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摘要 

本研究探討兩階層供應鏈設計模式，其供應鏈層級包括單一的供應商、數

個物流中心及顧客群，同時依顧客需求量的多寡，區分為大顧客群及小顧客群，

分別以單點運送及多點運送的方式運輸貨物。本研究的目的係在成本最低的情

形下，求取物流中心所在的位址、數量以及運輸的途徑。因為本研究模式包含

定址-存貨整合問題以及車輛路徑問題，兩者均屬困難性的問題，故本研究運用

三階段遺傳演算法求解，演算的結果證明本研究所提出的演算法可有效率的達

到近似最適解，同時顯現在最低成本的要求下，在目標式中相關成本間相互抵

換關係下，決定最適物流中心開設的數目、位址及車輛路徑等決策。 
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關鍵詞: 兩階層供應鏈設計模式，定址-存貨整合問題，車輛路徑問題，遺傳演
算法 

Abstract 

This study presents a two-echelon supply chain network design (2E-SCND) 
model consisting of a vendor, a number of potential distribution centers (DCs), and 
end customers. According to the demand size, we classify the end customers into two 
sets of clients, big and small, which are replenished by direct shipping and routing 
policies, respectively. Facility location is a strategic decision that requires vast 
capital investment. Failure to account for shipping costs for potential clients can 
lead to a sub-optimal facility location model. Therefore, this study aims not only to 
determine the number and location of DCs, but also to consider the distribution plan 
for big and small clients. The problem belongs to the class of NP-hard problems 
since it contains the location-inventory problem (LIP) and the multi-depot vehicle 
routing problem (VRP), both of which are NP-hard. The study develops a genetic 
algorithms-based three-phase heuristic approach to resolve this problem. The 
experimental results indicate that the proposed algorithms can efficiently yield 
near-optimal solutions and demonstrate the trade-off among the related costs.  

Keywords: Two-echelon Supply Chain Network Design; Location-Inventory 
Problem; Vehicle-Routing Problem; Genetic Algorithms 

1. Introduction 

In today’s fiercely competitive business environment, supply chain network 
(SCN) design is a critical issue with great potential to reduce cost and improve 
service quality. Traditionally, facility location is a strategic decision and 
significantly impacts tactical operations such as distribution and inventory 
management. The customer allocation and transportation problem should be 
solved after selecting the facility location. The distribution network on the 
downstream side of the supply chain is an important issue because it deals with 
the transportation of products from factories to each demand point. In general, 
the classical facility location models assume that each customer is served on a 
direct shipping policy, that is, one vehicle scheme serves only one customer. 
However, when customer demand is significantly below vehicle capacity, firms 
need a routing policy to visit multiple customers with one vehicle route. In fact, 
this phenomenon often occurs in urban areas.  

This paper addresses the problem of two-echelon supply chain network 
design (2E-SCND), which deals with facility location and distribution issues in 
a two-echelon supply chain. From the distribution aspect, the network includes 
two levels of vehicle routes: in the first, the routes are added between the 
supplier and intermediate depots (e.g., distribution centers, DCs), the vehicles 
depart from the supplier and then unload their goods in the intermediate depot 
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where the goods are stored and consolidated, then use appropriate size of 
vehicles to distribute these goods to the final destinations. Considering the 
economic scale, the most profitable firms use different sizes of vehicles at 
different levels of the supply chain to save transportation costs substantially 
(Dondo et al., 2011). The problem also exists in urban logistics, which has less 
efficiency due to traffic congestion, pollution, and noise. For example, some 
cities in Europe developed an alternative transportation system where large 
trucks arrive at urban freight DCs from outside of the city and then goods are 
organized into smaller or environmentally friendly vehicles that satisfy the 
requests of some urban areas (Gonzalez-Feliu, 2008).  

The remainder of this paper is organized as follows. Section 2 presents a 
review of related works. Section 3 describes the dual sales channel problem and 
formulates the mathematical model. Section 4 details the approach to resolving 
the problem, and Section 5 reports the computational results. The study 
concludes with recommendations for future research directions in Section 6. 

