NUMBERS OF COMMON WEIGHTS FOR EXTENDED TRIPLE SYSTEMS

BY
CHIN-MEI FU AND WEN-CHUNG HUANG

Abstract

Let K_{v} be the complete graph on v vertices and K_{v}^{+}the graph obtained by attaching a loop to each vertex of K_{v}. An extended triple system of order v is a pair (V, B), where V is a v-set and B is a collection of non-ordered triples of elements in V (each triple may have repeated elements), such that every pair of elements of V (not necessarily distinct) belongs to exactly one triple. It has been established that an extended triple system of order v corresponds to a decomposition of edges of K_{v}^{+}into triangles, lollipops, and loops. In this paper the decomposition of K_{v}^{+} is used to construct two extended triple systems of order v with each prescribed intersection numbers in the following set: (1) $\{0,1,2, \ldots, m-6, m-5, m-3, m\}$, for even $v \geq 8$, and (2) $\{0,1,2, \ldots, m-11, m-10, m-8, m-6, m\}$, for odd $v \geq 11$, where $m=v(v+1) / 2$.

1. Introduction

The concept of an extended triple system was introduced by D. M. Johnson and N. S. Mendelsohn [4]. An extended triple system of order $v(\operatorname{ETS}(v))$ is a pair (V, B), where V is a v-set and B is a collection of non-ordered triples of elements in V (each triple may have repeated elements), such that every pair of elements of V (not necessarily distinct) belongs to exactly one triple. An element of B is called a block. There are three types of blocks: (1) $\{x, x, x\}(2)\{y, y, z\}$ (3) $\{a, b, c\}$ (we write the blocks as $x x x, y y z$ and $a b c$ for brevity).

We want to characterize extended triple systems similar to Steiner triple systems (which are equivelent to a C_{3}-decompositions of the complete graph) by graph decompositions. Just of all we will introduce some graph terminology.

[^0]A loop is an edge whose two ends are the same. A link is an edge whose two ends are distinct. A graph on two vertices which consists of one loop and one link is called a lollipop. As usual, K_{v} denotes the complete graph on v vertices, while K_{v}^{+}denotes the graph obtained by attaching a loop to each vertex of $K_{v} . K_{3}$ is called a triangle. Thus an extended triple system of order v can be regarded as a partition of the edges of K_{v}^{+}into triangles, lollipops, and loops.

The necessary and sufficient conditions for the existence of an extended triple system of order v with no idempotent is $v \equiv 0(\bmod 3)$. This design has $s_{v}=v(v+$ 3)/6 blocks. Lo Faro [7] constructed two non-idempotent extended triple systems of order v with intersection numbers in following set: (i) $\left\{0,1, \ldots, s_{v}-3, s_{v}\right\}$ for $v \equiv 0(\bmod 3), v \neq 9$ and (ii) $\{0,1,2, \ldots, 12,14,15,18\}$ for $v=9$.

For extended triple systems, we define an intersection in the following sense.
Let $\left(V, T_{1}\right)$ and $\left(V, T_{2}\right)$ be two ETSs with the same point set V. The two systems have a common weight k if $k=\sum \omega(B)$, where B is a common block in T_{1} and T_{2}, and

$$
\omega(B)=\left\{\begin{array}{l}
1 \text { if } B=x x x \\
2 \text { if } B=y y z \\
3 \text { if } B=a b c
\end{array}\right.
$$

In this case, we write $\left|T_{1} \cap T_{2}\right|=k$.
Let $J[v]$ be the set of all integers k such that there exists a pair of extended triple systems of order v which have a common weight k. Let $I_{e}[v]=$ $\{0,1,2, \ldots, m-6, m-5, m-3, m\}$ and $I_{o}[v]=\{0,1,2, \ldots, m-11, m-10, m-$ $8, m-6, m\}$, where $m=v(v+1) / 2$.

Main Theorem. For even $v, J[v]=I_{e}[v]$ if $v \geq 8$; and for odd $v, J[v]=$ $I_{o}[v]$ if $v \geq 11$.

Let A and B be two sets of integers and k a positive integer. We define $A+B=\{a+b \mid a \in A, b \in B\}, k+A=\{k\}+A$, and $k A=\{k \cdot a \mid a \in A\}$.

2. Auxiliary Constructions of ETS

In order to count the common weights, we need some special embedding constructions. Therefore, let $\left(V_{1}, B\right)$ be an $\operatorname{ETS}(v)$, where $V_{1}=\left\{a_{1}, a_{2}, \ldots, a_{v}\right\}$.

