SOOCHOW JOURNAL OF MATHEMATICS Volume 27, No. 2, pp. 227-242, April 2001

NUMBERS OF COMMON WEIGHTS FOR EXTENDED TRIPLE SYSTEMS

$\mathbf{B}\mathbf{Y}$

CHIN-MEI FU AND WEN-CHUNG HUANG

Abstract. Let K_v be the complete graph on v vertices and K_v^+ the graph obtained by attaching a loop to each vertex of K_v . An extended triple system of order v is a pair (V, B), where V is a v-set and B is a collection of non-ordered triples of elements in V (each triple may have repeated elements), such that every pair of elements of V (not necessarily distinct) belongs to exactly one triple. It has been established that an extended triple system of order v corresponds to a decomposition of edges of K_v^+ into triangles, lollipops, and loops. In this paper the decomposition of K_v^+ is used to construct two extended triple systems of order v with each prescribed intersection numbers in the following set:

(1) $\{0, 1, 2, \dots, m-6, m-5, m-3, m\}$, for even $v \ge 8$, and

(2) {0, 1, 2, ..., m-11, m-10, m-8, m-6, m}, for odd $v \ge 11$, where m = v(v+1)/2.

1. Introduction

The concept of an extended triple system was introduced by D. M. Johnson and N. S. Mendelsohn [4]. An extended triple system of order v (ETS(v)) is a pair (V, B), where V is a v-set and B is a collection of non-ordered triples of elements in V (each triple may have repeated elements), such that every pair of elements of V (not necessarily distinct) belongs to exactly one triple. An element of B is called a block. There are three types of blocks: (1) {x, x, x} (2) {y, y, z} (3) {a, b, c} (we write the blocks as xxx, yyz and abc for brevity).

We want to characterize extended triple systems similar to Steiner triple systems (which are equivelent to a C_3 -decompositions of the complete graph) by graph decompositions. Just of all we will introduce some graph terminology.

Received March 02, 2000; revised October 18, 2000.

A loop is an edge whose two ends are the same. A link is an edge whose two ends are distinct. A graph on two vertices which consists of one loop and one link is called a lollipop. As usual, K_v denotes the complete graph on v vertices, while K_v^+ denotes the graph obtained by attaching a loop to each vertex of K_v . K_3 is called a triangle. Thus an extended triple system of order v can be regarded as a partition of the edges of K_v^+ into triangles, lollipops, and loops.

The necessary and sufficient conditions for the existence of an extended triple system of order v with no idempotent is $v \equiv 0 \pmod{3}$. This design has $s_v = v(v+3)/6$ blocks. Lo Faro [7] constructed two non-idempotent extended triple systems of order v with intersection numbers in following set: (i) $\{0, 1, \ldots, s_v - 3, s_v\}$ for $v \equiv 0 \pmod{3}$, $v \neq 9$ and (ii) $\{0, 1, 2, \ldots, 12, 14, 15, 18\}$ for v = 9.

For extended triple systems, we define an intersection in the following sense. Let (V, T_1) and (V, T_2) be two ETSs with the same point set V. The two systems have a common weight k if $k = \sum \omega(B)$, where B is a common block in T_1 and T_2 , and

$$\omega(B) = \begin{cases} 1 & \text{if } B = xxx \\ 2 & \text{if } B = yyz \\ 3 & \text{if } B = abc \end{cases}$$

In this case, we write $|T_1 \cap T_2| = k$.

Let J[v] be the set of all integers k such that there exists a pair of extended triple systems of order v which have a common weight k. Let $I_e[v] =$ $\{0, 1, 2, \ldots, m-6, m-5, m-3, m\}$ and $I_o[v] = \{0, 1, 2, \ldots, m-11, m-10, m-8, m-6, m\}$, where m = v(v+1)/2.

Main Theorem. For even v, $J[v] = I_e[v]$ if $v \ge 8$; and for odd v, $J[v] = I_o[v]$ if $v \ge 11$.

Let A and B be two sets of integers and k a positive integer. We define $A + B = \{a + b \mid a \in A, b \in B\}, k + A = \{k\} + A$, and $kA = \{k \cdot a \mid a \in A\}$.

2. Auxiliary Constructions of ETS

In order to count the common weights, we need some special embedding constructions. Therefore, let (V_1, B) be an ETS(v), where $V_1 = \{a_1, a_2, \ldots, a_v\}$.

(1) v to 2v, v even

Let $\mathcal{F} = \{F_i \mid i = 1, 2, \dots, v - 1\}$ be a 1-factorization of K_v on $V_2 = \{x_1, x_2, \dots, x_v\}$. Let $S = V_1 \cup V_2$ and $T = B \cup C \cup D$, where $C = \{a_i xy \mid xy \in F_i, i = 1, 2, \dots, v - 1\}$ and $D = \{a_v xx \mid \text{for each } x \in V_2\}$. Then (S, T) is an ETS(2v) denoted by $(V_1 \cup V_2, (B, \mathcal{F}))$.

(2) v to 2v + 2, v even

Let $\mathcal{F} = \{F_i \mid i = 1, 2, ..., v + 1\}$ be a 1-factorization of K_{v+2} on $V_2 = \{x_1, x_2, ..., x_{v+2}\}$. Let $S = V_1 \cup V_2$ and $T = B \cup C \cup D$, where $C = \{a_i xy \mid xy \in F_i, i = 1, 2, ..., v\}$ and $D = \{xxy, yyy \mid \text{for each } xy \in F_{v+1}\}$. Then (S, T) is an ETS(2v + 2).

Let $\mathcal{F} = \{F_i \mid i = 1, 2, \dots, 2v - 1\}$ be a 1-factorization of K_{2v} on $N = \{1, 2, \dots, 2v\}$. If $F_a, F_b \in \mathcal{F}$, the notation $F_a \cdot F_b$ ([7]) will denote the following set of blocks: $\{11x_{i_2}, x_{i_2}x_{i_2}x_{i_3}, \dots, x_{i_r}x_{i_r}1\} \cup \{x_{j_1}x_{j_1}x_{j_2}, x_{j_2}x_{j_2}x_{j_3}, \dots, x_{j_s}x_{j_s}x_{j_1}\} \cup \dots \cup \{x_{p_1}x_{p_1}x_{p_2}, x_{p_2}x_{p_2}x_{p_3}, \dots, x_{p_t}x_{p_t}x_{p_1}\} \cup \{x_{q_1}x_{q_1}x_{q_2}, x_{q_2}x_{q_2}x_{q_3}, \dots, x_{q_m}x_{q_m}x_{q_1}\}$ where $x_{j_1} = min(N \setminus \{1, x_{i_2}, x_{i_3}, \dots, x_{i_r}\}), \dots, x_{q_1} = min(N \setminus \{1, x_{i_2}, x_{i_3}, \dots, x_{i_{r-1}}x_{j_1}, x_{j_2}, x_{j_3}, \dots, x_{j_s}, \dots, x_{p_1}, x_{p_2}, x_{p_3}, \dots, x_{p_t}\}); F_a = \{1x_{i_2}, x_{i_3}x_{i_4}, \dots, x_{i_{r-1}}x_{i_r}, x_{j_1}x_{j_2}, x_{j_3}x_{j_4}, \dots, x_{j_{s-1}}x_{j_s}, \dots, x_{p_1}x_{p_2}, x_{p_3}x_{p_4}, \dots, x_{p_{t-1}}x_{p_t}, x_{q_1}x_{q_2}, x_{q_3}x_{q_4}, \dots, x_{q_{m-1}}x_{q_m}\}$ and $F_b = \{x_{i_2}x_{i_3}, x_{i_4}x_{i_5}, \dots, x_{i_r}1, x_{j_2}x_{j_3}, x_{j_4}x_{j_5}, \dots, x_{j_s}x_{j_1}, \dots, x_{p_2}x_{p_3}, x_{p_4}x_{p_5}, \dots, x_{p_t}x_{p_1}, x_{q_2}x_{q_3}, x_{q_4}x_{q_5}, \dots, x_{q_m}x_{q_1}\}.$

(3) v to 2v + 3, v odd

Let $\mathcal{F} = \{F_i \mid i = 1, 2, ..., v + 2\}$ be a 1-factorization of K_{v+3} on $V_2 = \{x_1, x_2, ..., x_{v+3}\}$. Let $S = V_1 \cup V_2$ and $T = B \cup C \cup D$, where $C = \{a_i xy \mid xy \in F_i, i = 1, 2, ..., v\}$ and $D = F_{v+1} \cdot F_{v+2}$. Then (S, T) is an ETS(2v+3).