2. Literature Review 

Distribution network design problems typically comprise three 
sub-problems: facility location (FLP), vehicle routing, and inventory control. 
Among them, the FLP is a strategic decision because it requires vast capital 
investments and has a long-lasting effect. Therefore, the aim of the FLP 
determines the optimal number and location of facilities, as well as the 
allocation customers to specific facilities. Since the FLP is strongly related to 
inventory and shipment issues, failing to consider these issues can lead to a 
sub-optimal facility location model (Shen and Qi, 2007). Hence, many recent 
studies integrate two or three of these elements. Daskin et al. (2002) and Shen et 
al. (2003) introduced a joint location-inventory model with risk pooling that 
incorporates the inventory decision into the location problem. Shen and Qi 
(2007) modified the model and showed significant cost saving compared to the 
original optimization model. However, their model optimized only the inventory 
and location decisions and did not integrate distribution decisions. Miranda and 
Garrido (2009) incorporated unfulfilled demand penalty costs into their previous 
model (Miranda and Garrido, 2004) in a two-step formulation to update the 
service level to reach an equilibrium condition between an operations system 
and unfulfilled demand costs. Javid and Azad (2010) extended Shen and Qi’s 
(2007) work to propose a novel model that optimizes location, allocation, 
capacity, inventory, and routing decisions simultaneously in a stochastic supply 
chain and established a heuristic method based on Tabu Search and Simulated 
Annealing. Their work showed that the proposed heuristic was considerably 
efficient and effective for a broad range of problem sizes. Diabat et al. (2015) 
considered a multi-echelon joint inventory-location problem that integrates 
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facility location, order assignment, and inventory decisions simultaneously. 
They developed an efficient Lagrangian relaxation-based heuristic to solve large 
instances of the problem. Gendron et al. (2016) considered a two-level 
uncapacitated FLP with single-assignment constraints and presented a 
Lagrangian relaxation approach to reduce the sub-problem to a single-level 
uncapacitated FLP, and then used a Lagrangian heuristic to solve a series of 
small uncapacitated FLPs. 

On the other hand, the location routing problem (LRP) uses integrated 
supply chain research in location analysis by paying special attention to the 
underlying issues of vehicle routing (Nagy and Salhi, 2007). Hence, LRP seeks 
to minimize the total cost by simultaneously locating the depots and designing 
the vehicle routes that satisfy each customer’s demand at the same time. In the 
last two decades, many LRP models have been proposed in the literature. Most 
are related to a simple distribution network with two layers (Albareda-Sambola 
et al., 2005; Lin and Kwok, 2006). A few exceptional studies addressed more 
complex distribution network design problems. Ambrosino and Scutellà (2005) 
developed a four-layer (plants, central depots, regional depots, and customers) 
integrated LRP. Due to recent computing power increases, one stream uses 
mathematical tools to solve SCN problems. To define the number and location 
of different types of facilities, Aksen and Altinkemer (2008) proposed a 
three-layer distribution logistics model to convert bricks-and-mortar to 
click-and-mortar retailing with a static one-period optimization model and 
resolved it using Lagrangian relaxation. Lee et al. (2010) considered four-layer 
supply chains similar to Ambrosino and Scutellà (2005), and solved the location 
and vehicle routing problems simultaneously with a mixed integer programming 
model and a heuristic algorithm based on LP-relaxation. Recently, Govindan et 
al. (2014) introduced a multi-objective two-echelon location routing problem 
(2E-LRP) with time-windows for sustainable SCN design to optimize economic 
and environmental objectives in a perishable food SCN. They developed a 
hybrid particle swarm optimization and adapted multi-objective variable 
neighborhood search, with results indicating that the hybrid approach achieves 
better solutions than other common genetic algorithm (GA)-based 
metaheuristics. Vidović et al. (2016) presented a 2E-LRP for a logistics 
networks design with non-hazardous recyclables collection and a 
distance-dependent collection rate. They developed efficient heuristics to solve 
large problem instances within a reasonable time. Rahmani et al. (2016) 
considered a 2E-LRP in an SCN design model with multiple products, pickup, 
and delivery. They developed clustering-based approaches to solve the LRP. 
The computational experiments indicate that the clustering approach is very 
competitive when the system has less than 200 customers. 

Although many prior studies seem to construct integrated SCN design 
models that coordinate inventory, transportation, and location issues 
simultaneously, most of these models either focus on FLP without considering 
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the VRP or emphasize LRP while ignoring inventory policy. For the reason, we 
develop a 2E-SCND model that integrates the location-inventory problem (LIP) 
and VRP. Moreover, because we propose a model that is an NP-hard problem 
that cannot be easily resolved using existing optimization techniques, we 
formulate a mixed non-linear integer program. Consequently, we propose a GA 
that incorporates a three-phase heuristic approach to provide good solutions in a 
reasonable computational time. Our research offers two contributes. First, we 
consider the inventory and safety stock issue in the 2E-SCND model. Second, 
according to demand size, we classify end customers as big and small clients, 
and then use direct shipping and routing policies to satisfy their requirements.      

