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NUMBERS OF COMMON WEIGHTS FOR
EXTENDED TRIPLE SYSTEMS

BY

CHIN-MEI FU AND WEN-CHUNG HUANG

Abstract. Let K, be the complete graph on v vertices and K, the graph obtained
by attaching a loop to each vertex of K,. An extended triple system of order v is a
pair (V, B), where V is a v-set and B is a collection of non-ordered triples of elements
in V' (each triple may have repeated elements), such that every pair of elements of
V' (not necessarily distinct) belongs to exactly one triple. It has been established
that an extended triple system of order v corresponds to a decomposition of edges
of K into triangles, lollipops, and loops. In this paper the decomposition of K
is used to construct two extended triple systems of order v with each prescribed
intersection numbers in the following set:

(1) {0,1,2,...,m —6,m — 5,m — 3, m}, for even v > 8, and
(2){0,1,2,...,m—11,m—10,m—8, m—6,m}, for odd v > 11, where m = v(v+1)/2.

1. Introduction

The concept of an extended triple system was introduced by D. M. Johnson
and N. S. Mendelsohn [4]. An extended triple system of order v (ETS(v)) is a
pair (V,B), where V is a v-set and B is a collection of non-ordered triples of
elements in V' (each triple may have repeated elements), such that every pair of
elements of V' (not necessarily distinct) belongs to exactly one triple. An element
of B is called a block. There are three types of blocks: (1) {z,z,z} (2) {y,y,z}
(3) {a,b,c} (we write the blocks as zzz, yyz and abc for brevity).

We want to characterize extended triple systems similar to Steiner triple
systems (which are equivelent to a C3-decompositions of the complete graph) by

graph decompositions. Just of all we will introduce some graph terminology.
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A loop is an edge whose two ends are the same. A link is an edge whose two
ends are distinct. A graph on two vertices which consists of one loop and one link
is called a lollipop. As usual, K, denotes the complete graph on v vertices, while
K, denotes the graph obtained by attaching a loop to each vertex of K,. K3 is
called a triangle. Thus an extended triple system of order v can be regarded as
a partition of the edges of K" into triangles, lollipops, and loops.

The necessary and sufficient conditions for the existence of an extended triple
system of order v with no idempotent is v = 0 (mod 3). This design has s, = v(v+
3)/6 blocks. Lo Faro [7] constructed two non-idempotent extended triple systems
of order v with intersection numbers in following set: (i) {0,1,...,s, — 3, sy} for
v =0 (mod 3), v # 9 and (ii) {0,1,2,...,12,14, 15,18} for v = 9.

For extended triple systems, we define an intersection in the following sense.

Let (V,T1) and (V,T) be two ETSs with the same point set V. The two
systems have a common weight & if K = > w(B), where B is a common block in
Ty and T5, and

1if B=uxxz
w(B) =< 2 if B=yyz
3 if B =abc .

In this case, we write |17 N Ty| = k.

Let J[v] be the set of all integers k such that there exists a pair of ex-
tended triple systems of order v which have a common weight k. Let I.[v] =
{0,1,2,...,m —6,m —5,m —3,m} and I,[v] = {0,1,2,...,m — 11,m — 10, m —
8, m — 6,m}, where m =v(v+1)/2.

Main Theorem. For even v, J[v] = I.[v] if v > 8; and for odd v, J[v] =
Lv] if v > 11.

Let A and B be two sets of integers and k a positive integer. We define
A+B={a+blac A beB},k+A={k}+ A, and kA = {k-a|a € A}.
2. Auxiliary Constructions of ETS

In order to count the common weights, we need some special embedding
constructions. Therefore, let (Vi, B) be an ETS(v), where Vi = {a1,a9,...,ay}.
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(1) v to 2v, v even

Let F ={F; |i=1,2,...,v— 1} be a 1-factorization of K, on Vo = {x1, 2,
coyZyt. Let S=Vi UV and T = BUC U D, where C = {a;zy | zy € F;,i =
1,2,...,v—1} and D = {a,zz | for each z € V,}. Then (S,T) is an ETS(2v)
denoted by (Vi U Va, (B, F)).

(2) v to 2v +2, v even

Let F = {F; | i = 1,2,...,v + 1} be a 1-factorization of K,19 on Vo =
{z1,29,...,2y12}. Let S=Vi UV and T = BUC U D, where C = {a;zy | zy €
F,i=1,2,...,v} and D = {zzy,yyy |for each zy € F,11}. Then (S,T) is an
ETS(2v + 2).