(4) v to 2v + 1, v odd

Let $\mathcal{F} = \{F_i \mid i = 1, 2, ..., v\}$ be a 1-factorization of K_{v+1} on $V_2 = \{x_1, x_2, ..., x_{v+1}\}$. Let $S = V_1 \cup V_2$ and $T = B \cup C \cup D$, where $C = \{a_i xy \mid xy \in F_i, i = 1, 2, ..., v\}$ and $D = \{x_i x_i x_i \mid i = 1, 2, ..., v+1\}$. Then (S, T) is an ETS(2v + 1).

Let K_{2v} be a complete graph on 2v vertices $(2v \ge 8)$. The edges of K_{2v} fall into v disjoint classes P_1, P_2, \ldots, P_v with $\{i, k\} \in P_j$ if and only if $i - k \equiv j \mod(2v)$. R. G. Stanton and I. P. Goulden [8] have proved that:

P1. If 2x + 1 < v then $P_{2x} \cup P_{2x+1}$ splits into four one-factors.

P2. The graph K_{2v} may be factored into a set of 2v triangles covering P_1 , P_{2j} , P_{2j+1} (2j + 1 < v) and a set of 2v - 7 one factors covering the other P_i .

(5) v to 2v + 9, v odd

Using the above description we factor the complete graph K_{v+9} on $V_2 = \{x_1, x_2, \ldots, x_{v+9}\}$. Let L be the set of v + 9 triangles and $\mathcal{F} = \{F_i \mid i = 1, 2, \ldots, v + 2\}$ the set of 1-factors. Put $S = V_1 \cup V_2$ and $T = B \cup L \cup C \cup D$, where $C = \{a_i xy \mid xy \in F_i, i = 1, 2, \ldots, v\}$ and $D = F_{v+1} \cdot F_{v+2}$. Then (S, T) is an ETS(2v + 9).

3. Proof of the Main Theorem for Even v

It has been established that the class of all extended triple systems is coextensive with the variety of quasigroups satisfying the identities x(xy) = y, (yx)x = y (It is called a totally symmetric quasigroup). In 1980, Hilton and Rodger [2] proved that if v is odd then those lollipops ignoring loops form a vertex-disjoint union of cycles, and if v is even, they form a vertex-disjoint union of unicycles with trees each of whose degree is odd.

The smallest possible mutually balanced subgraphs of K_v^+ are $\{xxx, xyy\}$ or $\{xxx, xyy, yzz\}$, (which can be changed to $\{yyy, yxx\}$ or $\{xxy, yyz, zzz\}$, respectively), $J[v] \subseteq I_e[v] = \{0, 1, 2, ..., m - 6, m - 5, m - 3, m\}$, where m = v(v + 1)/2.

Using exhaustive computer checking for v = 2, 4 and 6 the following results were obtained:

$$\begin{split} J[2] &= \{0,3\}, \\ J[4] &= \{0,1,2,3,5,7,10\}, \\ J[6] &= \{0,1,2,\ldots,14,15,18,21\}. \end{split}$$

When we talk about the intersection of two one-factorizations of K_v , where v is even, we have to order the one-factors and consider their intersections. Let $\mathcal{F} = \{F_1, F_2, \ldots, F_{v-1}\}$ and $\mathcal{G} = \{G_1, G_2, \ldots, G_{v-1}\}$ be two one-factorizations of K_v , where the F_i and G_i are one-factors, we define

$$|\mathcal{F} \cap \mathcal{G}| = \sum_{i=1}^{v-1} |F_i \cap G_i|$$
, where $F_i \in \mathcal{F}$ and $G_i \in \mathcal{G}$.

Let $J_F(v)$ be a set of k such that there exist pairs of 1-factorizations of K_v having k common edges. In [6], C. C. Lindner and W. D. Wallis showed that $J_F(2) = \{1\}, J_F(6) = \{0, 1, 2, 3, 5, 6, 7, 9, 15\}$ and $J_F(v) = \{0, 1, 2, ..., \binom{v}{2} = t\} \setminus \{t - 1, t - 2, t - 3, t - 5\}$ for v = 4 or $v \ge 8$.

Lemma 3.1. If v is even, $v \ge 8$, and $J[v] = I_e[v]$ then $J[2v] = I_e[2v]$.

Proof. Let (V_1, B_1) and (V_1, B_2) be two ETS(v) which have a common weight k. Also let \mathcal{F} and \mathcal{G} be two 1-factorizations of K_v on $V_2 = \{x_1, x_2, \ldots, x_v\}$ such that $h = \sum_{i=1}^{v-1} |F_i \cap G_i|$. We can see that $(V_1 \cup V_2, (B_1, \mathcal{F}))$ and $(V_1 \cup V_2, (B_2, \mathcal{G}))$ are two ETS(2v) with a common weight k + 2v + 3h. Therefore

$$J[2v] \supseteq J[v] + 2v + 3J_F(v)$$

Since $J[v] = I_e[v]$,

$$J[2v] \supseteq I_e[v] + 2v + 3J_F(v) = I_e[2v] \setminus \{0, 1, \cdots, 2v - 1\}.$$

For the remaining data, let (V_1, B_1) and (V_1, B_2) be two ETS(v) with a common weight $k, k \in \{0, 1, \dots 2v - 1\}$, and $T = (B_1, \mathcal{F})$. If T^* is the union of $B_2, \{a_{i+1}xy \mid xy \in F_i, i = 1, 2, \dots, v - 1\}$ and $\{a_1xx \mid x \in V_2\}$, then $|T \cap T^*| = k$. This implies that $J[2v] = I_e[2v]$.

Lemma 3.2. If v is even, $v \ge 8$, and $J[v] = I_e[v]$ then $J[2v+2] = I_e[2v+2]$.