(1) v to $2 v, v$ even

Let $\mathcal{F}=\left\{F_{i} \mid i=1,2, \ldots, v-1\right\}$ be a 1-factorization of K_{v} on $V_{2}=\left\{x_{1}, x_{2}\right.$, $\left.\ldots, x_{v}\right\}$. Let $S=V_{1} \cup V_{2}$ and $T=B \cup C \cup D$, where $C=\left\{a_{i} x y \mid x y \in F_{i}, i=\right.$ $1,2, \ldots, v-1\}$ and $D=\left\{a_{v} x x \mid\right.$ for each $\left.x \in V_{2}\right\}$. Then (S, T) is an $\operatorname{ETS}(2 v)$ denoted by $\left(V_{1} \cup V_{2},(B, \mathcal{F})\right)$.
(2) v to $2 v+2, v$ even

Let $\mathcal{F}=\left\{F_{i} \mid i=1,2, \ldots, v+1\right\}$ be a 1-factorization of K_{v+2} on $V_{2}=$ $\left\{x_{1}, x_{2}, \ldots, x_{v+2}\right\}$. Let $S=V_{1} \cup V_{2}$ and $T=B \cup C \cup D$, where $C=\left\{a_{i} x y \mid x y \in\right.$ $\left.F_{i}, i=1,2, \ldots, v\right\}$ and $D=\left\{x x y, y y y \mid\right.$ for each $\left.x y \in F_{v+1}\right\}$. Then (S, T) is an $\operatorname{ETS}(2 v+2)$.

Let $\mathcal{F}=\left\{F_{i} \mid i=1,2, \ldots, 2 v-1\right\}$ be a 1-factorization of $K_{2 v}$ on $N=$ $\{1,2, \ldots, 2 v\}$. If $F_{a}, F_{b} \in \mathcal{F}$, the notation $F_{a} \cdot F_{b}$ ([7]) will denote the following set of blocks: $\left\{11 x_{i_{2}}, x_{i_{2}} x_{i_{2}} x_{i_{3}}, \ldots, x_{i_{r}} x_{i_{r}} 1\right\} \cup\left\{x_{j_{1}} x_{j_{1}} x_{j_{2}}, x_{j_{2}} x_{j_{2}} x_{j_{3}}, \ldots\right.$, $\left.x_{j_{s}} x_{j_{s}} x_{j_{1}}\right\} \cup \ldots \cup\left\{x_{p_{1}} x_{p_{1}} x_{p_{2}}, x_{p_{2}} x_{p_{2}} x_{p_{3}}, \ldots, x_{p_{t}} x_{p_{t}} x_{p_{1}}\right\} \cup\left\{x_{q_{1}} x_{q_{1}} x_{q_{2}}, x_{q_{2}} x_{q_{2}} x_{q_{3}}\right.$, $\left.\ldots, x_{q_{m}} x_{q_{m}} x_{q_{1}}\right\}$ where $x_{j_{1}}=\min \left(N \backslash\left\{1, x_{i_{2}}, x_{i_{3}}, \ldots, x_{i_{r}}\right\}\right), \ldots, x_{q_{1}}=\min (N \backslash\{1$, $\left.\left.x_{i_{2}}, x_{i_{3}}, \ldots, x_{i_{r}}, x_{j_{1}}, x_{j_{2}}, x_{j_{3}}, \ldots, x_{j_{s}}, \ldots, x_{p_{1}}, x_{p_{2}}, x_{p_{3}}, \ldots, x_{p_{t}}\right\}\right) ; F_{a}=\left\{1 x_{i_{2}}\right.$, $x_{i_{3}} x_{i_{4}}, \ldots, x_{i_{r-1}} x_{i_{r}}, x_{j_{1}} x_{j_{2}}, x_{j_{3}} x_{j_{4}}, \ldots, x_{j_{s-1}} x_{j_{s}}, \ldots, x_{p_{1}} x_{p_{2}}, x_{p_{3}} x_{p_{4}}, \ldots, x_{p_{t-1}}$ $\left.x_{p_{t}}, x_{q_{1}} x_{q_{2}}, x_{q_{3}} x_{q_{4}}, \ldots, x_{q_{m-1}} x_{q_{m}}\right\}$ and $F_{b}=\left\{x_{i_{2}} x_{i_{3}}, x_{i_{4}} x_{i_{5}}, \ldots, x_{i_{r}} 1, x_{j_{2}} x_{j_{3}}, x_{j_{4}}\right.$ $\left.x_{j_{5}}, \ldots, x_{j_{s}} x_{j_{1}}, \ldots, x_{p_{2}} x_{p_{3}}, x_{p_{4}} x_{p_{5}}, \ldots, x_{p_{t}} x_{p_{1}}, x_{q_{2}} x_{q_{3}}, x_{q_{4}} x_{q_{5}}, \ldots, x_{q_{m}} x_{q_{1}}\right\}$.
(3) v to $2 v+3, v$ odd

