restricts the size of private keys, we will
show how to make keys (mostly private keys) significantly
smaller by restricting the mappings involved. The fol-
lowing applies just fine to TTM and most multivariate
quadratic finite-field-based schemes. While complexity
of cracking TTS would also decrease, but analysis (Sec. 9.)
shows that it is still a “strong cryptosystem” and beyond
the reach of crackers in the foreseeable future.

8.1 Public Keys

We fix a 4-bit subfield
��º (GF

	�� B �
that is compatible

(has a compatible multiplication table) with our
���
	I��
��

,
and use elements from

�¡º
for all the quadratic terms in the

Tame Transformation and all matrix elements in the affine
mappings. This effectively halves the public key size and
can nearly double the execution speed with suitable pro-
gramming exercises.

8.2 Private Keys

While public TTS keys are just coefficients for quadratic
polynomials, a private TTS key is the sum of its three parts,
and there are more tricks available:

1. Using a compatible
�¡º (GF

	I� B �
cuts the corre-

sponding private key size.

2. Using 1-bit entries for the linear-part square matrices.
For TTS-r with 20-byte hashes and 28-byte signature,
we would instead of

� h � 0 �;f � bytes in the private
keys have 1/8 times that many bytes for a total of O gih .
This trick lets the programmer avoid costly table
lookups and use a variety of SIMD techniques to do
several operations in parallel. In some cases it is not
even required that the CPU has SIMD instructions!

3. Using the composition of a diagonal matrix J , a com-
plement » ?]¼ of a permutation matrix (exactly one
entry out of every row and column being

f
with

the others being O) and another diagonal matrix ½
for the matrices in the linear parts. In other words,y �§(SJ`� 	 » ?�¼u� � ½ � , and

y ��(¾J!� 	 » ?�¼<� � ½ � for
the matrices of the linear portions. Noting that with
characteristic-2 fields, » ?§¼ is unitary for permutation
matrices of even order,

y 9 �� (½ 9 �� 	 » ?¢¼ � � � J 9 ��
and
y 9 �� (½ 9 �� 	 » ?U¼ � � � J 9 �� . Using 20-byte

hashes with TTS-r (i.e. 28-byte signatures), we would
have instead of

� h � 0 �4f � (O�O h;g bytes a very much
rather smaller

	�� h¿0 � h�0 � h � 0 	I�4f 0 �;f 0 �4fi� (O g;g
bytes in private keys. It also cuts the running time
from À 	 Z � � to À 	 Z � , where Z is the number of bytes
in the signature.

A test implementation of TTS-0 (
�4f�� � g) used

tricks 1 and 3: 4-bit parameters are used for � � , for a total
40 bytes (instead of 80). Both � � and � � are written in ay (�J 	 » ?Á¼ � ½ form; both ¼¿� and ¼N� are specified with
packed 5-bit entries for each row, cutting 44 bytes down to
five eighth that many (28 bytes). J@� , J!� , ½ � and ½ � (4-
bit entries again!) are 44 bytes more. Constants {�� and {;�
are 1 byte per entry (44 bytes). The private key weighs
in at 156 bytes3, shorter than RSA-2048 (and not much
longer than RSA-1024).

9. Brief Cryptanalysis

Solving quadratic systems is an NP-complete problem ([8],
[12]), so no attack can do more damage than brute force
unless there is an inherent flaw in TTS. Given the kinship
between TTM and TTS, most attacks against TTM may be
surmised to apply to TTS, but there are signatures-specific
attacks, too.

9.1 Recap of TTM attacks

Some notable attempts against TTM are as follows:

1. Jacques Patarin in [20] and later [21] gave and used
algorithms for solving IP (Isomorphism of Polyno-
mials) Problem: given sets of two quadratic rela-
tions (mappings � ����ÂÃ��D�Ä��� � with ' c"(Å c 	 * � 367�76783F* Â � 3�ÆK(O G�G6G Q .) ¼ and Ç , find affine
(linear) mappings J
� and J!� such that Ç (SJ
� L ¼ L

3 È � can be omitted, going down to 132 bytes, if computing power is
not a problem!

J1� . (Reduction to) IP is ineffective against TTM be-
cause (see [17]) Patarin’s algorithm requires explicit
knowledge of ¼ and Ç , but all current production-
quality Tame Automorphism based methods include
many user-determined terms in the kernel mappings.