Let F = {F; | i = 1,2,...,2v — 1} be a l-factorization of K3, on N =
{1,2,...,2v}. If F,, F, € F, the notation Fy - F, ([7]) will denote the follow-

ing set of blocks: {11z, ZiyZiyTis, .., @i, i 1} U {2,252, TjyTjpljs, ---,
xjsxjsle} u...u {$plxplxpzv TpaLpaTpsy -« s xpt$pt$p1} U {$q1$Q1$II2v LgrTgrLyqss
ey gy T Tqy  Where 25, = min(N\{1, z;,, Ty, ..., i, }), .., Zg, = min(N\{1,
Tins Tigy - o vy Tips Tjis Tjoy Ljgy ooy Tjgy -y Tpry Tpoy Tpys -5 Tpy )y Fo = {124,
LjgLigy +ovy L 1 Ljpy TjiLjoy TjgLigy «voy Ljg 1Ljey ooy TpiTpoyy TpzLpgy «+ -y Lpy g
Tpyr Tq1Tans LqzLass - - -3 Lam_1 Lapm t AN Fy = {xiy T4y, Tiy T, ..., T3 1, 5,25, Tj,
xj5’ R xjsle’ e poxPB’ xp4xp5’ ttt xptxpl’ quxq3’ xQ4xQ5’ ttt xquql}

(3) v to 2v + 3, v odd

Let F = {F; | i = 1,2,...,v + 2} be a 1-factorization of K, 3 on Vo =
{z1,29,...,2y13}. Let S=Vi UV and T = BUC U D, where C = {a;zy | zy €
F,i=1,2,...,v} and D = Fy,y; - Fy42. Then (S,T) is an ETS(2v + 3).

(4) vto 2v+1, v odd
Let F ={F;|i=1,2,...,v} be a l-factorization of K,,1 on Vo = {1, 2,
ooy Tyy1}. Let S =ViUVaand T = BUCUD, where C = {a;zy | xy € Fj, i =1,
2,..,v}and D ={xz;z; | i=1,2,---,v+1}. Then (S,T) is an ETS(2v +1).
Let Ko, be a complete graph on 2v vertices(2v > 8). The edges of Ks, fall
into v disjoint classes P, P, ..., P, with {i,k} € P;j ifand only if i —k = j
mod(2v). R. G. Stanton and I. P. Goulden [8] have proved that:
P1l. If 22 + 1 < v then Pz U Paz4q splits into four one-factors.
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P2. The graph Ky, may be factored into a set of 2v triangles covering P;, P;,
Pyjiq (25 +1 <) and a set of 2v — 7 one factors covering the other P;.

(5) v to 2v+9, v odd

Using the above description we factor the complete graph K, 9 on V5 =
{z1,29,...,2y19}. Let L be the set of v + 9 triangles and F = {F; | i =
1,2,...,v + 2} the set of 1-factors. Put S =V; UVo and T = BULUCUD,
where C = {a;zy | vy € F;,i = 1,2,...,v} and D = F,4; - Fyy9. Then (S,T) is
an ETS(2v +9).

3. Proof of the Main Theorem for Even v

It has been established that the class of all extended triple systems is co-
extensive with the variety of quasigroups satisfying the identities z(zy) = y,
(yz)r = y (It is called a totally symmetric quasigroup). In 1980, Hilton and
Rodger [2] proved that if v is odd then those lollipops ignoring loops form a
vertex-disjoint union of cycles, and if v is even, they form a vertex-disjoint union
of unicycles with trees each of whose degree is odd.

The smallest possible mutually balanced subgraphs of K,/ are {zzz, zyy}
or {zzz,ryy,yzz}, (which can be changed to {yyy,yzz} or {zzy, yyz, zzz},
respectively), Jv] C L [v] = {0, 1, 2, ..., m — 6, m — 5, m — 3, m}, where
m=uv(v+1)/2.

Using exhaustive computer checking for v = 2, 4 and 6 the following results
were obtained:

J[2] = {0,3},
J[4] ={0,1,2,3,5,7,10},
J6] = {0,1,2,...,14,15,18,21}.

When we talk about the intersection of two one-factorizations of K,, where
v is even, we have to order the one-factors and consider their intersections. Let
F={F,F,,...,F,_1} and G = {G1,Gs,...,Gy_1} be two one-factorizations of
K,, where the F; and G; are one-factors, we define

v—1
IFNG| =Y |F,NGi|, where F; € F and G; € G.
i=1
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Let Jp(v) be a set of k such that there exist pairs of 1-factorizations of
K, having k common edges. In [6], C. C. Lindner and W. D. Wallis showed
that Jp(2) = {1}, Jr(6) = {0,1,2,3,5,6,7,9,15} and Jr(v) = {0,1,2,...,(3) =
tP\{t—1,t -2,t—-3,t -5} forv=4o0rv >8.

Lemma 3.1. If v is even, v > 8, and J[v] = I.[v] then J[2v] = I.[2v].

Proof. Let (Vi,B;) and (Vi, Bs) be two ETS(v) which have a common
weight k. Also let F and G be two 1-factorizations of K, on Vo = {z1,z2,..., 2y}
such that h = YU7! |F; N G;|. We can see that (Vi U Va, (B, F)) and (V3 U
Vs, (B2,G)) are two ETS(2v) with a common weight &k 4+ 2v 4+ 3h. Therefore

J[2v] D J[v] + 2v + 3Jp(v).
Since J[v] = I [v],
J[2v] D I[v] + 2v + 3JF(v) = I [20] \ {0,1,---,2v — 1}.

For the remaining data, let (V1,B;) and (Vi,B2) be two ETS(v) with a
common weight &k, k € {0,1,---2v — 1}, and T' = (B, F). If T* is the union of
By, {aiy1zy | vy € Fi,i=1,2,---,v—1} and {a1zx | x € Va}, then |TNT™*| = k.
This implies that J[2v] = I[2v].

Lemma 3.2. Ifv is even, v > 8, and J[v| = I [v] then J[2v+2] = I.[2v+2].