Let $\mathcal{F}=\left\{F_{i} \mid i=1,2, \ldots, v+2\right\}$ be a 1-factorization of K_{v+3} on $V_{2}=$ $\left\{x_{1}, x_{2}, \ldots, x_{v+3}\right\}$. Let $S=V_{1} \cup V_{2}$ and $T=B \cup C \cup D$, where $C=\left\{a_{i} x y \mid x y \in\right.$ $\left.F_{i}, i=1,2, \ldots, v\right\}$ and $D=F_{v+1} \cdot F_{v+2}$. Then (S, T) is an $\operatorname{ETS}(2 v+3)$.
(4) v to $2 v+1, v$ odd

Let $\mathcal{F}=\left\{F_{i} \mid i=1,2, \ldots, v\right\}$ be a 1-factorization of K_{v+1} on $V_{2}=\left\{x_{1}, x_{2}\right.$, $\left.\ldots, x_{v+1}\right\}$. Let $S=V_{1} \cup V_{2}$ and $T=B \cup C \cup D$, where $C=\left\{a_{i} x y \mid x y \in F_{i}, i=1\right.$, $2, \ldots, v\}$ and $D=\left\{x_{i} x_{i} x_{i} \mid i=1,2, \cdots, v+1\right\}$. Then (S, T) is an $\operatorname{ETS}(2 v+1)$.

Let $K_{2 v}$ be a complete graph on $2 v \operatorname{vertices}(2 v \geq 8)$. The edges of $K_{2 v}$ fall into v disjoint classes $P_{1}, P_{2}, \ldots, P_{v}$ with $\{i, k\} \in P_{j}$ if and only if $i-k \equiv j$ $\bmod (2 v)$. R. G. Stanton and I. P. Goulden [8] have proved that:

P1. If $2 x+1<v$ then $P_{2 x} \cup P_{2 x+1}$ splits into four one-factors.

P2. The graph $K_{2 v}$ may be factored into a set of $2 v$ triangles covering $P_{1}, P_{2 j}$, $P_{2 j+1}(2 j+1<v)$ and a set of $2 v-7$ one factors covering the other P_{i}.
(5) v to $2 v+9, v$ odd

Using the above description we factor the complete graph K_{v+9} on $V_{2}=$ $\left\{x_{1}, x_{2}, \ldots, x_{v+9}\right\}$. Let L be the set of $v+9$ triangles and $\mathcal{F}=\left\{F_{i} \mid i=\right.$ $1,2, \ldots, v+2\}$ the set of 1-factors. Put $S=V_{1} \cup V_{2}$ and $T=B \cup L \cup C \cup D$, where $C=\left\{a_{i} x y \mid x y \in F_{i}, i=1,2, \ldots, v\right\}$ and $D=F_{v+1} \cdot F_{v+2}$. Then (S, T) is an $\operatorname{ETS}(2 v+9)$.

3. Proof of the Main Theorem for Even v

It has been established that the class of all extended triple systems is coextensive with the variety of quasigroups satisfying the identities $x(x y)=y$, $(y x) x=y$ (It is called a totally symmetric quasigroup). In 1980, Hilton and Rodger [2] proved that if v is odd then those lollipops ignoring loops form a vertex-disjoint union of cycles, and if v is even, they form a vertex-disjoint union of unicycles with trees each of whose degree is odd.

The smallest possible mutually balanced subgraphs of K_{v}^{+}are $\{x x x, x y y\}$ or $\{x x x, x y y, y z z\}$, (which can be changed to $\{y y y, y x x\}$ or $\{x x y, y y z, z z z\}$, respectively), $J[v] \subseteq I_{e}[v]=\{0,1,2, \ldots, m-6, m-5, m-3, m\}$, where $m=v(v+1) / 2$.

Using exhaustive computer checking for $v=2,4$ and 6 the following results were obtained:
$J[2]=\{0,3\}$,
$J[4]=\{0,1,2,3,5,7,10\}$,
$J[6]=\{0,1,2, \ldots, 14,15,18,21\}$.
When we talk about the intersection of two one-factorizations of K_{v}, where v is even, we have to order the one-factors and consider their intersections. Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{v-1}\right\}$ and $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{v-1}\right\}$ be two one-factorizations of K_{v}, where the F_{i} and G_{i} are one-factors, we define

$$
|\mathcal{F} \cap \mathcal{G}|=\sum_{i=1}^{v-1}\left|F_{i} \cap G_{i}\right|, \text { where } F_{i} \in \mathcal{F} \text { and } G_{i} \in \mathcal{G}
$$

Let $J_{F}(v)$ be a set of k such that there exist pairs of 1-factorizations of K_{v} having k common edges. In [6], C. C. Lindner and W. D. Wallis showed that $J_{F}(2)=\{1\}, J_{F}(6)=\{0,1,2,3,5,6,7,9,15\}$ and $J_{F}(v)=\left\{0,1,2, \ldots,\binom{v}{2}=\right.$ $t\} \backslash\{t-1, t-2, t-3, t-5\}$ for $v=4$ or $v \geq 8$.