2. A. Kipnis and A. Shamir invented the relinearization
improvement to the usual linearization approach solv-
ing sets of high-order equations, based on the simple
fact that 	 ��� �6	 �8� � (�#� �8	 ��� � (�i� �8	 ��� � 3
in any field. It does relieve to some extent the problem
of too many extraneous solutions and is used against
HFE in [11]. However as is shown in [15] such an
attack does not decrease the amount of computations
needed for solving many implementations of TTM to
a manageable level.

3. In [6] we see that experiments have been performed
by N. Courtois., A. Klimov, A. Shamir, and J. Patarin
with new methods “XL” and “FXL” against so-called
“overdefined cryptosystems”. Since this means more
equations than independent variables and include no
current systems other than Tame Automorphism based
systems, one might be justified in concluding that
someone had (some version of) TTM in his sights.
However, it is illustrated in [16] that such attempts are
futile according to the theory established by Hilbert
and Serre, because for XL to have any efficacy the so-
lution set at É must be either empty or

f
-dimensional.

4. In [4] L. Goubin and N. Courtois asserted that the
MinRank attack is effective against TTM. Unfortu-
nately the paper was so full of inaccuracies as pointed
out in [18], that it is hard to see how the attack can be
mathematically sound.

In each polynomial of the kernel Tame Transfor-
mation for any TTS scheme is four distinct square-free
quadratic terms, none of which ever being replicated in an-
other polynomial. Any linear combinations will not result
in elimination of any terms. 4 square-free terms are con-
sidered plenty by current authorities; should there be new
attacks that can exploit the smallness of number of terms in
each polynomial, a few new terms can be appended without
substantial penalty.

We conclude that an analog of an attack on TTM (see
[14] for details) on TTS will not do much better than a brute
force search and all reasonable implementations of TTS has
an effective complexity well above

��
 }
.

9.2 Signature-specific attacks

One type of attack depend specifically on the central non-
affine mapping having a simple, fixed form, as in the afore-
mentioned IP and the attack on SFLASH by Steinwandt et
al ([23]-[25]). These kind of attacks are not applicable to
TTS. Another case in which an effective attack was tailored
to solve “underdefined” systems ([10]) is the the number of
variables Q�Ê¢Ë 	 Ë 0 O � (Ë is the number of equations) for
fields of characteristic 2. In [3], the authors generalize this

to three new attacks. We evaluate each proposed attack on
TTS-0 (

�;fÌ� � g), a currently testing variant with $ (��
 ,Q (� g and Ë (�4f .
A The complexity is À 	 $ Â 9 � �1ÍS� � BFB where the constantÎ

is ÏÌÐÒÑ 	 Ë_Ó � 3+Ô8Õ Q<Ó � ?[Ö Q<Ó ��×+� 3 equal to
�

in this

instance.

B The complexity is
�ØG $ Â 9 � . Here

ÎÚÙÛ�Ü � Ë 0 � ? O 7ÞÝ&ßU(àg and $ Â 9 � (� ���
 . � (ÏÚá-â 	 « �;3 « � � where « � is the time needed to solve
a system of 4 equations (36 multiplications) and « � is
given as À 	 Î 	 Ë ? Î � � �!Í�� ��} , making for a complex-
ity of
� �5�

.

C Not applicable to TTS since it requires Q¡Ê � Ë .

We conclude that TTS appears to be reasonably safe,
even in its most basic form.

10. A Fast, Flexible New Hash Function: In-
troducing TTH

[22] gave these excellent criteria for hash functions:

The purpose of a hash function is to produce a
”fingerprint” of a file, message, or other block of
data. To be useful for message authentication, a
hash function � must have the following proper-
ties:

1. � can be applied to a block of data of any
size.

2. � produces a fixed-length output.

3. � 	 * � is relatively easy to compute for any
given * , making both hardware and soft-
ware implementations practical.

4. (One-way property) For any given codeã
, it is computationally infeasible to find *

such that � 	 * � (ã .
5. (Weak collision resistance) For any given

block * , it is computationally infeasible to
find '_ä(K* such that � 	 ' � (K� 	 * � .

6. (Strong collision resistance) It is compu-
tationally infeasible to find a pair of blocks* ä(' such that � 	 * � (�� 	 ' � .