3. Model Formulation 

3.1 Problem Statement 

This paper considers a three-level two-echelon integrated SCN design 
system depicted in Figure 1. The SCN design system consists of a vendor at the 
top level, potential locations of DCs in the middle, and two different types of 
consumers (big and small clients) at the bottom level. The vendor and DCs are 
situated at known and fixed locations and the vendor and DCs are owned and 
operated by a central decision maker responsible for managing product flows 
and inventory policy to meet uncertain demands that occur at the sales locations. 
From the inventory management perspective, we assume that each open DC 
carries enough safety stock to guarantee the desired client service levels to meet 
the risk pooling benefit. We assume that end customers carry negligible stock 
compared to the DC. On-hand inventory at each DC is controlled in the (Q, r) 
policy and the distribution network can be decomposed into two echelons. In the 
first echelon, the vendor ships products to a DC with a direct shipping policy, 
and then the products are consolidated, sorted in the DC, and await further 
transportation to clients through the second echelon. In our proposed model, 
there are into two types of clients, big and small, according to their demand 
amounts. Big clients (such as wholesalers) receive a direct shipping policy, 
while small clients (such as convenience shops), fit within the vehicle routing 
model, which is designed such that the vehicle visits each demand point only 
once by exactly one route and all routes start and end at the same DC.  
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Figure 1. The 2E-SCND structure 

Our study proposes to meet two goals: to minimize the total facility 
location and inventory-related costs in LIP and to minimize the total distribution 
costs. We then model the problem as a nonlinear integer program. We apply the 
following assumptions throughout the paper:  

– The product is always available to clients through DCs, and clients pay 
identical prices. 

– Both types of client have random demand and are identically independent 
and normally distributed. 

– We consider a centralized inventory policy under the vendor-managed 
inventory (VMI) policy, where the vendor must keep safety stock pooled at 
DCs.  

– A continuous inventory (Qj, rj) policy meets a stochastic demand pattern at 
any DC j. Thus, when the inventory level at DC j falls to or below a reorder 
point rj, a fixed quantity Qj is ordered from the vendor.  

– Both the vendor and DCs have unlimited storage capacities. 

– Each client’s (big and small) order is fulfilled and delivered by a specific 
DC.  
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– For small clients, the DC adopts last-mile home delivery to fulfill the 
requirement of a fast response. 

– Each DC holds a safety stock based on the risk-pooling strategy to buffer 
the system against stock-outs during lead times.  

– Each DC possesses two types of homogeneous vehicles for big and small 
clients, respectively. The capacity of the vehicles can satisfy both types of 
clients’ demand; however, inter-dispatch shipping is prohibited. 

– The transportation cost from supplier to DC and DC to big clients depends 
on the shipping quantity, but the transportation cost from DC to small 
clients depends on both shipping quantity and distance.  

3.2 Notation 

We first present the notation used throughout the paper before presenting 
the model. 

Indices: 
j: index of candidate DC sites 

J: set of all candidate DC sites; ∀ j J 

i: index of big clients 

I: set of all big clients; ∀ i I 

n: index of small clients  

N: set of all small clients;  ∀ n N 
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k: index of depots or small clients; ∀ k J∪N 

r: Index of routes 

R: Set of all routes;  ∀ r R 

 
Parameters: 
Br: number of nodes that the vehicle has visited in route r  
di: mean of annual demand at big client i 

un: mean of annual demand for small clients n 
βi: variance of annual demand for big clients i 

δn: variance of annual demand for small clients n 

fj: annual fixed cost to open and operate DCj 
rcj: unit transportation cost between the supplier and DCj 
tcji: unit transportation cost between DCj and big clients i 
vcnk: unit transportation cost between node n and node k 
distnk: distance from node n to node k 
m: number of visits on each route in a year 
Dmax: the maximum shipping distance coverage 
sj: annual inventory holding cost per unit at DCj 
oj: annual DCj cost to order from the supplier 
ζj: average lead time in days for shipment from DCj from the supplier 
zα: left α-percentile of standard normal random variable Z 

 
Decision Variables: 
Yj: 1 if DCj is opened; 0 otherwise 
Xji: 1 if big clients i are assigned to DCj; 0 otherwise 
Wjn: 1 if small clients n are assigned to DCj; 0 otherwise 
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Vr
nk: 1 if node n precedes node k in route r; 0 otherwise, ∀n, k ∊J∪N 

Mr
l: auxiliary variable for sub-tour elimination constraints on route r, ∀ l  N, 

r R 

Qj: order quantity at DCj 

3.3 Model Formulation 

We formulate a mixed-integer programming model according to the 
notations and assumptions above, and describe the model formulation below. 
First, the objective function consists of the following cost components: 

1. Facility Operating Cost (Eppen, 1979): the annual cost of operating 
facilities when the DCs are opened at different locations.  