Lemma 3.1. If v is even, $v \geq 8$, and $J[v]=I_{e}[v]$ then $J[2 v]=I_{e}[2 v]$.
Proof. Let $\left(V_{1}, B_{1}\right)$ and $\left(V_{1}, B_{2}\right)$ be two $\operatorname{ETS}(v)$ which have a common weight k. Also let \mathcal{F} and \mathcal{G} be two 1-factorizations of K_{v} on $V_{2}=\left\{x_{1}, x_{2}, \ldots, x_{v}\right\}$ such that $h=\sum_{i=1}^{v-1}\left|F_{i} \cap G_{i}\right|$. We can see that $\left(V_{1} \cup V_{2},\left(B_{1}, \mathcal{F}\right)\right.$) and ($V_{1} \cup$ $\left.V_{2},\left(B_{2}, \mathcal{G}\right)\right)$ are two $\operatorname{ETS}(2 v)$ with a common weight $k+2 v+3 h$. Therefore

$$
J[2 v] \supseteq J[v]+2 v+3 J_{F}(v) .
$$

Since $J[v]=I_{e}[v]$,

$$
J[2 v] \supseteq I_{e}[v]+2 v+3 J_{F}(v)=I_{e}[2 v] \backslash\{0,1, \cdots, 2 v-1\} .
$$

For the remaining data, let $\left(V_{1}, B_{1}\right)$ and $\left(V_{1}, B_{2}\right)$ be two $\operatorname{ETS}(v)$ with a common weight $k, k \in\{0,1, \cdots 2 v-1\}$, and $T=\left(B_{1}, \mathcal{F}\right)$. If T^{*} is the union of $B_{2},\left\{a_{i+1} x y \mid x y \in F_{i}, i=1,2, \cdots, v-1\right\}$ and $\left\{a_{1} x x \mid x \in V_{2}\right\}$, then $\left|T \cap T^{*}\right|=k$. This implies that $J[2 v]=I_{e}[2 v]$.

Lemma 3.2. If v is even, $v \geq 8$, and $J[v]=I_{e}[v]$ then $J[2 v+2]=I_{e}[2 v+2]$.
Proof. Let $\left(V_{1}, B_{1}\right)$ and $\left(V_{1}, B_{2}\right)$ be two $\operatorname{ETS}(v)$ with a common weight k and \mathcal{F} a 1-factorization of K_{v+2} on $V_{2}=\left\{x_{1}, x_{2}, \ldots, x_{v+2}\right\}$. Let $C=\left\{a_{i} x y \mid\right.$ $\left.x y \in F_{i}, i=1,2, \ldots, v\right\}$ and $C_{\alpha}=\left\{a_{i} x y \mid x y \in F_{\alpha(i)}, i=1,2, \ldots, v\right\}$, where α is a permutation of $\{1,2, \ldots, v\}$ with exactly p elements fixed (α exists for $p=0,1,2, \ldots, v-2, v)$. Then, C and C_{α} have $p(v+2) / 2$ blocks in common. Let $D=\left\{x x y, y y y \mid\right.$ for each $\left.x y \in F_{v+1}\right\}$ and D^{i} is obtained by D replacing the first i pairs $x x y$ and yyy with $y y x$ and $x x x$ for $i=0,1,2, \ldots,(v+2) / 2$. We can see that $\left(V_{1} \cup V_{2}, B_{1} \cup C \cup D\right)$ and $\left(V_{1} \cup V_{2}, B_{2} \cup C_{\alpha} \cup D^{i}\right)$ are two $\operatorname{ETS}(2 v)$ with a common weight $k+3 p(v+2) / 2+3((v+2) / 2-i)$. Therefore

$$
J[2 v+2] \supseteq J[v]+3 \frac{v+2}{2}\{0,1,2, \ldots, v-2, v\}+3\left\{0,1,2, \ldots, \frac{v+2}{2}\right\} .
$$

Since $J[v]=I_{e}[v]$, then
$J[2 v+2] \supseteq I_{e}[v]+3 \frac{v+2}{2}\{0,1,2, \ldots, v-2, v\}+3\left\{0,1,2, \ldots, \frac{v+2}{2}\right\}=I_{e}[2 v+2]$.
Next, in order to solve for small v such that $J[v]=I_{e}[v]$, we need the results obtained in reference [6] as follows:

Lemma 3.3. Let v be positive integer, $v \geq 4$. $J[3 v] \supseteq J[v]+J[v]+J[v]+3 S_{v}$, where $S_{v}=\left\{0,1,2, \ldots, v^{2}-7, v^{2}-6, v^{2}-4, v^{2}\right\}$ for $v \geq 5$ and $S_{4}=\{0,2,4,5,6$, $8,9,12,16\}$.