The most common hash functions include the 128-
bit MD5 and the 160-bit SHA-1 (the default in PGP) and
RIPEMD. Due to a birthday attack possibly reducing the
complexity of building a plaintext with any given MD5
hash to

� �5B
, most authorities recommend at least 160-bit

as a minimum safeguard.
One common message authentication algorithm

(MAC) is based on a CBC (cipher block chaining) mode
DES encryption operation: The data to be authenticated
is padded appropriately and divided into 64-bit blockså �&3 å �;367�76783 å � . Using the DES algorithm E with secret

key K, the DAC (data authentication code) is computed as
follows: ã �)(æ � 	 å � � 3ã � (æ � 	 å � xor

ã � � 3ã � (æ � 	 å � xor
ã � � 3

...
...ã � (æ � 	 å � xor

ã � 9 � � 7
With the DAC being

ã � or some leftmost portion thereof.
The construction of our hash, which we will call TTH
(Topsy-Turvy Hash), is quite similar:

1. Padding: one “0” bit and a number of “1” bits are ap-
pended to the message block so that the length is con-
gruent to h Î ? ¨ g 	 ÏÌç�è h Î � , where

Î
is the number

of bytes in a hash value, usually
�4f

or
� g . Then ap-

pend the length (modulo
� �FB

) of the message as a long
integer in little-endian format. Note that like MD5 et
al, we always pad – even when the length is alreadyh Î ? ¨ g 	 ÏÌç�è h Î � (i.e. pad another h Î -bits in that
case).

2. Divide the resulting string into h Î -bit blockså � 3�767�763 å � , then recursively construct the following:ã �)(M2é 	 å � xor « � 3ã �.(M2é 	 å � xor
ã � xor « � 3ã �.(M2é 	 å � xor
ã � xor « � 3

...
...ã � (M2é 	 å � xor

ã � 9 � xor « � ,
where « is a random

Î
-byte vector and M�é is a set

of generic quadratic polynomials with its coefficients
picked from the binary expansion of ê (essentially a
truly random bitstream). The hash value is

ã � . There
will be no structure, decomposition, or easy inversion
and it is an NP-complete problem to solve such equa-
tions ([8], [12]).

Obviously, the xor with some essentially random but
fixed string is to avoid certain types of man-in-the-
middle attacks.

Why do we need yet another hash function when there
are already so many others around? There are at least three
such considerations:

1. The size of the hash value is easily adjustible. The
basic approach would not be in danger of being dis-
carded as the MD5 algorithm now seem to be. With
TTH, we can simply shift to a higher number of bits.
and run the same program.

2. The algorithm is simpler than SHA-1 or MD5, and
easier to implement.

3. We can use “for free” to compute TTH the same sub-
routine used for other Tame-Automorphism-related
substitutions.

Acknowledgements

The authors would like to thank Prof. T.-T. Moh for his
time, advice and encouragement, without which this paper
would never have been written.

The second author would like to thank the MIT Math-
ematics Department’s most capable Shirley and Camille as
well as Profs. Kleitman and Stanley for their hospitality
during his stay in the school year 2001-02. He was also par-
tially sponsored by a National Science Council (of R.O.C.)
Grant during this time.

Due to space limitations for the proceed-
ings, some details have been removed from
the original manuscript. The original can be
found at http://www.chnds.com.tw or
http://www.usdsi.com or consult the Cry-
otology ePrint Archive on International As-
sociation for Cryptographic Research website
(http://eprint.iacr.org).

References

[1] http://csrc.nist.gov/encryption/aes
the AES homepage

[2] C.-Y. Chou, D.-J. Guan and J.-M. Chen, A Systematic
Construction of a Ç ��ë -module in TTM, Communica-
tions in Algebra, 30 (2002), 551-562.

[3] N. Courtois, L. Goubin, W. Meier, and J.-D. Tacier,
Solving Underdefined Systems of Quadratic Equa-
tions, pp. 211–227 in Public Key Cryptography –
PKC 2002, LNCS V. 2274, Springer-Verlag, 2002.

[4] N. Courtois, L. Goubin, and J. Patarin, Quartz,
128-bit long digital signatures. in Cryptographers’
Track RSA Conference 2001, LNCS V. 2020, Springer-
Verlag, 2001.