FC=  j j
j J

f Y
∈

×∑                         (1)
  

2. Expected Working Inventory Cost (Axsäter, 1996): the expected cost of 
placing orders and carrying working inventory.  

WIC=
 

[ ( ) ( )]i ji n jn
i I n N

j
j J j

d X u W
o

Q
∈ ∈

∈

× + ×
×
∑ ∑

∑  ( )2
j

j j
j J

Qs Y
∈

+ × ×∑ .    (2) 

We adapted Ozsen et al.’s (2008) EOQ-approximation procedure as well as 
those of most typical LIP models (Daskin et al., 2002; Shen et al., 2003; 
Anderberg, 1997). The optimal order quantity Q*

j at DCj can be obtained by 
differentiating Eq. (2) with respect to Qj and setting it equal to zero to minimize 
total cost Z. Thus, we obtain the optimal solution of Qj as follows: 

*
2 ( )j i ji n jn

i I n N
j

j j

o d X u W
Q

s Y
∈ ∈

× × × + ×
=

×

∑ ∑
                       (3) 

3. Safety Stock Cost (SSC): the safety stock cost captures the cost of holding 
sufficient inventory to ensure a probability of stock out during a lead time 
of less than or equal to α. In other words, safety stock is maintained to 
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provide the specified service level to the buyer. Consider the centralized 
supply chain system under the VMI model, which means aggregating 
safety stock pooled at different DCs. Then, the total amount of safety 
stock at DCj with risk pooling is 

1 ( )i j ji n j jn
i I n N

z X Wα β ζ δ ζ−
∈ ∈

⋅ ⋅ + ⋅ ⋅∑ ∑                                                       (4) 

 (Ozsen et al., 2008), where 1‐α  is the level of service for the system and 
α−1z  is the standard normal value with αα −=≤ − 1)( 1zzP .Therefore, the 

annual safety stock cost is  

SSC= 1[ ( )]j i j ji n j jn
j J i I n N

s z X Wα β ζ δ ζ−
∈ ∈ ∈

⋅ ⋅ + ⋅ ⋅∑ ∑ ∑                      (5) 

4. Transportation Cost (TC): the annual transportation cost includes inbound 
transportation cost, which is the cost to ship from the supplier to open DCs. 
The inbound transportation cost is quantity dependent and represented 
as [ ( )]j i ji n jn

j J i I n N
rc d X u W

∈ ∈ ∈

× × + ×∑ ∑ ∑ . The outbound transportation cost, 

which consists of the cost to ship from the open DC to either big or small 
clients. The cost from DC to big client is ji i ji

j J i I
tc d X

∈ ∈

× ×∑ ∑ , and 

depends on shipping quantities. The shipping cost from the DC to small 
client is r

nk nk n nk
n J N k J N

m vc dist u V
∈ ∪ ∈ ∪

× × × ×∑ ∑ , which depends on shipping 

quantity and distance. Thus, the total system cost will be FC + WIC + SSC 
+ TC, as shown in Eq. (1).  

Z=   +j j
j J

f Y
∈

×∑
 

[ ( ) ( )]i ji n jn
i I n N

j
j J j

d X u W
o

Q
∈ ∈

∈

× + ×
×
∑ ∑

∑ ( )2
j

j j
j J

Qs Y
∈

+ × +∑

1[ ( )]j i j ji n j jn
j J i I n N

s z X Wα β ζ δ ζ−
∈ ∈ ∈

⋅ ⋅ + ⋅ ⋅∑ ∑ ∑
+ ji i ji

j J i I
tc d X

∈ ∈

× ×∑ ∑ + r
nk nk n nk

n j N k J N
m vc dist u V

∈ ∪ ∈ ∪

× × × ×∑ ∑
+ [ ( )]j i ji n jn

j J i I n N
rc d X u W

∈ ∈ ∈

× × + ×∑ ∑ ∑  

(
6
)

We obtain a non-linear cost function Eq. (7) by substituting Eq. (3) in Eq. 
(2), 
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Min     j j
j J