Proof. $K_{3 v}^{+}$can be partitioned into three vertex-disjoint K_{v}^{+}and a complete tripartite graph $K_{v, v, v}$. The partition of $K_{v, v, v}$ into v^{2} edge-disjoint triangles can be constructed by a latin square of order v. Using different $\operatorname{ETS}(v)$ in each K_{v}^{*} and different latin squares of order v, we have $J[3 v] \supseteq J[v]+J[v]+$ $J[v]+3 S_{v}$ where $S_{v}=\left\{0,1,2, \ldots, v^{2}-7, v^{2}-6, v^{2}-4, v^{2}\right\}$ for $v \geq 5$ and $S_{4}=\{0,2,4,5,6,8,9,12,16\}$ (see [1]).

We start from $v=8$ in order to obtain $J[v]=I_{e}[v]$.
$\boldsymbol{v}=8$. Applying the method of Lemma 3.1 to $J[4]$, we have $J[8] \supseteq J_{e}[8] \backslash$ $\{4,6,12,20,22,23,25,30\}$. For some unsolvable data, using a similar argument to that in Lemma 3.1, let $\left(V_{1}, B_{1}\right)$ and $\left(V_{1}, B_{2}\right)$ be two $\operatorname{ETS}(4)$ with a common weight of 0 or 10, and $\mathcal{F}=\left\{F_{1}, F_{2}, F_{3}\right\}$ a 1-factorization of K_{4} on $V_{2}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Let $T_{1}=\left(B_{1}, \mathcal{F}\right)$ and $T_{2}=B_{2} \cup C \cup D$, where

$$
\begin{aligned}
& C=\left\{a_{1} x y \mid x y \in F_{1}\right\} \cup\left\{a_{i+1} x y \mid x y \in F_{i}, i=2,3\right\} \\
& D=\left\{a_{2} x x \mid x \in V_{2}\right\}
\end{aligned}
$$

or

$$
\begin{aligned}
& C=\left\{a_{i} x y \mid x y \in F_{i}, i=1,2\right\} \cup\left\{a_{4} x y \mid x y \in F_{3}\right\} \\
& D=\left\{a_{3} x x \mid x \in V_{2}\right\},
\end{aligned}
$$

then $\{0,10\}+\{6,12\} \subseteq\left|T_{1} \cap T_{2}\right|$. Thus $J[8] \supseteq I_{e}[8] \backslash\{4,20,23,25,30\}$.
Let E_{1}, E_{2}, E_{3} be the following $\operatorname{ETS}(8): E_{1}=\{111,122,133,144,155,167$, $188,234,256,278,357,368,458,466,477\}, E_{2}=\{111,122,133,144,155,166,178$,
$234,256,277,288,357,368,458,467\}, E_{3}=\{112,135,147,168,222,238,246,257$, $334,367,444,458,556,666,777,788\}$.

Consider the isomorphic designs obtained from E_{1} and E_{2} by permuting elements: $N_{1}=(12654)(387) E_{1}, N_{2}=(23) E_{2}$. Now, N_{3} comes from E_{1} with $167,357,368,458,466,477$ replaced by $166,177,358,367,457,468 . N_{4}$ comes from E_{3} with $112,222,334,444$ replaced by $221,111,443,333 . N_{5}$ comes from E_{3} with $112,222,334,444,367,666,777$ replaced by $111,122,336,667,773,344$.

Therefore $\left|E_{1} \cap N_{1}\right|=4,\left|E_{2} \cap N_{2}\right|=23,\left|E_{1} \cap N_{3}\right|=20,\left|E_{3} \cap N_{4}\right|=30$ and $\left|E_{3} \cap N_{5}\right|=25$. Thus, we have $J[8]=I_{e}[8]$.
$\boldsymbol{v}=12$. Applying the method of Lemma 3.1 to $J[6]$, we have $J[12]$? $J_{e}[12] \backslash\{55,56,73\}$. The values remaining are handled by Lemma 3.3, so we have $J[12]=I_{e}[12]$.

From now on, for convenience, we will write t_{i} for $10+i$ and t for 10 .
$\boldsymbol{v}=\mathbf{1 0}$. Using the method of Lemma 3.2, we have $J[10] \supseteq J[4]+9\{0,1,2,4\}$ $+3\{0,1,2,3\}$. That is $J[10] \supseteq I_{e}[10] \backslash\{33,35\}$.