Proof. Let (V4,B;) and (Vi, Bs) be two ETS(v) with a common weight k
and F a l-factorization of K,;o on Vo = {x1, 29, ..., Zy12}. Let C = {a;zy |
ry € F, i = 1,2,...,v} and Cy = {a;zy | 27y € Foyy, @ = 1,2,...,v}, where
« is a permutation of {1,2,... v} with exactly p elements fixed (« exists for
p=0,1,2,...,0v—2,v). Then, C and C,, have p(v + 2)/2 blocks in common. Let
D = {zzy, yyy | for each zy € F,,1} and D is obtained by D replacing the first
i pairs zzy and yyy with yyz and zzz for i = 0,1,2,..., (v +2)/2. We can see
that (V3 UV, Bi UC U D) and (V; U Vy, By U C, U D) are two ETS(20) with a
common weight &k + 3p(v + 2)/2 4+ 3((v + 2)/2 — 7). Therefore

2 2
J[20 + 2] QJ[v]+3%{0,1,2,...,v—2,v}+3{0,1,2,...,“‘; 1.
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Since J[v] = I[v], then

v+ 2 v+ 2

J[204+2] 2 Lol +3=5{0.1,2,... ,u = 2,0} +3{0,1,2,....,

} = L[20+2].

Next, in order to solve for small v such that J[v] = I.[v], we need the results

obtained in reference [6] as follows:

Lemma 3.3. Let v be positive integer, v > 4. J[3v] D J[v]+J[v]+J[v]+3S,,
where S, = {0,1,2,...,v> —7,v? —6,v> — 4,0} forv>5 and Sy = {0,2,4,5,6,
8,9, 12, 16}.

Proof. Kg; can be partitioned into three vertex-disjoint K,” and a com-
plete tripartite graph K, ,,. The partition of K, , , into v? edge-disjoint trian-
gles can be constructed by a latin square of order v. Using different ETS(v) in
each K and different latin squares of order v, we have J[3v] D J[v] + J[v] +
Jw] + 38, where S, = {0,1,2,...,v? — 7,0 — 6,02 — 4,0?} for v > 5 and
Sy =1{0,2,4,5,6,8,9,12,16} (see [1]).

We start from v = 8 in order to obtain J[v] = I.[v].

v = 8. Applying the method of Lemma 3.1 to J[4], we have J[8] D J.[8] \
{4,6,12,20,22,23,25,30}. For some unsolvable data, using a similar argument to
that in Lemma 3.1, let (V1, B;) and (V1, Ba) be two ETS(4) with a common weight
of 0 or 10, and F = {F}, Fy, F3} a l-factorization of K4 on Vy, = {z1,x2,z3,24}.
Let Th = (B1,F) and T, = By, U C U D, where

C={aizy | zy € Fi} U{aj1zy | zy € F;,i = 2,3}
D ={aszz | x € Va}
or
C ={ajzy | zy € F;,i = 1,2} U{aszy | zy € F3}
D ={azzz | x € Va},
then {0,10} + {6,12} C |71 N T|. Thus J[8] D L[8] \ {4,20,23,25,30}.

Let Ey, E, E5 be the following ETS(8): Ey = {111,122, 133, 144, 155, 167,
188, 234, 256, 278, 357, 368, 458, 466, 477}, By = {111, 122, 133, 144, 155, 166, 178,



NUMBERS OF COMMON WEIGHTS FOR EXTENDED TRIPLE SYSTEMS 233

234,256, 277,288,357, 368,458,467}, E5 = {112,135, 147, 168, 222, 238, 246, 257,
334,367,444, 458, 556,666, 777, 788}.

Consider the isomorphic designs obtained from F; and E, by permuting
elements: N = (12654)(387)E1, Ny = (23)FE3. Now, N3 comes from E; with
167,357, 368,458, 466,477 replaced by 166,177,358, 367,457,468. Ny comes from
E5 with 112,222,334, 444 replaced by 221,111,443, 333. N5 comes from E3 with
112,222, 334,444,367,666, 777 replaced by 111,122, 336,667,773, 344.

Therefore |Ey N Ny| =4, |[Ea N Ny| = 23, |[E; N N3| =20, |E3 N Ng| = 30 and
|Es N N5| = 25. Thus, we have J[8] = I.[8].

v = 12. Applying the method of Lemma 3.1 to J[6], we have J[12] D
Je[12]\ {55,56, 73}. The values remaining are handled by Lemma 3.3, so we have
J[12] = I[12].

From now on, for convenience, we will write ¢; for 10 4+ ¢ and ¢ for 10.

v = 10. Using the method of Lemma 3.2, we have J[10] D J[4] 4+ 9{0, 1, 2,4}
+3{0,1,2,3). That is J[10] D L[10] \ {33,35).