f Y
∈

×∑  

[ 2 ( ) ]+j j i ji n jn j ji i ji
j J i I n N j J i I

o s d X u W Y tc d X
∈ ∈ ∈ ∈ ∈
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s.t. 
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j
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j
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Eq. (8) restricts big clients to service from a single DC. Eq. (9) states that 
big clients can only be assigned to open DCs. Eq. (10) restricts small clients to 
service from a single DC. Eq. (11) states that small clients can only be assigned 
to open DCs. Eq. (12) ensures that each small client is placed on exactly one 
route. Eq. (13) is the sub-tour elimination constraint, which guarantees that each 
route must contain an origin DC, that is, each route must consist of a DC and 
some small clients (Desrochers and Laporte, 1991). Eq. (14) ensures flow 
conservation, indicating that whenever a vehicle enters a small client or DC 
node, it must leave again, and ensuring that the routes remain circular. Eq. (15) 
implies that each route is used at most once. Eq. (16) links the allocation and the 
routing components of the model: a small client is assigned to the DC only if a 
specific route starts its trip from the DC. Eq. (17) ensures that each route cannot 
exceed the maximum distance. Eq. (18) declares that auxiliary variables must 
take positive values. Eq. (19) enforces the integrality restrictions on the binary 
variables. Note that Miller et al.’s(1960) well-known sub-tour eliminate 
constraints requires n extra variables and roughly n2/2 extra constraints, which 
make the problem very difficult to solve within a reasonable computing time. 
Therefore, we adopted a set of sub-tour eliminations that add a large number of 
auxiliary variables Mr

l, which results in a small number of constraints in the 
model (Wu et al., 2002; Lee et al., 2010; Selçuk, 2002). Interested readers can 
refer to Bektas (2006). 



以混合遺傳演算法求解整合性區位存貨、定址以及運輸路徑之兩階層供應鏈分銷網路設計 

109 

 

4. Solution Methodologies 

The proposed model combines the LIP and the VRP, which results in an 
NP-hard problem. The complexity of these problems requires a computerized 
optimal procedure, though the time and computing resources to solve such 
problems repeatedly in practical applications are prohibitive. Exact methods can 
only tackle relatively small instances. Therefore, we apply a heuristic method as 
an alternative, which provide a multitude of heuristic solution techniques to 
provide good approximate solutions within a reasonable amount of time.  

Over the past decades, heuristics have become important tools for solving 
various combinatorial problems encountered in many practical settings. Among 
the different methodologies, GA has become a very popular approach, 
especially in closed-loop supply chain problems that have an iterative procedure.  

We use the following steps in the GA scheme:  
1. Initialization: Generate the initial population randomly. 
2. Evaluation: Compute fitness value, which is a measure of how well the 

individual optimizes the function. We sort the maximum fitness parameter for 
each population and store it as the local best. 

3. Parent selection: Choose pairs of individuals from the population such that 
those with higher fitness will get more copies. 

4. Crossover: Generate children from each pair of parents. Each parent 
contributes a portion of its genetic makeup to each child. 

5. Mutation: Randomly change a tiny amount of the genetic information in each 
child. 

A complete pass through of the steps above is defined as a generation, and 
after each generation is complete, a new one starts with the evaluation of each 
child. In our study, we decompose the heuristic method into constructive and 
improvement stages. Figure 2 depicts the solution scheme.  
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Figure 2 Flowchart of proposed heuristic method 

4.1 Big Client Allocation Phase 

The proposed algorithm starts by generating a random population P of size 
L. We define a chromosome with a binary string of length L, which implies the 
number of potential DCs. There is a gene Yj representing a specific DCj that will 
carry a value of 1 if it is open at the candidate site and 0 otherwise. This 
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chromosome can be the basic condition that assigns big clients to one of the 
open DCs (variables Xji) according to the minimal distance; a value of 1 
indicates that big clients i were successfully assigned to an open DCj, and 0 
otherwise. Table 1 illustrates an example of the chromosome representation for a 
problem with 5 DCs and 5 big clients. Table 1 (a) shows the initial status of the 
DCs, indicating that DC1 and DC4 are closed, and the rest are open (i.e., 
Y1=Y4=0; Y2=Y3=Y5=1). Tables 1 (b) and 1 (c) are the distance matrix between 
the DCs and big clients and the assignment tables after comparing the shortest 
distance between open DCs (Yj=1) and each big client, respectively, where the 
value of X21, X52, X53, X34, and X25 is equal to 1; the remaining Xji are equal to 0. 
For each chromosome in P, the algorithm evaluates its distance and coverage 
using the encoded solution expressions.  

Table 1 (a) Initial DCs open status    

DC1 DC2 DC3 DC4 DC5
0 1 1 0 1

   

Table 1 (b) Distance matrix 

B1 B2 B3 B4 B5

DC1 1 2 3 4 5

DC2 2 3 4 5 1

DC3 3 4 5 1 2

DC4 4 5 1 2 3

DC5 5 1 2 3 4
 

Table 1 (c) Assignment table 

B1 B2 B3 B4 B5

DC1 0 0 0 0 0

DC2 1 0 0 0 1

DC3 0 0 0 1 0

DC4 0 0 0 0 0

DC5 0 1 1 0 0
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4.2 Small Client Cluster Phase 

Cluster analysis (Anderberg, 1997) examines the division of entities in 
groups based on some characteristics. In our model, we define the group 
characteristic as the distance among the small clients, which are geographically 
dispersed in a connected area. Prior research recognized the potential for cluster 
analysis for LRPs (Barreto et al., 2007). K-means, which is a least-square 
partitioning method, resolves many well-known clustering problems. We apply 
it here to classify small clients into k groups according to the number of open 
DCs obtained in the previous big client allocation phase. Table 2 presents the 
clustering procedure in the proposed method for small clients. After clustering 
small clients into k groups, the next process is the DC-Group allocation 
procedure to allocate each open DC to one of the groups based on the shortest 
distance between the DC and the group centroids.  