Let E_{1} be the following $\operatorname{ETS}(10): E_{1}=\{111,122,134,156,17 t, 189,233,244$, $257,268,29 t, 358,36 t, 379,45 t, 469,478,555,599,666,677,888,8 t t\}$. Now, N_{1} comes from E_{1} with $111,122,233,45 t, 469,478,599,677,8 t t$ replaced by 112,223 , $333,459,467,48 t, 5 t t, 699,778 . N_{2}$ comes from N_{1} with $778,888,5 t t, 555$ replaced by $55 t, t t t, 887,777$. Therefore $\left|E_{1} \cap N_{1}\right|=35$ and $\left|E_{1} \cap N_{2}\right|=33$. Thus, we have $J[10]=I_{e}[10]$.
$\boldsymbol{v}=14$. Using the method of Lemma 3.2, we have $J[14] \supseteq I_{e}[14] \backslash\{100\}$. From the existence of Steiner triple system of order 13, we can give a C_{3} decomposition of K_{13} based on $V_{1}=\left\{a_{1}, a_{2}, \ldots, a_{13}\right\}$, denoted by B_{1}. Let $V_{2}=V_{1} \cup\left\{a_{14}\right\}$ and $B_{2}=\left\{a_{i} a_{i} a_{14} \mid i=2,3, \ldots, 13\right\} \cup\left\{a_{14} a_{14} a_{1}\right\} \cup\left\{a_{1} a_{1} a_{1}\right\}$, then $\left(V_{2}, B_{1} \cup B_{2}\right)$ is an $\operatorname{ETS}(14)$. Now B_{3} comes from $B_{1} \cup B_{2}$ by replac$\operatorname{ing} a_{2} a_{2} a_{14}, a_{14} a_{14} a_{1}, a_{1} a_{1} a_{1}$ with $a_{1} a_{1} a_{14}, a_{14} a_{14} a_{2}, a_{2} a_{2} a_{2}$. It is shown that $\left|B_{3} \cap\left(B_{1} \cup B_{2}\right)\right|=100$. We have $J[14]=I_{e}[14]$.

Lemma 3.4. $J[8]=I_{e}[8], J[10]=I_{e}[10], J[12]=I_{e}[12]$, and $J[14]=I_{e}[14]$.
Applying the results in Lemma 3.4 to Lemma 3.1 and 3.2 recursively, we obtained the following result.

Theorem 3.5. $J[v]=I_{e}[v]$ for even $v, v \geq 8$.

4. Proof of the Main Theorem for Odd v

Since v is odd, the smallest cycle contains 3 edges. Thus two distinct $\operatorname{ETS}(v)$ contain at least 6 different weights. After the cycle of length 3 is a cycle of length 4 and length 5 , two $\operatorname{ETS}(v)$ containing 7 or 9 different weights do not exist. Therefore, $J[v] \subseteq I_{o}[v]=\{0,1,2, \ldots, m-10, m-8, m-6, m\}$, where $m=v(v+1) / 2$.

Exhaustive computer checking for $v=3,5$ and 7 produced the following results:

$$
\begin{aligned}
& J[3]=\{0,6\}, \\
& J[5]=\{0,2,3,7,15\}, \\
& J[7]=\{0,1, \ldots, 14,16,17,22,28\} .
\end{aligned}
$$

Lemma 4.1. If v is odd, $v \geq 9$, and $J[v]=I_{o}[v]$ then $J[2 v+3]=I_{o}[2 v+3]$.
Proof. Let $\left(V_{1}, B_{1}\right)$ and $\left(V_{1}, B_{2}\right)$ be two $\operatorname{ETS}(v)$ with a common weight k and \mathcal{F} a 1-factorization of K_{v+3} on $V_{2}=\left\{x_{1}, x_{2}, \ldots, x_{v+3}\right\}$. Let $C=\left\{a_{i} x y \mid\right.$ $\left.x y \in F_{i}, i=1,2, \ldots, v\right\}$ and $C_{\alpha}=\left\{a_{i} x y \mid x y \in F_{\alpha(i)}, i=1,2, \ldots, v\right\}$, where α is a permutation of $\{1,2, \ldots, v\}$ with exactly p elements fixed. Then, C and C_{α} have $p(v+3) / 2$ blocks in common. It is easy to see that $\left(V_{1} \cup V_{2}, B_{1} \cup C \cup F_{v+1} \cdot F_{v+2}\right)$ is an $\operatorname{ETS}(2 v+3)$. If we replace B_{1} with B_{2}, C with C_{α} or $\left(F_{v+1} \cdot F_{v+2}\right)$ with $\left(F_{v+2} \cdot F_{v+1}\right),\left(\left(F_{v+1} \cdot F_{v+2}\right) \cap\left(F_{v+2} \cdot F_{v+1}\right)=\emptyset\right)$, then the two $\operatorname{ETS}(2 v+3)$ produced have a common weight $k+3 p(v+3) / 2+2 q(v+3)$, where $p \in\{0,1,2, \ldots, v-2, v\}$ and $q \in\{0,1\}$. Therefore

$$
J[2 v+3] \supseteq J[v]+3 \frac{v+3}{2}\{0,1,2, \ldots, v-2, v\}+2(v+3)\{0,1\} .
$$

Since $J[v]=I_{o}[v]$,

$$
J[2 v+3] \supseteq I_{o}[v]+3 \frac{v+3}{2}\{0,1,2, \ldots, v-2, v\}+2(v+3)\{0,1\}=I_{o}[2 v+3] .
$$

This implies that $J[2 v+3]=I_{o}[2 v+3]$.
Lemma 4.2. If v is odd, $v \geq 11$, and $J[v]=I_{o}[v]$ then $J[2 v+1] \supseteq I_{o}[2 v+$ $1] \backslash\{0,1,2, \ldots, v\}$.