[5] N. Courtois, L. Goubin, and J. Patarin, FLASH,
a fast multivariate signature algorithm. in
Cryptographers’ Track RSA Conference 2001,
LNCS V. 2020, Springer-Verlag, 2001; up-
dated version of [4] and [5] can be found at
http://www.cosic.esat.kuleuven.

ac.be/nessie/tweaks.html

[6] N. Courtois., A. Klimov, J. Patarin and A. Shamir.
Efficient Algorithms for Solving Overdefined Systems
of Multivariate Polynomial Equations pp. 392–407 in
EUROCRYPT 2000, LNCS V. 1807, Springer-Verlag,
2000.

[7] Joan Daemen and Vincent Rijmen, The Design of
Rijndael, AES - The Advanced Encryption Standard.
Springer-Verlag, 2002.

[8] Michael Garey and David Johnson, Computers
and Intractability, a guide to the theory of NP-
completeness. Freeman, 1979.

[9] L. Goubin and N. Courtois, Cryptanalysis of the TTM
Cryptosystem. pp. 44–57 in ASIACRYPT 2000, LNCS

V. 1976, Springer-Verlag, 2000.

[10] A. Kipnis, J. Patarin, and L. Goubin, Unbalanced Oil
and Vinegar Signature Schemes, pp. 206-222 in EU-
ROCRYPT’99, LNCS V. 1592, Springer-Verlag, 1999.

[11] A. Kipnis and A. Shamir, Crypanalysis of the HFE
public key cryptosystem, pp. 19–30 in CRYPTO 1999,
LNCS V. 1666, Springer-Verlag, 1999.

[12] K. Manders and L. Adleman, NP-complete decision
problems for quadratic polynomials, pp. 23–29 in
Conference record of the eighth annual ACM Sym-
posium on Theory of Computing: papers presented
at the Symposium, Hershey, Pennsylvania, May 3–5,
1976, ACM Press, 1976.

[13] B. Lucier, Cryptography, Finite Fields, and AltiVec,
http://www.altivec.org/articles/ has
preprint available.

[14] T. Moh, A Public Key System with Signature and Mas-
ter Key Functions. Communications in Algebra, 27
(1999) 2207–2222.

[15] T. Moh, Relinearization and TTM, Preprint 1999.

[16] T. Moh, On The Method of XL and Its Inefficiency
Against TTM in Cryptology ePrint Archive (2001/47).

[17] T. Moh, A Cryptanalysis of TTM in Multivariate
Cryptography, International Press, 2003.

[18] T. Moh and J.-M. Chen, On the Goubin-
Courtois Attack on TTM in Cryptology ePrint
Archive (2001/72). Moh’s papers also avail-
able at http://www.usdsi.com and
http://www.chnds.com.tw.

[19] http://www.cosic.esat.kuleuven.ac.be/nessie/,
the NESSIE (New European Schemes for Signa-
tures, Integrity, and Encryption) selection project
homepage.

[20] Jacques Patarin, Hidden Fields Equations (HFE) and
Isomorphisms of Polynomials (IP): two new families
of Asymmetric Algorithms, pp. 33–48 in EUROCRYPT

1996, LNCS V. 1070, Springer-Verlag, 1996.

[21] J. Patarin, L. Goubin and N. Courtois, Improved Al-
gorithms for Isomorphisms of Polynomials, pp. 184–
200 in EUROCRYPT 1998, LNCS V. 1403, Springer-
Verlag, 1998.

[22] W. Stallings, Crytography and Network Security:
Principles and Practice, 2nd ed. Prentice Hall, 1998.

[23] R. Steinwandt, W. Geiselmann, and Th. Beth, Re-
vealing the Affine Parts of SFLASH ì � SFLASH ì � ,
and FLASH, to appear in VII Reunion Espanola so-
bre Criptologia y Seguridad de la Informacion, VII
RECSI Proceedings.

[24] R. Steinwandt, W. Geiselmann, and Th. Beth, Attack-
ing the Affine Parts of SFLASH, pp. 355-359, in Cryp-
tography and Coding, 8th IMA International Con-
ference Proceedings, B. Honary, ed., LNCS V. 2260,
Springer-Verlag, 2001.

[25] R. Steinwandt, W. Geiselmann, and Th. Beth, A Theo-
retical DPA-Based Cryptanalysis of the NESSIE Can-
didates FLASH and SFLASH, pp. 280-293 in Informa-
tion Security, 4th International Conference, ISC 2001
Proceedings, G. I. Davida, Y. Frankel, eds., LNCS V.
2200, Springer-Verlag, 2001. The last two papers are
also presented at the 2nd NESSIE workshop.