Let E; be the following ETS(10): B = {111, 122,134, 156, 17t, 189, 233, 244,
957, 268, 20t, 358, 361, 379, 45¢, 469, 478, 555, 599, 666, 677, 888, 8tt}. Now, N,
comes from B with 111,122, 233, 45¢, 469, 478, 599, 677, 8¢ replaced by 112, 223,
333, 459,467, 48t, 5tt, 699, 778. Ny comes from Ny, with 778,888, 5it, 555 replaced
by 55t, ttt,887,777. Therefore |Fy N Ni| = 35 and |E; N No| = 33. Thus, we have
J[10] = L[10].

v = 14. Using the method of Lemma 3.2, we have J[14] D I.[14] \ {100}.
From the existence of Steiner triple system of order 13, we can give a Cjs-
decomposition of K3 based on Vi = {ai,a2,...,a13}, denoted by Bj. Let
Vo = Vi U{a1s} and By = {a;a;a14 | i = 2,3,...,13} U {asa1401} U {ar1a1a1},
then (V3, By U Bs) is an ETS(14). Now Bs comes from B; U By by replac-
ing asagayy, a14a14a1, araia; with ajaiaiy, ajgai402, asasas. It is shown that
|Bs N (B1 U Bz)| =100. We have J[14] = I.[14].

Lemma 3.4. J[8] = L.[8], J[10] = L[10], J[12] = .[12], and J[14] = I[14].

Applying the results in Lemma 3.4 to Lemma 3.1 and 3.2 recursively, we

obtained the following result.
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Theorem 3.5. J[v] = I.[v] for even v, v > 8.

4. Proof of the Main Theorem for Odd v

Since v is odd, the smallest cycle contains 3 edges. Thus two distinct ETS(v)
contain at least 6 different weights. After the cycle of length 3 is a cycle of
length 4 and length 5, two ETS(v) containing 7 or 9 different weights do not

exist. Therefore, J[v] C I,[v] = {0, 1, 2, ..., m — 10, m — 8, m — 6, m}, where
m=uv(v+1)/2.

Exhaustive computer checking for v = 3, 5 and 7 produced the following
results:
J[3] = {0, 6},

J[5] ={0,2,3,7,15},
J[7 ={0,1,...,14,16,17,22, 28}.

Lemma 4.1. Ifv is odd, v > 9, and J[v] = I,[v] then J[2v+ 3] = [,[2v +3].

Proof. Let (Vi,B;) and (Vi,B2) be two ETS(v) with a common weight
k and F a 1-factorization of K, 3 on Vo = {z1,z9,...,2y43}. Let C = {a;zy |
vy € Fi,i=1,2,...,0} and C, = {a;zy | 7y € Fo(3),% = 1,2,...,v}, where ais a
permutation of {1,2,...,v} with exactly p elements fixed. Then, C' and C, have
p(v+3)/2 blocks in common. It is easy to see that (V4 UVe, BilUCUF, 41 F,2)
is an ETS(2v + 3). If we replace By with By, C with Cy, or (Fy41 - Fyt2) with
(Fyio-Fyi1), (For1-For2)N(Fyi2-Fyi1) = 0), then the two ETS(2v43) produced
have a common weight k+3p(v+3)/2+2¢q(v+3), where p € {0,1,2,...,v—2,v}
and g € {0,1}. Therefore

J[2v + 3] D J[] + 3%{0, 1,2,...,v— 2,0} +2(v + 3){0, 1}.

Since J[v] = I,[v],

v+3
2

This implies that J[2v + 3] = [,[2v + 3].

J[20 + 3] 2 I[v] +3 {0,1,2,...,v — 2,0} + 2(v + 3){0,1} = I[2v + 3].

Lemma 4.2. Ifv is odd, v > 11, and J[v| = I,[v] then J[2v + 1] D I,[2v +
11\ {0,1,2,...,v}.
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Proof. Let (V4,B;) and (Vi, Bs) be two ETS(v) with a common weight k

and F a 1-factorization of K, 11 on Vo = {1, 2z2,...,2y41}. Let D = {zjziz; | i =
L2, 0+1}, C={aizy | wy € F;, i = 1,2,...,v} and Cy = {a;zy | 7y € Foy),
i=1,2,...,v}, where « is a permutation of {1,2,...,v} with exactly p elements

fixed. Then, C and C, have p(v + 1)/2 blocks in common. It is easy to see that
(ViUV,, BiUCUD) is an ETS(2v+1). If we replace B with By or C with C,,
then the two ETS(2v+1) produced have a common weight k+3p(v+1) /24 (v+1),
where p € {0,1,2,...,v — 2,v}. Therefore

1
J[2v +1] 2 J[v]—1—3%{0,1,2,...,@—2,v}+{v+1}.
Since J[v] = I,[v],

1
J[2v+1] D Io[v]+3%{0, 1,2,...,0-2,0}+{v+1} = L[2v+1]\{0,1,2,--- ,v}.

For proof of {0,1,2,---,v} C J[2v + 1], we need to embed an ETS(v) into
an ETS(2v + 9), for odd v.

Lemma 4.3. Ifv is odd, v > 11, and {0, 1, ..., v} C J[v —4] then {0, 1, 2,
oo v} CJ20+1].

Proof. Let (V1, B;) and (V1, B2) be two ETS(v — 4) with a common weight
k, where k € {0,1,2,---,v}. From construction 5 in section 2, an ETS(v — 4)
can be embedded in an ETS(2v + 1). Let K,;5 be the complete graph on vertex
set Vo = {z1,29, - ,2p45}. Set L1 = {xxip1ziqys | 1 = 1,2,---,v + 5} and
Ly = {z;zit4ziys | i = 1,2,---,v + 5}. From P1, P; U P;5 splits into four 1-
factors Fy, Fo, F3, Fy and P, U P3 splits into four 1-factors Gy, Go, G3, Gjy.
From P2, we have two sets of one-factors {F; | i = 1,2,---,v — 2} covering all
P; with j =4,5,---,(v+5)/2 and {G; | i =1,2,---,v — 2} covering all P; with
j=2,3,6,7,---,(v+5)/2. We can assume that F; = G;, for i = 5,6,---,v — 2.