Proof. Let $\left(V_{1}, B_{1}\right)$ and $\left(V_{1}, B_{2}\right)$ be two $\operatorname{ETS}(v)$ with a common weight k and \mathcal{F} a 1-factorization of K_{v+1} on $V_{2}=\left\{x_{1}, x_{2}, \ldots, x_{v+1}\right\}$. Let $D=\left\{x_{i} x_{i} x_{i} \mid i=\right.$ $1,2, \cdots, v+1\}, C=\left\{a_{i} x y \mid x y \in F_{i}, i=1,2, \ldots, v\right\}$ and $C_{\alpha}=\left\{a_{i} x y \mid x y \in F_{\alpha(i)}\right.$, $i=1,2, \ldots, v\}$, where α is a permutation of $\{1,2, \ldots, v\}$ with exactly p elements fixed. Then, C and C_{α} have $p(v+1) / 2$ blocks in common. It is easy to see that $\left(V_{1} \cup V_{2}, B_{1} \cup C \cup D\right)$ is an $\operatorname{ETS}(2 v+1)$. If we replace B_{1} with B_{2} or C with C_{α}, then the two $\operatorname{ETS}(2 v+1)$ produced have a common weight $k+3 p(v+1) / 2+(v+1)$, where $p \in\{0,1,2, \ldots, v-2, v\}$. Therefore

$$
J[2 v+1] \supseteq J[v]+3 \frac{v+1}{2}\{0,1,2, \ldots, v-2, v\}+\{v+1\} .
$$

Since $J[v]=I_{o}[v]$,
$J[2 v+1] \supseteq I_{o}[v]+3 \frac{v+1}{2}\{0,1,2, \ldots, v-2, v\}+\{v+1\}=I_{o}[2 v+1] \backslash\{0,1,2, \cdots, v\}$.

For proof of $\{0,1,2, \cdots, v\} \subset J[2 v+1]$, we need to embed an $\operatorname{ETS}(v)$ into an $\operatorname{ETS}(2 v+9)$, for odd v.

Lemma 4.3. If v is odd, $v \geq 11$, and $\{0,1, \ldots, v\} \subset J[v-4]$ then $\{0,1,2$, $\ldots, v\} \subset J[2 v+1]$.

Proof. Let $\left(V_{1}, B_{1}\right)$ and $\left(V_{1}, B_{2}\right)$ be two $\operatorname{ETS}(v-4)$ with a common weight k, where $k \in\{0,1,2, \cdots, v\}$. From construction 5 in section 2, an $\operatorname{ETS}(v-4)$ can be embedded in an $\operatorname{ETS}(2 v+1)$. Let K_{v+5} be the complete graph on vertex set $V_{2}=\left\{x_{1}, x_{2}, \cdots, x_{v+5}\right\}$. Set $L_{1}=\left\{x_{i} x_{i+1} x_{i+3} \mid i=1,2, \cdots, v+5\right\}$ and $L_{2}=\left\{x_{i} x_{i+4} x_{i+5} \mid i=1,2, \cdots, v+5\right\}$. From P1, $P_{4} \cup P_{5}$ splits into four 1factors $F_{1}, F_{2}, F_{3}, F_{4}$ and $P_{2} \cup P_{3}$ splits into four 1-factors $G_{1}, G_{2}, G_{3}, G_{4}$. From P2, we have two sets of one-factors $\left\{F_{i} \mid i=1,2, \cdots, v-2\right\}$ covering all P_{j} with $j=4,5, \cdots,(v+5) / 2$ and $\left\{G_{i} \mid i=1,2, \cdots, v-2\right\}$ covering all P_{j} with $j=2,3,6,7, \cdots,(v+5) / 2$. We can assume that $F_{i}=G_{i}$, for $i=5,6, \cdots, v-2$.

Let α be a permutation of $\{1,2, \ldots, v-4\}$ with 0 elements fixed, $C=$ $\left\{a_{i} x y \mid x y \in F_{i}, i=1,2, \ldots, v-4\right\}$ and $C_{\alpha}=\left\{a_{i} x y \mid x y \in F_{\alpha(i)}, i=1,2, \ldots, v-4\right\}$, then $\left(B_{1} \cup C \cup L_{1} \cup F_{v-3} \cdot F_{v-2}\right)$ and $\left(B_{2} \cup C_{\alpha} \cup L_{2} \cup F_{v-2} \cdot F_{v-3}\right)$ have exactly a common weight k. Thus $\{0,1,2, \cdots, v\} \subset J[2 v+1]$.