Proof. Let (V_1, B_1) and (V_1, B_2) be two ETS(v) with a common weight kand \mathcal{F} a 1-factorization of K_{v+2} on $V_2 = \{x_1, x_2, \ldots, x_{v+2}\}$. Let $C = \{a_i xy \mid xy \in F_i, i = 1, 2, \ldots, v\}$ and $C_\alpha = \{a_i xy \mid xy \in F_{\alpha(i)}, i = 1, 2, \ldots, v\}$, where α is a permutation of $\{1, 2, \ldots, v\}$ with exactly p elements fixed (α exists for $p = 0, 1, 2, \ldots, v - 2, v$). Then, C and C_α have p(v+2)/2 blocks in common. Let $D = \{xxy, yyy \mid \text{for each } xy \in F_{v+1}\}$ and D^i is obtained by D replacing the first i pairs xxy and yyy with yyx and xxx for $i = 0, 1, 2, \ldots, (v+2)/2$. We can see that $(V_1 \cup V_2, B_1 \cup C \cup D)$ and $(V_1 \cup V_2, B_2 \cup C_\alpha \cup D^i)$ are two ETS(2v) with a common weight k + 3p(v+2)/2 + 3((v+2)/2 - i). Therefore

$$J[2v+2] \supseteq J[v] + 3\frac{v+2}{2}\{0, 1, 2, \dots, v-2, v\} + 3\{0, 1, 2, \dots, \frac{v+2}{2}\}$$

Since $J[v] = I_e[v]$, then

$$J[2v+2] \supseteq I_e[v] + 3\frac{v+2}{2}\{0, 1, 2, \dots, v-2, v\} + 3\{0, 1, 2, \dots, \frac{v+2}{2}\} = I_e[2v+2].$$

Next, in order to solve for small v such that $J[v] = I_e[v]$, we need the results obtained in reference [6] as follows:

Lemma 3.3. Let v be positive integer, $v \ge 4$. $J[3v] \supseteq J[v] + J[v] + J[v] + 3S_v$, where $S_v = \{0, 1, 2, ..., v^2 - 7, v^2 - 6, v^2 - 4, v^2\}$ for $v \ge 5$ and $S_4 = \{0, 2, 4, 5, 6, 8, 9, 12, 16\}$.

Proof. K_{3v}^+ can be partitioned into three vertex-disjoint K_v^+ and a complete tripartite graph $K_{v,v,v}$. The partition of $K_{v,v,v}$ into v^2 edge-disjoint triangles can be constructed by a latin square of order v. Using different $\operatorname{ETS}(v)$ in each K_v^* and different latin squares of order v, we have $J[3v] \supseteq J[v] + J[v] + J[v] + 3S_v$ where $S_v = \{0, 1, 2, \ldots, v^2 - 7, v^2 - 6, v^2 - 4, v^2\}$ for $v \ge 5$ and $S_4 = \{0, 2, 4, 5, 6, 8, 9, 12, 16\}$ (see [1]).

We start from v = 8 in order to obtain $J[v] = I_e[v]$.

 $\boldsymbol{v} = \boldsymbol{8}$. Applying the method of Lemma 3.1 to J[4], we have $J[8] \supseteq J_e[8] \setminus \{4, 6, 12, 20, 22, 23, 25, 30\}$. For some unsolvable data, using a similar argument to that in Lemma 3.1, let (V_1, B_1) and (V_1, B_2) be two ETS(4) with a common weight of 0 or 10, and $\mathcal{F} = \{F_1, F_2, F_3\}$ a 1-factorization of K_4 on $V_2 = \{x_1, x_2, x_3, x_4\}$. Let $T_1 = (B_1, \mathcal{F})$ and $T_2 = B_2 \cup C \cup D$, where

$$C = \{a_1 x y \mid x y \in F_1\} \cup \{a_{i+1} x y \mid x y \in F_i, i = 2, 3\}$$
$$D = \{a_2 x x \mid x \in V_2\}$$

or

$$C = \{a_i xy \mid xy \in F_i, i = 1, 2\} \cup \{a_4 xy \mid xy \in F_3\}$$
$$D = \{a_3 xx \mid x \in V_2\},$$

then $\{0, 10\} + \{6, 12\} \subseteq |T_1 \cap T_2|$. Thus $J[8] \supseteq I_e[8] \setminus \{4, 20, 23, 25, 30\}$.

Let E_1, E_2, E_3 be the following ETS(8): $E_1 = \{111, 122, 133, 144, 155, 167, 188, 234, 256, 278, 357, 368, 458, 466, 477\}, E_2 = \{111, 122, 133, 144, 155, 166, 178, 178,$

234, 256, 277, 288, 357, 368, 458, 467, $E_3 = \{112, 135, 147, 168, 222, 238, 246, 257, 334, 367, 444, 458, 556, 666, 777, 788\}.$

Consider the isomorphic designs obtained from E_1 and E_2 by permuting elements: $N_1 = (12654)(387)E_1$, $N_2 = (23)E_2$. Now, N_3 comes from E_1 with 167, 357, 368, 458, 466, 477 replaced by 166, 177, 358, 367, 457, 468. N_4 comes from E_3 with 112, 222, 334, 444 replaced by 221, 111, 443, 333. N_5 comes from E_3 with 112, 222, 334, 444, 367, 666, 777 replaced by 111, 122, 336, 667, 773, 344.

Therefore $|E_1 \cap N_1| = 4$, $|E_2 \cap N_2| = 23$, $|E_1 \cap N_3| = 20$, $|E_3 \cap N_4| = 30$ and $|E_3 \cap N_5| = 25$. Thus, we have $J[8] = I_e[8]$.

v = 12. Applying the method of Lemma 3.1 to J[6], we have $J[12] \supseteq J_e[12] \setminus \{55, 56, 73\}$. The values remaining are handled by Lemma 3.3, so we have $J[12] = I_e[12]$.

From now on, for convenience, we will write t_i for 10 + i and t for 10.

v = 10. Using the method of Lemma 3.2, we have $J[10] \supseteq J[4] + 9\{0, 1, 2, 4\} + 3\{0, 1, 2, 3\}$. That is $J[10] \supseteq I_e[10] \setminus \{33, 35\}$.

Let E_1 be the following ETS(10): $E_1 = \{111, 122, 134, 156, 17t, 189, 233, 244, 257, 268, 29t, 358, 36t, 379, 45t, 469, 478, 555, 599, 666, 677, 888, 8tt\}$. Now, N_1 comes from E_1 with 111, 122, 233, 45t, 469, 478, 599, 677, 8tt replaced by 112, 223, 333, 459, 467, 48t, 5tt, 699, 778. N_2 comes from N_1 with 778, 888, 5tt, 555 replaced by 55t, ttt, 887, 777. Therefore $|E_1 \cap N_1| = 35$ and $|E_1 \cap N_2| = 33$. Thus, we have $J[10] = I_e[10]$.

v = 14. Using the method of Lemma 3.2, we have $J[14] \supseteq I_e[14] \setminus \{100\}$. From the existence of Steiner triple system of order 13, we can give a C_3 -decomposition of K_{13} based on $V_1 = \{a_1, a_2, \ldots, a_{13}\}$, denoted by B_1 . Let $V_2 = V_1 \cup \{a_{14}\}$ and $B_2 = \{a_i a_i a_{14} \mid i = 2, 3, \ldots, 13\} \cup \{a_{14} a_{14} a_1\} \cup \{a_1 a_1 a_1\}$, then $(V_2, B_1 \cup B_2)$ is an ETS(14). Now B_3 comes from $B_1 \cup B_2$ by replacing $a_2 a_2 a_{14}, a_{14} a_{14} a_1, a_{14} a_{14} a_1$ with $a_1 a_1 a_1$, $a_{14} a_{14} a_2, a_2 a_2 a_2$. It is shown that $|B_3 \cap (B_1 \cup B_2)| = 100$. We have $J[14] = I_e[14]$.

Lemma 3.4. $J[8] = I_e[8], J[10] = I_e[10], J[12] = I_e[12], and J[14] = I_e[14].$

Applying the results in Lemma 3.4 to Lemma 3.1 and 3.2 recursively, we obtained the following result.

Theorem 3.5. $J[v] = I_e[v]$ for even $v, v \ge 8$.