Table 2 Small client cluster procedure 

1: Specify a certain number of k groups a priori  
2: Place one point inside each group as the initiated centroid  
3: Repeat 
4: Assign each small client to the group with the closest centroid  
5: Re-compute the new centroid in each group 
6: Until all centroids do not swift 

4.3 Small Client Routing Phase 

The purpose of the small client routing phase is to estimate the distribution 
cost between the DCs to small clients. Because the SCN design is a strategic 
decision, it is difficult to know small clients’ exact demand when we develop 
the SCN; hence, rather than using some complicated VRP models, we apply a 
traveling salesperson problem model in this phase based on demand data 
collected from the clients’ past purchase history. The main idea is to find a near 
optimal solution for the shortest route (least distance for the salesperson to travel 
to each city exactly once and return to their starting locations). We assume that 
the vehicle has a distance limitation, so it can return to the depot in a certain 
time and prepare for next period’s shipping. Therefore, each route 
restricts max ,r

nk nk max
n J N k J N

V disk D D s p
∈ ∪ ∈ ∪

× ≤ = ×∑ ∑ , where s is the vehicle cruise 

speed and p is the time limit for the route. In contrast to the big client allocation 
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phase, which uses a binary variable representation, the GA chromosome 
representation here is encoded in an integer string; the value of each gene 
denotes a specific small client, and the gene sequence of the chromosome 
represents the vehicle routing in small client transportation. The GA involves 
encoding solutions as chromosomes. We create a new population with the 
selection, crossover, and mutation operator. The best chromosome should 
survive and become the original breed for the next generation.  

We evaluate the fitness of these chromosomes by computing the routing 
cost (distance) of each complete route. Then, we use tournament selection to 
choose parents from the crossover pool. The three mutation operators of flip, 
swap, and slide aim to make modifications that are more likely to improve the 
best solutions. Figure 3 illustrates an example of how the reproduction scheme 
of each operator is implemented. As shown in Figure 3, there are six small 
clients in a chromosome in each row of the table. The genetic sequence of a 
chromosome represents a vehicle route plan indicating the small client visitation 
sequence. In this example, we assume that the second chromosome has the best 
fitting value in the initial solution. Then, the mutation operator randomly selects 
two points among these nodes. Afterward, we apply the flip, swap, and slide 
processes to obtain another three new chromosomes. Finally, the four vehicle 
schemes with the best fit are combined to form a new parent set.  

 

Figure 3 Example flip, swap, and slide mutation operators 
 

The old population is replaced by a new one. We repeat these steps for a 
number of generations. In the end, the best chromosome is decoded to obtain a 
solution. When the generation number t reaches the maximum T, the algorithm 
stops. Table 3 depicts the small client vehicle routing scheme. 

 
Table 3 Small client vehicle routing scheme 

1: t=0 
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2: initialize P(t)              //Randomly generate an initial population 
of small client routing sequences in each 
group. 

3: Evaluate P(t)              // Calculate the fitness in the population 
P(t). 

4: Output the best solutions 
5: While t< max_generation T      // Do the following steps when critical T 

is not met.  
6: For i = 1…n/4                // Divide the population solution into the 

n/4 sub-group. 
7: Selection (p(ui); p(n/4))        // Select the highest ranking individuals 

in each subgroup.  
8: Mutation (p(ui); p(n/4))        // Generate three offspring p(u') from 

p(u) with slide, swap, and flip 
processes. 

9: P(t+1) = p (ui)∪p(ui’)        //Generate the next population by 
combining the highest ranking 
individuals and their offspring in each 
sub-group. 

10: End   
11: t=t+1 
12:End while 

4.4 Improvement Stage 

The improvement stage includes the selection, crossover, and mutation 
operations. First, the algorithm applies binary tournament selection (to form the 
crossover pool). We choose two parents randomly from the population P(t) and 
select the best fitting one by the operator ≥ n. After this selection, a copy of this 
chromosome becomes part of the crossover pool of parents. The selected 
chromosomes join the tournament in P(t). Therefore, the chromosome has a 
higher opportunity to be selected several times. For simplicity, we implement 
uniform crossover with both children having equal probabilities of receiving a 
given gene from a given parent. We then perform single point mutation on 
randomly chosen members of the population, where the mutation point is 
random and all members of the population and all genes of a chromosome 
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vector have an equal probability of selection to generate the child population C 
of size L. Once initialized, the main body of the algorithm repeats for T 
generations. During the process of selecting the next generation, the 
chromosome fitness depends on the evaluation of the decoded solution in the 
objective functions and its comparison with other chromosomes. 