Let a be a permutation of {1,2,...,v — 4} with 0 elements fixed, C =
{aizy|zy € Fyi=1,2,...,v—4} and C, = {a;zy |7y € Fopyy,i = 1,2,...,0—4},
then (By UCUL{UF, 3-F, 9)and (BoUC,U Ly UF, 5 -F,_3) have exactly
a common weight k. Thus {0,1,2,---,v} C J[2v + 1].
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Lemma 4.4. Let v be odd and v > 11. If J[v] = I,[v] and {0,1,...,v} C
J[v — 4] then J[2v + 1] = I,[2v + 1].

Proof. It follows from Lemmas 4.2 and 4.3.
For small v, we start from v = 9.

v = 9. Using a similar argument to Lemma 4.1, we have J[9] D J[3] +
9{0,1,3} + 12{0,1} = {0,6,9,12,15,18,21,27,33,39,45}. Let E; = {111, 123,
145, 169, 178, 222, 246, 257, 289, 333, 347, 359, 368, 448, 499, 556, 588, 667, 779}.
E» = AU B, where A = {111, 123, 146, 157, 189, 222, 247, 259, 268, 333, 356,
669, 677) and B = {349, 378, 444, 458, 555, 799, 888}. E3 = {118, 122, 136, 147,
159, 233, 249, 258, 267, 344, 357, 389, 455, 468, 566, 699, 779, 788}.

Now, N; comes from Fs by replacing B with {348, 379, 445, 499, 558, 788}.
Ny comes from Es by replacing {669, 997, 776, 349, 333, 444} with {334, 449,
993, 679, 666, 777}. N3 comes from Fj3 by replacing {118, 136, 344, 468} with
{113, 168, 346, 448}. Ny comes from E; by replacing {145, 448, 885, 111} with
{458, 441, 115, 888).

Table 1.
Intersection Size | Intersection Size
EyN(1347)(26)(58)Ey | 1 | E1 N (154)(289)(367)E; | 20
Ey N (162534)Ey 2 | E1N(15)(36)E, 22
Ey N (163452)Ey 3 | E1n(14)(36)E, 23
E1 N (156432) Ey 4 E1 N (12)(4857694) F 24
N (153624) £ 5 N (14)E, 25
N (2654) £ 7 (23)(476)(589)E1 26
N (165)(23) £y 8 N (123)(4789) £, 28
N (13654) £y 10 N (24)(35)Ey 29
N (132)(465) £y 11 E3 N (25)(36)(49) E3 30
N (23)(46) £y 13 | E5 NNy 31
N (12563) £y 14 | E5 N Ny 34
N (243)Ey 16 | B3N N3 35
N (1256) £ 17 | E1 NNy 37
N (13)(46) £y 19

Thus, J[9] D I,[9] \ {32}. If 32 € J[19], then the only possible mutually bal-

anced subgraph on KJ is A = {a1a1a2, azasas, asazas, a1asar, asasar, ararar}
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which can be changed to {aia1a7, araras, asazas, araszas, asasar, asasaz}. Since
the lollipops of the ETS(9) ignoring loops are cycles of length 3, 6, or 9, and
the only possible cycle is of length 6, we can add blocks B = {a4a4as, asasag,
agagas} to the partial ETS(9) A. Using a computer program showed that the
partial ETS(9) containing A U B can not be completed to an ETS(9). Thus
32 ¢ J[9]. So J[9] = L,[9] \ {32}.

v =13, v = 17 or v = 21. First, we used a similar argument to Lemma
4.1.

When v = 13, Lindner and Rosa [5] showed that for each k € A = {0, 1, 2,
-+, 14,16, 18, 20, 22, 26}, there exists a pair of Steiner triple systems of order 13
(the structure with 13 loops forms ETS(13)) intersecting in % triples. Therefore,
3A + 13 C J[13]. The missing data give the following:

Let By = {111, 124, 135, 16t5, 179, 18, 1t1ts, 223, 255, 267, 289, 2tt1, 2tats,
334, 368, 37t1, 39ts3, 3tty, 445, 46t1, 4Tty, 483, 49t, 56t9, 578, 59¢t1, btts, 66t, 699,
TTts, Ttt, 88to, Stit1, Ototy, titsts}. Eo = {11t1, 124, 137, 156, 188, 19t, ltots,
998, 235, 267, 299, 2tts, 21t 33t3, 346, 38to, 39t,, 3tt, 4dty, 457, 48t, 49ts, 41t
559, 58ts, 5tty, Slato, 66t, 68t;, 69ts, Gtsts, TT7, T89, Ttts, Ttits}. B3 = AU B,
where A = {111, 123, 145, 17ts, 189, 225, 244, 269, 2tt5, 334, 355, 381, 3tts,
49t, 568, 57t 59t1, Stte, Tt} and B = {16t, 1t1ts, 278, 2tt1, 367, 39ts, 46ts, 4Tt
48ts, 6611, Gtsts, TT9, 88t, Stats, 99ts, tit1ta}. By = {118, 122, 137, 14t5, 156, 19¢,
1ty to, 235, 249, 267, 288, 2tto, 2t 13, 33t1, 346, 38ts, 39, 3tt, 4dts, 457, 481, 4t 11,
559, 58ty, btts, btoto, 66t, 68ta, 69t1, 6tsts, 777, 789, Ttty, Ttots, 99t3}. Es = {112,
137, 14t3, 156, 188, 19¢, 1t,ty, 228, 235, 249, 267, 2tty, 2t1ts, 33t, 346, 38t3, 39ty
3t1t,, 44t,, 457, 48, Atots, 55Lo, 581, 599, 5its, 66ts, 68ty 69¢,, 6tt, T77, 789,
Tty Thots, 9tsts}. Eg = C'U D, where C = {111, 123, 145, 16¢, 17¢,, 185, 19¢3,
924, 255, 26t,, 28ts, 335, 344, 36ts, 37ts, 38, 39t1, 46t3, 48t1, 568, 5t1t3} and
D = {279, 2tts, 4Tts, 49t, 5TL, 59, 669, 677, 788, 899, tits, ttit1, titats, tatsts).
E; = EUF, where E = {16t, 18ty, 26t,, 27ts, 28t3, 29t, 3615, 37ts, 38¢, 39¢1,
A6ts, AT, 48t1, 49ty, 568, Btto, ttt1, ttsts, titits, tatats} and F = {111, 124, 135,
17y, 193, 223, 255, 334, 445, 579, btqts, 667, 699, 778, 889}. Fg = {112, 133,
145, 167, 189, 1tt1, 1tots, 223, 246, 257, 28¢, 20ts, 2t1t3, 348, 35ts, 36ts, 37t1, 39¢,
444, 479, 4tts, 4tty, 555, 56, 58t1, B9ts, 666, 68ty, 691, TTt, T8ts, Tiato, 888,
999, ttty, titit, tatsts}.
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Now, N; comes from E4 by replacing {118, 122, 14t3, 249, 288, 33t;, 346,
3tt, 4t1t1, 66t, 99t} with {11¢3, 124, 188, 228, 299, 333, 34t1, 36t, 466, 49t3, tit,
tit1t1}. No comes from E7 by replacing F' with {112, 133, 145, 179, 1t1t3, 224,
235, 344, 555, 57t1, 59t3, 669, 677, 788, 899}. N3 comes from F3 by replacing B
with {16t3, 1tt1, 27t;, 28t, 36t2, 379, 467,48ts, 4t1t3, 66¢, 6t1t1, 778, 88t3, 992,
Otsts, titata}. Ny comes from Fy by replacing {118, 122, 137, 14t3, 156, 235, 249,
267, 288, 99t5} with {113, 124, 135, 167, 188, 228, 237, 256, 299, 49¢3}. N5 comes
from Eg by replacing D with {27t 29¢, 47t, 49t5, 579, btts, 667, 699, 778, 889,
ttty, ttsts, titita, totats}. Ng comes from E4 by replacing {118, 882, 221} with
{112, 228, 881}. Ny comes from FE, by replacing {137, 156, 235,267, 33ts, 3it,
66t, 6tst3} with {135, 167, 237, 256, 33t, 3tsts, 663, 6tt}. Ng comes from Ey by
replacing {11¢,, 124, 188, 228, 299, 44t,, 4tt1, 559, btoty} with {111, 128, 14,
229, 244, 4toto, Hbta, 599, 888, titi1t1}. Ng comes from Fg by replacing {112, 133,
145, 223, 444, 555, TTt, Ttate, ttte} with {114, 123, 155, 222, 333, 445, 777, Ttts,
ttt, tatata}. Nig comes from Ey by replacing {118, 122, 14t3, 249, 288, 99¢3} with
{11t5, 124, 188, 228, 299, 49¢;}.

Table 2.

Intersection Size | Intersection | Size
Eq1 N (2t)(38t9t14759t36)Ey | 1 | E5 N Ny 48
E1 N (138)(267459) B 4 | E3N N3 50
E; N (174692538) £ 5 | EsN Ny 53
E1 N (29486)(357) By 6 | ErN N, 56
EinN (1759368)E1 8 | EgN Ny 57
EiN (27463) (598)E1 9 |E4sN Ny 65
E1 N (127589)(34) Ey 10 | E4 N Ny 66
E1 N (15)(286)(3479) Ey 11 | Ny NNy 68
EinN (384756)E1 17 | Ny N Ng 69
E1 N (13948)(567) Ey 20 | Fo N Ny 71
Eq1 N (34689)E, 21 | E5 N Ng 72
E1 N (1369)(47)E, 29 | Eg N Ng 74
EiN (4586)E1 32 | E4 N Ny 77
EinN (3457)E1 33 | Ny N Ny 80
Ei N (39)(46)E1 41 | Ng N Ny 81
EiN (78)(9t)E1 44 | B4 N Ng 85
EynN Ny 45
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We have J[13] = I,[13].