4. Proof of the Main Theorem for Odd v

Since v is odd, the smallest cycle contains 3 edges. Thus two distinct ETS(v) contain at least 6 different weights. After the cycle of length 3 is a cycle of length 4 and length 5, two ETS(v) containing 7 or 9 different weights do not exist. Therefore, $J[v] \subseteq I_o[v] = \{0, 1, 2, ..., m - 10, m - 8, m - 6, m\}$, where m = v(v + 1)/2.

Exhaustive computer checking for v = 3, 5 and 7 produced the following results:

 $J[3] = \{0, 6\},$ $J[5] = \{0, 2, 3, 7, 15\},$ $J[7] = \{0, 1, \dots, 14, 16, 17, 22, 28\}.$

Lemma 4.1. If v is odd, $v \ge 9$, and $J[v] = I_o[v]$ then $J[2v+3] = I_o[2v+3]$.

Proof. Let (V_1, B_1) and (V_1, B_2) be two ETS(v) with a common weight k and \mathcal{F} a 1-factorization of K_{v+3} on $V_2 = \{x_1, x_2, \ldots, x_{v+3}\}$. Let $C = \{a_i xy \mid xy \in F_i, i = 1, 2, \ldots, v\}$ and $C_\alpha = \{a_i xy \mid xy \in F_{\alpha(i)}, i = 1, 2, \ldots, v\}$, where α is a permutation of $\{1, 2, \ldots, v\}$ with exactly p elements fixed. Then, C and C_α have p(v+3)/2 blocks in common. It is easy to see that $(V_1 \cup V_2, B_1 \cup C \cup F_{v+1} \cdot F_{v+2})$ is an ETS(2v+3). If we replace B_1 with B_2 , C with C_α or $(F_{v+1} \cdot F_{v+2})$ with $(F_{v+2} \cdot F_{v+1}), ((F_{v+1} \cdot F_{v+2}) \cap (F_{v+2} \cdot F_{v+1}) = \emptyset)$, then the two ETS(2v+3) produced have a common weight k + 3p(v+3)/2 + 2q(v+3), where $p \in \{0, 1, 2, \ldots, v-2, v\}$ and $q \in \{0, 1\}$. Therefore

$$J[2v+3] \supseteq J[v] + 3\frac{v+3}{2}\{0, 1, 2, \dots, v-2, v\} + 2(v+3)\{0, 1\}.$$

Since $J[v] = I_o[v]$,

 $J[2v+3] \supseteq I_o[v] + 3\frac{v+3}{2}\{0,1,2,\ldots,v-2,v\} + 2(v+3)\{0,1\} = I_o[2v+3].$ This implies that $J[2v+3] = I_o[2v+3].$

Lemma 4.2. If v is odd, $v \ge 11$, and $J[v] = I_o[v]$ then $J[2v+1] \supseteq I_o[2v+1] \setminus \{0, 1, 2, ..., v\}$.

Proof. Let (V_1, B_1) and (V_1, B_2) be two ETS(v) with a common weight kand \mathcal{F} a 1-factorization of K_{v+1} on $V_2 = \{x_1, x_2, \ldots, x_{v+1}\}$. Let $D = \{x_i x_i x_i \mid i = 1, 2, \cdots, v+1\}$, $C = \{a_i xy \mid xy \in F_i, i = 1, 2, \ldots, v\}$ and $C_\alpha = \{a_i xy \mid xy \in F_{\alpha(i)}, i = 1, 2, \ldots, v\}$, where α is a permutation of $\{1, 2, \ldots, v\}$ with exactly p elements fixed. Then, C and C_α have p(v+1)/2 blocks in common. It is easy to see that $(V_1 \cup V_2, B_1 \cup C \cup D)$ is an ETS(2v+1). If we replace B_1 with B_2 or C with C_α , then the two ETS(2v+1) produced have a common weight k+3p(v+1)/2+(v+1), where $p \in \{0, 1, 2, \ldots, v-2, v\}$. Therefore

$$J[2v+1] \supseteq J[v] + 3\frac{v+1}{2} \{0, 1, 2, \dots, v-2, v\} + \{v+1\}.$$

Since $J[v] = I_o[v]$,

$$J[2v+1] \supseteq I_o[v] + 3\frac{v+1}{2} \{0, 1, 2, \dots, v-2, v\} + \{v+1\} = I_o[2v+1] \setminus \{0, 1, 2, \dots, v\}.$$

For proof of $\{0, 1, 2, \dots, v\} \subset J[2v+1]$, we need to embed an ETS(v) into an ETS(2v+9), for odd v.

Lemma 4.3. If v is odd, $v \ge 11$, and $\{0, 1, ..., v\} \subset J[v-4]$ then $\{0, 1, 2, ..., v\} \subset J[2v+1]$.

Proof. Let (V_1, B_1) and (V_1, B_2) be two $\operatorname{ETS}(v - 4)$ with a common weight k, where $k \in \{0, 1, 2, \dots, v\}$. From construction 5 in section 2, an $\operatorname{ETS}(v - 4)$ can be embedded in an $\operatorname{ETS}(2v + 1)$. Let K_{v+5} be the complete graph on vertex set $V_2 = \{x_1, x_2, \dots, x_{v+5}\}$. Set $L_1 = \{x_i x_{i+1} x_{i+3} \mid i = 1, 2, \dots, v + 5\}$ and $L_2 = \{x_i x_{i+4} x_{i+5} \mid i = 1, 2, \dots, v + 5\}$. From **P1**, $P_4 \cup P_5$ splits into four 1-factors F_1, F_2, F_3, F_4 and $P_2 \cup P_3$ splits into four 1-factors G_1, G_2, G_3, G_4 . From **P2**, we have two sets of one-factors $\{F_i \mid i = 1, 2, \dots, v - 2\}$ covering all P_j with $j = 4, 5, \dots, (v+5)/2$ and $\{G_i \mid i = 1, 2, \dots, v - 2\}$ covering all P_j with $j = 2, 3, 6, 7, \dots, (v+5)/2$. We can assume that $F_i = G_i$, for $i = 5, 6, \dots, v - 2$.

Let α be a permutation of $\{1, 2, \ldots, v - 4\}$ with 0 elements fixed, $C = \{a_i xy \mid xy \in F_i, i = 1, 2, \ldots, v - 4\}$ and $C_\alpha = \{a_i xy \mid xy \in F_{\alpha(i)}, i = 1, 2, \ldots, v - 4\}$, then $(B_1 \cup C \cup L_1 \cup F_{v-3} \cdot F_{v-2})$ and $(B_2 \cup C_\alpha \cup L_2 \cup F_{v-2} \cdot F_{v-3})$ have exactly a common weight k. Thus $\{0, 1, 2, \cdots, v\} \subset J[2v + 1]$. **Lemma 4.4.** Let v be odd and $v \ge 11$. If $J[v] = I_o[v]$ and $\{0, 1, ..., v\} \subset J[v-4]$ then $J[2v+1] = I_o[2v+1]$.

Proof. It follows from Lemmas 4.2 and 4.3.

For small v, we start from v = 9.

v = 9. Using a similar argument to Lemma 4.1, we have $J[9] \supseteq J[3] + 9\{0, 1, 3\} + 12\{0, 1\} = \{0, 6, 9, 12, 15, 18, 21, 27, 33, 39, 45\}$. Let $E_1 = \{111, 123, 145, 169, 178, 222, 246, 257, 289, 333, 347, 359, 368, 448, 499, 556, 588, 667, 779\}$. $E_2 = A \cup B$, where $A = \{111, 123, 146, 157, 189, 222, 247, 259, 268, 333, 356, 669, 677\}$ and $B = \{349, 378, 444, 458, 555, 799, 888\}$. $E_3 = \{118, 122, 136, 147, 159, 233, 249, 258, 267, 344, 357, 389, 455, 468, 566, 699, 779, 788\}$.