5. Experiment Results 

Our method above formulates a problem consisting of LIP and VRP issues. 
There are different benchmarks to evaluate LIP or VRP models, though these 
are not suitable for our proposed integrated model. This section attempts to 
evaluate the performance of the overall solution scheme for the proposed model 
by providing some computational results. 

5.1 Evaluation Instances 

We construct test problems by generating examples of problems in a SCN 
with 30 potential DCs that are randomly dispersed in a square of 50 distance 
units of width. For simplicity, we use Euclidean distance to measure the 
distribution of distances. Table summarizes the remaining model parameters. 
There are 9 different problem sets representing different sizes of problem 
instances in the distribution network to evaluate the proposed model.  

In addition, we consider various transportation and inventory holding cost 
scenarios to evaluate how these costs affect the DC location decisions. In this 
experiment, we generate 3 sets of problem instances, which represent different 
sizes of problem instances ranging from 50 big clients and 300 small clients, to 
100 big clients and 600 small clients (problem sizes m_n: 50_300, 70_400, and 
100_600). All instances are randomly generated and uniformly distributed; all 
big and small clients are located within a square of 50 distance units of width for 
the coordinates. Moreover, there are two types of transportation cost structures 
(T1 to T2) and two types of inventory holding cost scenarios (S1 to S2), where 
T2 and S2 represent a high cost instance, and T1 and S1 present a low cost 
instance. Each problem instance is named in the following format: P_m_n_(T1 
to T2)_(S1 to S2). For example, the problem instance P_50_300_T1_S1 
represents the problem with 50 big clients and 300 small clients who are 
uniformly distributed within the square area of width 50 distance units. 

 

Table 4 Model parameters of the problem instances  

Parameter Value 
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di U(10,15) 
un 2 
βi U(2,4) 
δn U(0.5,0.7) 
fj U(600,650) 

rcj U(20,40) 
tcji 2 
vcnk 1(T1); 3(T2)  
m 300 
sj U(4,6)(S1); U(8,10)(S2) 
oj U(1,3) 
ζj U(2,4) 

5.2 Computational Results 

We use the following input parameters for the hybrid GA implementation: 
population size = 100; cloning = 20%; crossover rate = 80%; and mutation rate 
varies from 5% to 10% as the number of generations increase. We encode the 
program in MATLAB 7 and execute it on an INTEL I5 2.40 GHz processor. We 
modify the generation size until each solution converges. Figure 4 reveals that 
the population curve converges shortly after 16 generations in the 
P_50_300_T1_S1 problem. No significant improvement occurs thereafter. 

   

Figure 4 The P_50_300_T1_S1 problem convergence trends  
We perform 10 runs for each algorithm on each data set. To evaluate the 

trade-offs between related costs when the number of open DCs changes, we run 
the GA process using a given open number of DCs from five to ten in the 
P_50_300_T1_S2 problem instances. We do this by presetting the open DC 
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number at begin of the GA process. Therefore, the chromosome will be 
restricted at a specific number, but the location will be random, and the rest of 
process will remain the same. Table 5 shows how the number of open DCs 
affects supply chain-related costs.  

Table 5 Computational results for P_50_300_T1_S2 

Percentage of costs (%) 
# of DCs 

FC TC OC IC RC TOTAL 
COST 

5 15.71 22.22 21.53 13.64 26.9 66,761 
6 16.61 21.34 21.57 15.61 24.87 79,812 
7 16.12 21.11 22.45 17.35 22.97 85,165 
8 16.45 20.18 23.12 17.89 22.36 93,467 
9 16.89 19.74 23.78 18.42 21.17 102,319 

10 17.03 19.21 23.41 19.86 20.49 111,176 

FC: Fixed Cost; TC: Transportation Cost (DC to big clients); OC: Ordering 
Cost; IC: Inventory cost; RC: Routing Cost (DC to small clients) 

Figure 5 also depicts the trade-offs among these cost components when the 
number of open DC increases. We see that when the number of open DCs 
increases, the facility cost (FC), ordering cost (OC), and inventory cost (IC) also 
increase. However, transportation cost (TC) and routing cost (RC) decreases.  