When v = 17, we have J[17] D I,[17] \ {120, 124, 140, 143, 145}. Let
By = {113, 12t,, 14t3, 15tg, 16t5, 17t7, 184, 199, 1tts, 224, 23ty, 25t4, 26t7, 27ts,
98ts, 20t5, 2tt, 335, 34t1, 36ts, 3Tts, 38t7, 30ts, Stty, 446, A5ts, ATty, 48ts, 49t7,
Atts, 557, 56t1, 58ts, 59ts, Sttr, 668, 6Tty, 69t,, 6tts, T79, T8ty , Ttts, 88t, 89ty, 9tt 1,
t1t1t1, t1tats, titats, t1tsty, tatata, tatals, tatety, t3tsty, t3tsts, ttrlr, tataty, t5tsts,
totots}, Bo = {11t, 124, 139, 157, 168, Ltity, Ltats, ltsts, ltats, 22t;, 235, 269,
978, 2tty, 2ats, 2taty, 2sts, 33ts, 348, 367, 3tte, 3tits, Stato, Stetr, 4dts, 456, 479,
Attg, Atyts, Atats, dtzty, 554, 589, 5tt, Stytr, Stots, Ststs, 66ts, 6tt1, 6tsty, 6tits,
Gtsts, TTts, Ttts, Ttite, Ttaty, Ttstr, 88t7, Stts, 8t1ts, Stots, Stets, 999, Ottr, tits,
Otots, Otsts} and Ey = {111, 123, 14t3, 159, 16t5, 17ts, 18ts, Ltts, Ltts, 224, 25t3,
W6t, 2Tte, 28t7, 29ts, 21ta, 2oto, 333, 345, 36t3, 3711, 385, 39t7, 3tte, Stoly, 446,
ATty 481y, 49tg, Atty, At1ts, 555, 567, 58ty, Stts, Stitr, Stols, 668, 69Ls, 6t1ts, Glatr,
TTT, 789, Ttts, Ttots, 88, 8tits, 999, Otty, Otots, ttta, titits, tatsta, tatsts, tstets,
tatats, tatsty, tstete, trivtr}.

Now, Nj comes from F; by removing the blocks {113, 199, 335, 557, 779,
titats, titsts, tatats, tatets, tatsts, tatste, tatrtr, tatats, tststs, tetts ) and replacing
them with {119, 133, 355, 577, 799, titats, titets, totats, totstr, tststs, tstatr,
tstete, tatata, tstste, trtrtr}. No comes from Ej by removing the blocks {113,
199, 335, 557, 779, titats, titstr, tatato, totetr, tatsts, tstrtr, tatats, tststs, totets )
and replacing them with {119, 133, 355, 577, 799, titaty, titsts, totaty, tatsts,
tststs, tstetr, tatats, tstytr}. N3 comes from E by removing the blocks {278,
2t4t7, Ttats, 88t7} and replacing them with {27t4, 28t7, 788, t4tst7}. N4 comes
from E3 by removing the blocks {tststa, tststs, tstets, tatats, tatsty, trt7t7} and
replacing them with {t3tsts, tstats, tatsty, tataty, tatsts, tet7t7}. N5 comes from
Es5 by removing the blocks {tststs, tststs, tatats, tstets} and replacing them with
{tststs, tstata, tatets, totsts).

Then |Ey N Ni| = 120, |Ey N Na| = 124, | By N N3| = 143, | B3 N Ny| = 140
and |E3 N Ns| = 145. Thus, J[17] = I,[17].

When v = 21, the only missing data is 218, we can embed ETS(5) into
ETS(21) ([3]). Thus we have J[21] = I,[21].

v =11,v = 15 or v = 19. First, we use a similar argument to Lemma 4.2.
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When v = 11, we can embed ETS(3) into ETS(11) as follows. Given a ETS(3)
(Vi, B1), where V; = {aj,as,a3}, we can decompose the graph Kg (based on
Vo = {z1, 2, -+, x8}) into three 1-factors F = {F, Fy, F3}, triangles T', lollipops
Ly, and loops Lo, where F| = {zix5, zoxg, 377, T4z}, Fo = {x124, 22277,
T51s8, T3Te), F3 = {T427, T2w5, 1378, T126}, T = {21273, T37425, T5T67,
xrrsey}, L1 = {Toxoxy, T4T4me, TexeTs, TyxgTo} and Lo = {z12171, T323T3,
T5T5Ts, Trr7rry. Let C = {ajzy | zy € Fj,i = 1,2,3}, then (V3 U Vo, By U
CUT ULy ULg) is an ETS(11). Replacing the blocks in ETS(3) on V; and
changing C by {aqpzy | 2y € Fi,i = 1,2,3} with a = (23) or (123), L; by
{zoxoxs, T3T8T6, TeTeTy, T4T4T2}, or T U L1 U Ly by {xoxszy, T42526, TeT7Ls8,
TYT1Tg, T1T1L3, T3T3L5, L5LHLT, TILTL1, LoLoLo, T4TAT4, TeLeLe, LTIy}, We
have J[11] D {0, 6} +{0,12,36} + {0,16,24} D {0, 6, 18, 22, 24, 30, 36, 58}. The
missing data gives the following.