Now, N_1 comes from E_2 by replacing B with {348, 379, 445, 499, 558, 788}. N_2 comes from E_2 by replacing {669, 997, 776, 349, 333, 444} with {334, 449, 993, 679, 666, 777}. N_3 comes from E_3 by replacing {118, 136, 344, 468} with {113, 168, 346, 448}. N_4 comes from E_1 by replacing {145, 448, 885, 111} with {458, 441, 115, 888}.

Intersection	Size	Intersection	Size
$E_1 \cap (1347)(26)(58)E_1$	1	$E_1 \cap (154)(289)(367)E_1$	20
$E_1 \cap (162534)E_1$	2	$E_1 \cap (15)(36)E_1$	22
$E_1 \cap (163452)E_1$	3	$E_1 \cap (14)(36)E_1$	23
$E_1 \cap (156432)E_1$	4	$E_1 \cap (12)(4857694)E_1$	24
$E_1 \cap (153624)E_1$	5	$E_1 \cap (14)E_1$	25
$E_1 \cap (2654)E_1$	7	$E_1 \cap (23)(476)(589)E_1$	26
$E_1 \cap (165)(23)E_1$	8	$E_1 \cap (123)(4789)E_1$	28
$E_1 \cap (13654)E_1$	10	$E_1 \cap (24)(35)E_1$	29
$E_1 \cap (132)(465)E_1$	11	$E_3 \cap (25)(36)(49)E_3$	30
$E_1 \cap (23)(46)E_1$	13	$E_2 \cap N_1$	31
$E_1 \cap (12563)E_1$	14	$E_2 \cap N_2$	34
$E_1 \cap (243)E_1$	16	$E_3 \cap N_3$	35
$E_1 \cap (1256)E_1$	17	$E_1 \cap N_4$	37
$E_1 \cap (13)(46)E_1$	19		

Table 1.

Thus, $J[9] \supseteq I_o[9] \setminus \{32\}$. If $32 \in J[19]$, then the only possible mutually balanced subgraph on K_9^+ is $A = \{a_1a_1a_2, a_2a_2a_3, a_3a_3a_4, a_1a_3a_7, a_2a_4a_7, a_7a_7a_7\}$

which can be changed to $\{a_1a_1a_7, a_7a_7a_2, a_2a_2a_4, a_1a_2a_3, a_3a_4a_7, a_3a_3a_3\}$. Since the lollipops of the ETS(9) ignoring loops are cycles of length 3, 6, or 9, and the only possible cycle is of length 6, we can add blocks $B = \{a_4a_4a_5, a_5a_5a_6, a_6a_6a_4\}$ to the partial ETS(9) A. Using a computer program showed that the partial ETS(9) containing $A \cup B$ can not be completed to an ETS(9). Thus $32 \notin J[9]$. So $J[9] = I_o[9] \setminus \{32\}$.

v = 13, v = 17 or v = 21. First, we used a similar argument to Lemma 4.1.

When v = 13, Lindner and Rosa [5] showed that for each $k \in A = \{0, 1, 2, \dots, 14, 16, 18, 20, 22, 26\}$, there exists a pair of Steiner triple systems of order 13 (the structure with 13 loops forms ETS(13)) intersecting in k triples. Therefore, $3A + 13 \subseteq J[13]$. The missing data give the following:

 $334, 368, 37t_1, 39t_3, 3tt_2, 445, 46t_1, 47t_2, 48t_3, 49t, 56t_2, 578, 59t_1, 5tt_3, 66t, 699,$ $228, 235, 267, 299, 2tt_3, 2t_1t_2, 33t_3, 346, 38t_2, 39t_1, 3tt, 44t_2, 457, 48t, 49t_3, 4t_1t_1, 3t_1, 3t_2, 3t_3, 3t_1, 3t_2, 3t_3, 3t_1, 3t_2, 3t_1, 3t_2, 3t_3, 3t_1, 3t_2, 3t_3, 3t_1, 3t_1, 3t_2, 3t_1, 3t_2, 3t_3, 3t_1, 3t_1, 3t_2, 3t_1, 3t_1, 3t_2, 3t_1, 3t_1, 3t_2, 3t_1, 3t_1, 3t_1, 3t_2, 3t_1, 3t_1, 3t_1, 3t_1, 3t_2, 3t_1, 3t_1,$ $559, 58t_3, 5tt_1, 5t_2t_2, 66t, 68t_1, 69t_2, 6t_3t_3, 777, 789, 7tt_2, 7t_1t_3$. $E_3 = A \cup B$, where $A = \{111, 123, 145, 17t_2, 189, 225, 244, 269, 2t_2t_3, 334, 355, 38t_1, 3tt_3, t_3, t_4, t_{12}, t_{13}, t_{1$ $\{49t, 568, 57t_3, 59t_1, 5tt_2, 7tt\}$ and $B = \{16t, 1t_1t_3, 278, 2tt_1, 367, 39t_2, 46t_2, 47t_1, 47t_1, 47t_2, 47t_3, 47t_1, 47t_2, 47t_3, 47t_1, 47t_2, 47t_3, 47t_3, 47t_1, 47t_2, 47t_3, 47t_1, 47t_2, 47t_3, 47t_1, 47t_2, 47t_3, 47t_1, 47t_2, 47t_2, 47t_1, 47t_2, 47t_2, 47t_1, 47t_2, 47t_2, 47t_1, 47t_1, 47t_2, 47t_1, 47t_2, 47t_1, 47t_1, 47t_2, 47t_1, 47t_1, 47t_2, 47t_1, 47t_1, 47t_2, 47t_1, 47t_1, 47t_1, 47t_2, 47t_1, 47t_1$ $48t_3, 66t_1, 6t_3t_3, 779, 88t, 8t_2t_2, 99t_3, t_1t_1t_2$. $E_4 = \{118, 122, 137, 14t_3, 156, 19t, 18t_3, 18t_4, 18t_$ $1t_1t_2, 235, 249, 267, 288, 2tt_2, 2t_1t_3, 33t_1, 346, 38t_3, 39t_2, 3tt, 44t_2, 457, 48t, 4t_1t_1, 34t_2, 457, 48t_3, 4t_1t_1, 34t_2, 457, 48t_1, 4t_1t_2, 4t_2, 4t_1t_2, 4t_2, 4t_2, 4t_1t_2, 4t_2, 4t_2, 4t_1t_2, 4t_2, 4t_2, 4t_1t_2, 4t_2, 4t_2, 4t_2, 4t_2, 4t_2, 4t_2, 4t_1t_2, 4t_2, 4t_2, 4t_1t_2, 4t_2, 4t_2, 4t_2, 4t_1t_2, 4t_2, 4t_2, 4t_2, 4t_1t_2, 4t_2, 4t_2, 4t_1t_2, 4t_2, 4t_2, 4t_1t_2, 4t_2, 4t_2, 4t_2, 4t_1t_2, 4t_2, 4t_2, 4t_1t_2, 4t_2, 4t_2, 4t_2, 4t_2, 4t_2, 4t_2, 4t_1t_2, 4t_2, 4t_2,$ $137, 14t_3, 156, 188, 19t, 1t_1t_2, 228, 235, 249, 267, 2tt_2, 2t_1t_3, 33t, 346, 38t_3, 39t_2, 346, 38t_3, 39t_2, 346, 38t_3, 34t_2, 346, 38t_3, 34t_3, 3$ $3t_1t_1,\ 44t_1,\ 457,\ 48t,\ 4t_2t_2,\ 55t_2,\ 58t_1,\ 599,\ 5tt_3,\ 66t_3,\ 68t_2,\ 69t_1,\ 6tt,\ 777,\ 789,$ $7tt_1, 7t_2t_3, 9t_3t_3$. $E_6 = C \cup D$, where $C = \{111, 123, 145, 16t, 17t_1, 18t_2, 19t_3, 19t_$ $224, 255, 26t_1, 28t_3, 335, 344, 36t_2, 37t_3, 38t, 39t_1, 46t_3, 48t_1, 568, 5t_1t_3$ and $D = \{279, 2tt_2, 47t_2, 49t, 57t, 59t_2, 669, 677, 788, 899, ttt_3, tt_1t_1, t_1t_2t_2, t_2t_3t_3\}.$ $E_7 = E \cup F$, where $E = \{16t, 18t_2, 26t_1, 27t_2, 28t_3, 29t, 36t_3, 37t_3, 38t, 39t_1, 18t_2, 26t_1, 27t_2, 28t_3, 29t_1, 36t_3, 37t_3, 38t_1, 39t_1, 18t_2, 28t_3, 28t_1, 28t_2, 28t_3, 2$ $145, 167, 189, 1tt_1, 1t_2t_3, 223, 246, 257, 28t, 29t_2, 2t_1t_3, 348, 35t_2, 36t_3, 37t_1, 39t_2, 37t_2, 37t_3, 38t_3, 37t_1, 39t_2, 37t_2, 37t_3, 38t_3, 37t_2, 37t_2, 37t_2, 37t_2, 37t_3, 37t_2, 37t_2$ $444, 479, 4tt_3, 4t_1t_2, 555, 56t, 58t_1, 59t_3, 666, 68t_2, 69t_1, 77t, 78t_3, 7t_2t_2, 888, 68t_2, 69t_3, 68t_2, 69t_3, 7t_2t_3, 7t_2t_2, 888, 60t_3, 6$ 999, ttt_2 , $t_1t_1t_1$, $t_3t_3t_3$.