  
Figure 5 Trade-off trends among costs in P_50_300_T1_S2 problem 

The results are consistent with Shen et al.’s (2003) findings, and imply that 
the more potential DCs open, the higher the chance that it is closer to the big / 
small clients’ locations, which decreases transportation cost. However, more 
open DCs will increase the facility, ordering, and inventory costs. There are also 
multiple trade-off effects as the number of big /small clients serviced increases. 
Table 6 summarizes the computational results for the optimal number of DCs 
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and their different costs percentages. Figure 6 illustrates the solutions for the 
nine problems.  

Table 6 Computational results for the nine sample problems 

Percentage of costs (%) 
Instances 

# of 
DCs FC TC OC IC RC 

P_50_300_T1_S1 6 19.97 27.88 17.77 8.48 25.9 

P_50_300_T1_S2 5 15.71 22.22 21.53 13.64 26.9 

P_50_300_T2_S1 9 19.25 27.59 16.28 7.89 28.99 

P_70_400_T1_S1 7 16.54 25.77 17.2 9.41 31.08 

P_70_400_T1_S2 5 8.87 28.57 15.88 12.15 35.54 

P_70_400_T2_S1 10 15.97 17.93 14.89 9.31 41.89 

P_100_600_T1_S1 8 18.2 29.16 13.88 8.58 30.18 

P_100_600_T1_S2 7 13.6 24.58 17.22 16.67 27.92 

P_100_600_T2_S1 12 20.49 16.77 12.1 8.32 42.33 

 

 
Figure 6 Number of open DCs under various cost scenarios 

We observe when the number of sales points (big or small clients) 
increases, the number of DCs also increases, and each problem has similar cost 
structures, regardless of the number of sale points or cost changes. Moreover, 
compared to problems P_70_400_T1_S1 and P_70_400_T1_S2, the number of 
open DCs decreased in the high inventory cost circumstance (S2), which 
dropped from 6 to 5; but the number of open DCs significant increased from 6 to 
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10 in the high transportation cost circumstance (T2). This phenomenon indicates 
that the trend of open DCs is more sensitive to transportation cost than inventory 
cost, possibly because small clients who are typically scattered across large 
geographic areas require more open DCs once transportation cost increases in 
order to shorten the distance between the DCs and small clients and balance the 
additional cost. Therefore, location decisions that only consider big clients and 
neglect small clients, as is the case in many traditional 2E- LRP studies, could 
lead to a biased optimization. To keep the scope of the paper within reason, we 
focus on the location-allocation decision, and without loss of generalization, we 
assume the customers’ demand for both big clients and small clients are known, 
and that their purchase preferences between both channels are independent of 
price and service factors. Furthermore, in the GA operation, the population 
encompasses a range of possible outcomes. Solutions are identified on a fitness 
level, when solutions closer to the global optimum will have higher fitness 
values. Successive generations improve the fitness until the optimization 
convergence criterion is met. Due to this probabilistic nature, GA cannot 
guarantee the optimal solution. This is another limitation in our model. Since we 
propose dealing with two different transportation methods simultaneously in the 
inventory location model, it is difficult to find a benchmark in past studies to 
verify the performance of the proposed algorithms. We aim to develop multiple 
algorithms for comparison in future studies. 

6. Conclusion 

This study proposes a 2E-SCND model consisting of a vendor, DCs, and 
end customers, with a network configuration designed based on the facility 
location and distribution problems. In the location decision, we consider 
inventory-related issues, including risk pooling and safety stock with a 
guaranteed service level. On the other hand, in terms of distribution, we first 
classify the end customers into a set of big and small clients according to their 
demand sizes, and then use direct shipping and routing policies for 
transportation. The objective of the study is to situate DCs to serve end 
customers to minimize the sum of the fixed, inventory, order, and transportation 
costs. We propose a systematic GA-based approach to resolve this problem. In 
the experiments, the proposed approach shows good results for the near-reality 
data and yields a near-optimal solution in a stochastic demand environment. We 
also conduct a sensitivity analysis to evaluate how DC selection affects 
transportation, inventory, and routing costs. We find several interesting 
phenomena. 

In future work, the model can be extended in several realistic and practical 
directions. We can extend the proposed single-echelon inventory to a 
multi-echelon inventory structure. Furthermore, a detailed sensitivity analysis 
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could determine the crucial parameters with respect to different assignments in 
the 2E-SCND structure. Moreover, the proposed genetic procedure provides a 
variety of options and parameter settings worth a full examination. It would also 
be interesting to develop more effective and elegant decomposition methods to 
resolve the integrated model. For example, the model could be decomposed into 
location-allocation with an inventory stage and vehicle routing and examine a 
highly computationally efficient heuristic method to coordinate the problem. 
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