Let By = {111, 123, 145, 167, 18t,, 10¢, 224, 255, 268, 279, 2tt1, 335, 344, 369,
37t1, 38t, 46t, 4TS, 4911, 5611, 5Tt, 589, 666, 777, 888, 999, ttt, tit1t}. By = {116,
123, 145, 177, 18t,, 19¢, 225, 244, 268, 279, 2tt,, 334, 355, 369, 37¢,, 38¢, 46t, 478,
49t,, 56t;, 57¢, 589, 667, 888, 999, ttt, titit1}. Es = {112, 133, 145, 167, 18t,
19¢, 224, 235, 268, 279, 2tt,, 344, 369, 37¢,, 38t, 46, 478, 49%,, 556, 57, 589,
Stity, 6611, TT7, 888, 999, ttt}. Ey = {118, 123, 145, 166, 179, 1¢t;, 225, 244, 267,
98t,, 29¢, 334, 355, 369, 37t,, 38t, 46t, 478, 49t,, 561, 5Tt, 589, 688, 777, 999,
tt, tittr ). Es = {112, 13t;, 144, 156, 179, 18¢, 22t, 237, 249, 25t 268, 336, 34t,
358, 399, 457, 466, 481, 555, 59¢, 67t, 69t1, 778, Ttit1, 889, ttt, ).

Now, N; comes from FE, by removing the blocks {116, 123, 145, 177, 181,
225, 244, 355, 667, 888, t1t1t1} and replacing them with {118, 124, 135, 167,
1t1t1, 223, 255, 445, 666, 777, 88t1}. Ny comes from Ej by removing the blocks
(166, 179, 1tt,, 267, 28t1, 20t, 688, t1t1¢1} and replacing them with {167, 19¢,
1t1t1, 268, 279, 2tt1, 666, 88t1}. N3 comes from Es by removing the blocks {116,
177, 18ty, 225, 244, 334, 355, 667,888, t1t1t1} and replacing them with {118, 167,
1t1t1, 224, 255, 335, 344, 666, 777, 88t1}. Ny comes from E3 by removing the
blocks {112, 133, 167, 235, 556, 5t1t1, 66t1, 777} and replacing them with {116,
123, 177, 255, 335, 56t1, 667, t1t1t1}. N5 comes from Ej5 by removing the blocks
{112, 144, 22¢, 237, 336, 466, 67t} and replacing them with {114, 122, 233, 27¢,
367, 446, 66t}. Ng comes from FEs5 by removing the blocks {466, 889, 48t1, 69¢, }
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and replacing them with {669, 884, 46t,, 89¢;}. N7 comes from E3 by removing
the blocks {112, 133, 167, 224, 235, 344 556, 511, 66t1, 777} and replacing them
with {116, 123, 177, 225, 244, 334, 355 561, 667, t1t1t1 }.

Table 3.

Intersection Size | Intersection Size
E5 N (14)(23)(6t,7t8)E 1 | ELN(46)(57)E; | 32
E5 N (3865t14t79) E5 2 |E1NEy 37
E1 N (13764)(2958) Ey 3 |E1N(26)(37)E, | 38
E1 N (1263)(475)Ey 4 |EaN N 43
E;1 N (135624)E, 5 |EyNEy 44
E1 N (156)(2734) Ey 7 | B3N Ny 45
EinN (14)(2736)E1 10 | E4N Ny 46
EinN (157426)E1 11 | E5 N Ny 47
EinN (234756)E1 14 | B3N Ny 49
Ey N (14)(36)(57) Ex 19 | Es N N5 50
Ey1 N (2734)E; 20 | E> N Ny 55
E1 N (265)(47)Ey 23 | E5 N Ng 56
Ey N (257634)E, 25

We have J[11] = I,[11].

When v = 15, we can obtain J[15] D I,[15] \ {1,83} using Lemma 3.3. Let
By = AU B, where A = {123, 1tt5, 1t1ts, ltots, 28t, 29, 2t5ts, 335, 38t1, 39¢3,
Stty, Stits, 48ts, 40ts, dtty, At1ts, BSts, 5L, St1ts, Btots, 68ts, 69ts, 6tsts, T77, T8ts,
TOty, Ttts, Thits, tatsts, tatats} and B = {118, 146, 157, 199, 22t,, 247, 256, 2tsts,
344, 367, 455, 66, 6t1t1, 889, tity, totats}. Ni is obtained from E; by removing
the blocks B and replacing them with {111, 145, 167, 189, 222, 246, 257, 2tyts,
347, 366, 444, 556, 6tt1, 888, 999, ttt, titit1, totats, tststs}. Then |Ey N N;| = 83
and |(1529¢,4) (3t1) (6tt4)(Tt38t5) E1 N E1| = 1. Thus we have J[15] = I,[15].

For v = 19, the only missing data is 177, we can embed ETS(5) into ETS(19)
([3]). Thus we have J[19] = I,[19].

Lemma 4.5. J[9] = I,[9]\ {32} and J[v] = I[v] forv = 11,13,15,17,19, 21.

Applying Lemma 4.5 to Lemmas 4.1 and 4.4 recursively, we obtained the

following result.
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Theorem 4.6. J[v] = I,[v] for odd v, v > 11.

5. Conclusions.

By Theorems 3.5 and 4.6, we obtained the following results:

Main Theorem. For even v, J[v] = I.[v] if v > 8; and for odd v, J[v] =

Lv] if v > 11.
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