Now, N_1 comes from E_4 by replacing {118, 122, 14 t_3 , 249, 288, 33 t_1 , 346, $3tt, 4t_1t_1, 66t, 99t_3$ with $\{11t_3, 124, 188, 228, 299, 333, 34t_1, 36t, 466, 49t_3, ttt,$ $t_1t_1t_1$. N_2 comes from E_7 by replacing F with {112, 133, 145, 179, 1 t_1t_3 , 224, 235, 344, 555, $57t_1$, $59t_3$, 669, 677, 788, 899. N_3 comes from E_3 by replacing B with $\{16t_3, 1tt_1, 27t_1, 28t, 36t_2, 379, 467, 48t_2, 4t_1t_3, 66t, 6t_1t_1, 778, 88t_3, 99t_2, t_1t_2, t_2t_3, t_$ $9t_3t_3, t_1t_2t_2$. N_4 comes from E_4 by replacing {118, 122, 137, 14t_3, 156, 235, 249, $267, 288, 99t_3$ with $\{11t_3, 124, 135, 167, 188, 228, 237, 256, 299, 49t_3\}$. N₅ comes from E_6 by replacing D with $\{27t_2, 29t, 47t, 49t_2, 579, 5tt_2, 667, 699, 778, 889,$ $ttt_1, tt_3t_3, t_1t_1t_2, t_2t_2t_3$. N₆ comes from E_4 by replacing {118, 882, 221} with $\{112, 228, 881\}$. N₇ comes from E_2 by replacing $\{137, 156, 235, 267, 33t_3, 3tt,$ $66t, 6t_3t_3$ with {135, 167, 237, 256, 33t, $3t_3t_3$, $66t_3$, $6t_1$. N₈ comes from E_2 by replacing $\{11t_1, 124, 188, 228, 299, 44t_2, 4t_1t_1, 559, 5t_2t_2\}$ with $\{111, 128, 14t_1, 128, 14$ 229, 244, $4t_2t_2$, $55t_2$, 599, 888, $t_1t_1t_1$. N₉ comes from E_8 by replacing {112, 133, $145, 223, 444, 555, 77t, 7t_2t_2, ttt_2$ with $\{114, 123, 155, 222, 333, 445, 777, 7tt_2, ttt_2, ttt_2, ttt_2\}$ $ttt, t_2t_2t_2$. N_{10} comes from E_4 by replacing {118, 122, 14t_3, 249, 288, 99t_3} with $\{11t_3, 124, 188, 228, 299, 49t_3\}.$

Intersection	Size	Intersection	Size
$E_1 \cap (2t)(38t_2t_14759t_36)E_1$	1	$E_5 \cap N_2$	48
$E_1 \cap (138)(267459)E_1$	4	$E_3 \cap N_3$	50
$E_1 \cap (174692538)E_1$	5	$E_5 \cap N_4$	53
$E_1 \cap (29486)(357)E_1$	6	$E_7 \cap N_2$	56
$E_1 \cap (1759368)E_1$	8	$E_6 \cap N_5$	57
$E_1 \cap (27463)(598)E_1$	9	$E_4 \cap N_4$	65
$E_1 \cap (127589)(34)E_1$	10	$E_4 \cap N_1$	66
$E_1 \cap (15)(286)(3479)E_1$	11	$N_1 \cap N_4$	68
$E_1 \cap (384756)E_1$	17	$N_4 \cap N_6$	69
$E_1 \cap (13948)(567)E_1$	20	$E_2 \cap N_7$	71
$E_1 \cap (34689)E_1$	21	$E_2 \cap N_8$	72
$E_1 \cap (1369)(47)E_1$	29	$E_8 \cap N_9$	74
$E_1 \cap (4586)E_1$	32	$E_4 \cap N_{10}$	77
$E_1 \cap (3457)E_1$	33	$N_1 \cap N_{10}$	80
$E_1 \cap (39)(46)E_1$	41	$N_6 \cap N_{10}$	81
$E_1 \cap (78)(9t)E_1$	44	$E_4 \cap N_6$	85
$E_2 \cap N_1$	45		

Table 2.

We have $J[13] = I_o[13]$.

When v = 17, we have $J[17] \supseteq I_o[17] \setminus \{120, 124, 140, 143, 145\}$. Let $E_1 = \{113, 12t_1, 14t_3, 15t_6, 16t_5, 17t_7, 18t_4, 199, 1tt_2, 224, 23t_2, 25t_4, 26t_7, 27t_6, 28t_5, 29t_3, 2tt, 335, 34t_1, 36t_3, 37t_5, 38t_7, 39t_6, 3tt_4, 446, 45t_2, 47t_4, 48t_6, 49t_7, 4tt_5, 557, 56t_1, 58t_3, 59t_5, 5tt_7, 668, 67t_2, 69t_4, 6tt_6, 779, 78t_1, 7tt_3, 88t, 89t_2, 9tt_1, t_1t_1, t_1t_2t_3, t_1t_4t_6, t_1t_5t_7, t_2t_2t_2, t_2t_4t_5, t_2t_6t_7, t_3t_3t_4, t_3t_5t_6, t_3t_7t_7, t_4t_4t_7, t_5t_5t_5, t_6t_6t_6\}, E_2 = \{11t, 124, 139, 157, 168, 1t_1t_1, 1t_2t_7, 1t_3t_6, 1t_4t_5, 22t_1, 235, 269, 278, 2tt_2, 2t_3t_3, 2t_4t_7, 2t_5t_6, 33t_5, 348, 367, 3tt_4, 3t_1t_3, 3t_2t_2, 3t_6t_7, 44t_3, 456, 479, 4tt_6, 4t_1t_5, 4t_2t_4, 4t_7t_7, 55t_4, 589, 5tt, 5t_1t_7, 5t_2t_6, 5t_3t_5, 66t_2, 6tt_1, 6t_3t_7, 6t_4t_6, 6t_5t_5, 77t_6, 7tt_3, 7t_1t_2, 7t_4t_4, 7t_5t_7, 88t_7, 8tt_5, 8t_1t_4, 8t_2t_3, 8t_6t_6, 999, 9tt_7, 9t_1t_6, 9t_2t_5, 9t_3t_4\}$ and $E_3 = \{111, 123, 14t_3, 159, 16t_5, 17t_7, 18t_6, 1tt_4, 1t_1t_2, 224, 25t_3, 26t, 27t_6, 28t_7, 29t_5, 2t_1t_4, 2t_2t_2, 333, 345, 36t_3, 37t_1, 38t_5, 39t_7, 3tt_6, 3t_2t_4, 446, 47t_4, 48t_2, 49t_6, 4tt_7, 4t_1t_5, 555, 567, 58t_4, 5tt_5, 5t_1t_7, 5t_2t_6, 668, 69t_4, 6t_1t_6, 6t_2t_7, 777, 789, 7tt_3, 7t_2t_5, 88t, 8t_1t_3, 999, 9tt_1, 9t_2t_3, ttt_2, t_1t_1t_1, t_3t_3t_4, t_3t_5t_5, t_3t_6t_7, t_4t_4t_6, t_4t_5t_7, t_5t_6t_6, t_7t_7\}.$

Now, N_1 comes from E_1 by removing the blocks {113, 199, 335, 557, 779, $t_1t_4t_6, t_1t_5t_7, t_2t_4t_5, t_2t_6t_7, t_3t_3t_4, t_3t_5t_6, t_3t_7t_7, t_4t_4t_7, t_5t_5t_5, t_6t_6t_6$ } and replacing them with {119, 133, 355, 577, 799, $t_1t_4t_5, t_1t_6t_7, t_2t_4t_6, t_2t_5t_7, t_3t_3t_5, t_3t_4t_7, t_3t_6t_6, t_4t_4t_4, t_5t_5t_6, t_7t_7t_7$ }. N_2 comes from E_1 by removing the blocks {113, 199, 335, 557, 779, $t_1t_4t_6, t_1t_5t_7, t_2t_2t_2, t_2t_6t_7, t_3t_5t_6, t_3t_7t_7, t_4t_4t_7, t_5t_5t_5, t_6t_6t_6$ } and replacing them with {119, 133, 355, 577, 799, $t_1t_4t_6, t_1t_5t_7, t_2t_2t_2, t_2t_6t_7, t_3t_5t_6, t_3t_7t_7, t_4t_4t_7, t_5t_5t_5, t_6t_6t_6$ } and replacing them with {119, 133, 355, 577, 799, $t_1t_4t_6, t_2t_2t_7, t_2t_6t_6, t_3t_5t_5, t_3t_6t_7, t_4t_4t_6, t_5t_7t_7$ }. N_3 comes from E_2 by removing the blocks {278, $2t_4t_7, 7t_4t_4, 88t_7$ } and replacing them with {27t_4, 28t_7, 788, $t_4t_4t_7$ }. N_4 comes from E_3 by removing the blocks { $t_3t_3t_4, t_3t_5t_5, t_3t_6t_7, t_4t_4t_6, t_4t_5t_7, t_7t_7t_7$ } and replacing them with { $t_3t_3t_3, t_3t_4t_6, t_3t_5t_7, t_4t_4t_6, t_5t_7t_7$ }. N_5 comes from E_3 by removing the blocks { $t_3t_3t_4, t_3t_5t_5, t_4t_4t_6, t_5t_7t_7$ }. N_5 comes from E_3 by removing the blocks { $t_3t_3t_4, t_3t_5t_5, t_4t_4t_6, t_5t_7t_7$ }.

Then $|E_1 \cap N_1| = 120$, $|E_1 \cap N_2| = 124$, $|E_2 \cap N_3| = 143$, $|E_3 \cap N_4| = 140$ and $|E_3 \cap N_5| = 145$. Thus, $J[17] = I_o[17]$.

When v = 21, the only missing data is 218, we can embed ETS(5) into ETS(21) ([3]). Thus we have $J[21] = I_o[21]$.

v = 11, v = 15 or v = 19. First, we use a similar argument to Lemma 4.2.

When v = 11, we can embed ETS(3) into ETS(11) as follows. Given a ETS(3) (V_1, B_1) , where $V_1 = \{a_1, a_2, a_3\}$, we can decompose the graph K_8^+ (based on $V_2 = \{x_1, x_2, \dots, x_8\}$) into three 1-factors $\mathcal{F} = \{F_1, F_2, F_3\}$, triangles T, lollipops L_1 , and loops L_2 , where $F_1 = \{x_1x_5, x_2x_6, x_3x_7, x_4x_8\}$, $F_2 = \{x_1x_4, x_2x_7, x_5x_8, x_3x_6\}$, $F_3 = \{x_4x_7, x_2x_5, x_3x_8, x_1x_6\}$, $T = \{x_1x_2x_3, x_3x_4x_5, x_5x_6x_7, x_7x_8x_1\}$, $L_1 = \{x_2x_2x_4, x_4x_4x_6, x_6x_6x_8, x_8x_8x_2\}$ and $L_2 = \{x_1x_1x_1, x_3x_3x_3, x_5x_5x_5, x_7x_7x_7\}$. Let $C = \{a_ixy \mid xy \in F_i, i = 1, 2, 3\}$, then $(V_1 \cup V_2, B_1 \cup C \cup T \cup L_1 \cup L_2)$ is an ETS(11). Replacing the blocks in ETS(3) on V_1 and changing C by $\{a_{\alpha(i)}xy \mid xy \in F_i, i = 1, 2, 3\}$ with $\alpha = (23)$ or (123), L_1 by $\{x_2x_2x_8, x_8x_8x_6, x_6x_6x_4, x_4x_4x_2\}$, or $T \cup L_1 \cup L_2$ by $\{x_2x_3x_4, x_4x_5x_6, x_6x_7x_8, x_8x_1x_2, x_1x_1x_3, x_3x_3x_5, x_5x_5x_7, x_7x_7x_1, x_2x_2x_2, x_4x_4x_4, x_6x_6x_6, x_8x_8x_8\}$, we have $J[11] \supseteq \{0, 6\} + \{0, 12, 36\} + \{0, 16, 24\} \supseteq \{0, 6, 18, 22, 24, 30, 36, 58\}$. The missing data gives the following.

Let $E_1 = \{111, 123, 145, 167, 18t_1, 19t, 224, 255, 268, 279, 2tt_1, 335, 344, 369, 37t_1, 38t, 46t, 478, 49t_1, 56t_1, 57t, 589, 666, 777, 888, 999, ttt, <math>t_1t_1t_1\}$. $E_2 = \{116, 123, 145, 177, 18t_1, 19t, 225, 244, 268, 279, 2tt_1, 334, 355, 369, 37t_1, 38t, 46t, 478, 49t_1, 56t_1, 57t, 589, 667, 888, 999, ttt, <math>t_1t_1t_1\}$. $E_3 = \{112, 133, 145, 167, 18t_1, 19t, 224, 235, 268, 279, 2tt_1, 344, 369, 37t_1, 38t, 46t, 478, 49t_1, 556, 57t, 589, 5t_1t_1, 66t_1, 777, 888, 999, ttt\}$. $E_4 = \{118, 123, 145, 166, 179, 1tt_1, 225, 244, 267, 28t_1, 29t, 334, 355, 369, 37t_1, 38t, 46t, 478, 49t_1, 56t_1, 57t, 589, 688, 777, 999, ttt, <math>t_1t_1t_1\}$. $E_5 = \{112, 13t_1, 144, 156, 179, 18t, 22t, 237, 249, 25t_1, 268, 336, 34t, 358, 399, 457, 466, 48t_1, 555, 59t, 67t, 69t_1, 778, 7t_1t_1, 889, ttt_1\}$.

Now, N_1 comes from E_2 by removing the blocks {116, 123, 145, 177, 18 t_1 , 225, 244, 355, 667, 888, $t_1t_1t_1$ } and replacing them with {118, 124, 135, 167, 1 t_1t_1 , 223, 255, 445, 666, 777, 88 t_1 }. N_2 comes from E_4 by removing the blocks {166, 179, 1 tt_1 , 267, 28 t_1 , 29t, 688, $t_1t_1t_1$ } and replacing them with {167, 19t, 1 t_1t_1 , 268, 279, 2 tt_1 , 666, 88 t_1 }. N_3 comes from E_2 by removing the blocks {116, 177, 18 t_1 , 225, 244, 334, 355, 667, 888, $t_1t_1t_1$ } and replacing them with {118, 167, 1 t_1t_1 , 224, 255, 335, 344, 666, 777, 88 t_1 }. N_4 comes from E_3 by removing the blocks {116, 123, 177, 255, 335, 56 t_1 , 667, $t_1t_1t_1$ }. N_5 comes from E_5 by removing the blocks {112, 134, 22 t_1 , 237, 336, 466, 67t} and replacing them with {114, 122, 233, 27 t_1 , 367, 446, 66t}. N_6 comes from E_5 by removing the blocks {466, 889, 48 t_1 , 69 t_1 }

and replacing them with $\{669, 884, 46t_1, 89t_1\}$. N_7 comes from E_3 by removing the blocks $\{112, 133, 167, 224, 235, 344, 556, 5t_1t_1, 66t_1, 777\}$ and replacing them with $\{116, 123, 177, 225, 244, 334, 355, 56t_1, 667, t_1t_1t_1\}$.

Intersection	Size	Intersection	Size						
$E_5 \cap (14)(23)(6t_17t_8)E_5$	1	$E_1 \cap (46)(57)E_1$	32						
$E_5 \cap (3865t_14t79)E_5$	2	$E_1 \cap E_4$	37						
$E_1 \cap (13764)(2958)E_1$	3	$E_1 \cap (26)(37)E_1$	38						
$E_1 \cap (1263)(475)E_1$	4	$E_2 \cap N_1$	43						
$E_1 \cap (135624)E_1$	5	$E_2 \cap E_4$	44						
$E_1 \cap (156)(2734)E_1$	7	$E_3 \cap N_7$	45						
$E_1 \cap (14)(2736)E_1$	10	$E_4 \cap N_2$	46						
$E_1 \cap (157426)E_1$	11	$E_2 \cap N_3$	47						
$E_1 \cap (234756)E_1$	14	$E_3 \cap N_4$	49						
$E_1 \cap (14)(36)(57)E_1$	19	$E_5 \cap N_5$	50						
$E_1 \cap (2734)E_1$	20	$E_2 \cap N_2$	55						
$E_1 \cap (265)(47)E_1$	23	$E_5 \cap N_6$	56						
$E_1 \cap (257634)E_1$	25								

Table 3

We have $J[11] = I_0[11]$.

When v = 15, we can obtain $J[15] \supseteq I_o[15] \setminus \{1, 83\}$ using Lemma 3.3. Let $E_1 = A \cup B$, where $A = \{123, 1tt_5, 1t_1t_4, 1t_2t_3, 28t, 29t_1, 2t_3t_4, 335, 38t_1, 39t_3, 3tt_2, 3t_4t_5, 48t_2, 49t_5, 4tt_4, 4t_1t_3, 58t_3, 59t, 5t_1t_5, 5t_2t_4, 68t_4, 69t_2, 6t_3t_5, 777, 78t_5, 79t_4, 7tt_3, 7t_1t_2, t_3t_3t_3, t_4t_4t_4\}$ and $B = \{118, 146, 157, 199, 22t_2, 247, 256, 2t_5t_5, 344, 367, 455, 66t, 6t_1t_1, 889, ttt_1, t_2t_2t_5\}$. N_1 is obtained from E_1 by removing the blocks B and replacing them with $\{111, 145, 167, 189, 222, 246, 257, 2t_2t_5, 347, 366, 444, 556, 6tt_1, 888, 999, ttt, t_1t_1t_1, t_2t_2t_2, t_5t_5t_5\}$. Then $|E_1 \cap N_1| = 83$ and $|(1529t_24)(3t_1)(6tt_4)(7t_38t_5)E_1 \cap E_1| = 1$. Thus we have $J[15] = I_0[15]$.

For v = 19, the only missing data is 177, we can embed ETS(5) into ETS(19) ([3]). Thus we have $J[19] = I_o[19]$.

Lemma 4.5. $J[9] = I_o[9] \setminus \{32\}$ and $J[v] = I_o[v]$ for v = 11, 13, 15, 17, 19, 21.

Applying Lemma 4.5 to Lemmas 4.1 and 4.4 recursively, we obtained the following result.

Theorem 4.6. $J[v] = I_o[v]$ for odd $v, v \ge 11$.

5. Conclusions.

By Theorems 3.5 and 4.6, we obtained the following results:

Main Theorem. For even v, $J[v] = I_e[v]$ if $v \ge 8$; and for odd v, $J[v] = I_o[v]$ if $v \ge 11$.

References

- H.-L. Fu, On the construction of certain types of latin squares having prescribed intersections, Ph. D. thesis, Auburn University, 1980.
- [2] A. J. W. Hilton and C. A. Rodger, Graphs and configurations, A look at graph theory, (Proc. colloq., Cerisy) (French), 1980, 55-64.
- [3] D. G. Hoffman and C. A. Rodger, *Embedding totally symmetric quasigroups*, Annals of Discrete Mathematics, 34(1987), 249-259.
- [4] D. M. Johnson and N. S. Mendelsohn, Extended triple systems, Aequationes Math., 3(1972) 291-298.
- [5] C. C. Lindner and A. Rosa, Steiner triple systems having a prescribed number of triples in common, Canad. J. Math., 27(1975), 1166-1175.
- [6] C. C. Lindner and W.D. Wallis, A note on one-factorizations having a prescribed number of edges in common, Annals of Discrete Math., 12(1982), 203-209.
- [7] G. Lo Faro, A class of extended triple systems and numbers of common triples, Australas. J. Combinat., 12(1995), 209-224.
- [8] R. G. Stanton and I. P. Goulden, Graph Decomposition, general triple systems and cyclic triple systems, Aequat. Math., 22(1981), 1-28.

Department of Mathematics, Tamkang University, Tamsui, Taipei Shien, Taiwan, Republic of China.

Department of Mathematics, Soochow University, Taipei, Taiwan, Republic of China.