Lemma 4.4. Let v be odd and $v \geq 11$. If $J[v]=I_{o}[v]$ and $\{0,1, \ldots, v\} \subset$ $J[v-4]$ then $J[2 v+1]=I_{o}[2 v+1]$.

Proof. It follows from Lemmas 4.2 and 4.3.
For small v, we start from $v=9$.
$\boldsymbol{v}=$ 9. Using a similar argument to Lemma 4.1, we have $J[9] \supseteq J[3]+$ $9\{0,1,3\}+12\{0,1\}=\{0,6,9,12,15,18,21,27,33,39,45\}$. Let $E_{1}=\{111,123$, $145,169,178,222,246,257,289,333,347,359,368,448,499,556,588,667,779\}$. $E_{2}=A \cup B$, where $A=\{111,123,146,157,189,222,247,259,268,333,356$, $669,677\}$ and $B=\{349,378,444,458,555,799,888\} . E_{3}=\{118,122,136,147$, 159, 233, 249, 258, 267, 344, 357, 389, 455, 468, 566, 699, 779, 788\}.

Now, N_{1} comes from E_{2} by replacing B with $\{348,379,445,499,558,788\}$. N_{2} comes from E_{2} by replacing $\{669,997,776,349,333,444\}$ with $\{334,449$, $993,679,666,777\} . N_{3}$ comes from E_{3} by replacing $\{118,136,344,468\}$ with $\{113,168,346,448\} . N_{4}$ comes from E_{1} by replacing $\{145,448,885,111\}$ with $\{458,441,115,888\}$.

Table 1.

Intersection	Size	Intersection	Size
$E_{1} \cap(1347)(26)(58) E_{1}$	1	$E_{1} \cap(154)(289)(367) E_{1}$	20
$E_{1} \cap(162534) E_{1}$	2	$E_{1} \cap(15)(36) E_{1}$	22
$E_{1} \cap(163452) E_{1}$	3	$E_{1} \cap(14)(36) E_{1}$	23
$E_{1} \cap(156432) E_{1}$	4	$E_{1} \cap(12)(4857694) E_{1}$	24
$E_{1} \cap(153624) E_{1}$	5	$E_{1} \cap(14) E_{1}$	25
$E_{1} \cap(2654) E_{1}$	7	$E_{1} \cap(23)(476)(589) E_{1}$	26
$E_{1} \cap(165)(23) E_{1}$	8	$E_{1} \cap(123)(4789) E_{1}$	28
$E_{1} \cap(13654) E_{1}$	10	$E_{1} \cap(24)(35) E_{1}$	29
$E_{1} \cap(132)(465) E_{1}$	11	$E_{3} \cap(25)(36)(49) E_{3}$	30
$E_{1} \cap(23)(46) E_{1}$	13	$E_{2} \cap N_{1}$	31
$E_{1} \cap(12563) E_{1}$	14	$E_{2} \cap N_{2}$	34
$E_{1} \cap(243) E_{1}$	16	$E_{3} \cap N_{3}$	35
$E_{1} \cap(1256) E_{1}$	17	$E_{1} \cap N_{4}$	37
$E_{1} \cap(13)(46) E_{1}$	19		

Thus, $J[9] \supseteq I_{o}[9] \backslash\{32\}$. If $32 \in J[19]$, then the only possible mutually balanced subgraph on K_{9}^{+}is $A=\left\{a_{1} a_{1} a_{2}, a_{2} a_{2} a_{3}, a_{3} a_{3} a_{4}, a_{1} a_{3} a_{7}, a_{2} a_{4} a_{7}, a_{7} a_{7} a_{7}\right\}$
which can be changed to $\left\{a_{1} a_{1} a_{7}, a_{7} a_{7} a_{2}, a_{2} a_{2} a_{4}, a_{1} a_{2} a_{3}, a_{3} a_{4} a_{7}, a_{3} a_{3} a_{3}\right\}$. Since the lollipops of the $\operatorname{ETS}(9)$ ignoring loops are cycles of length 3 , 6 , or 9 , and the only possible cycle is of length 6 , we can add blocks $B=\left\{a_{4} a_{4} a_{5}, a_{5} a_{5} a_{6}\right.$, $\left.a_{6} a_{6} a_{4}\right\}$ to the partial ETS(9) A. Using a computer program showed that the partial $\operatorname{ETS}(9)$ containing $A \cup B$ can not be completed to an $\operatorname{ETS}(9)$. Thus $32 \notin J[9]$. So $J[9]=I_{o}[9] \backslash\{32\}$.
$\boldsymbol{v}=\mathbf{1 3}, \boldsymbol{v}=\mathbf{1 7}$ or $\boldsymbol{v}=\mathbf{2 1}$. First, we used a similar argument to Lemma 4.1.

When $v=13$, Lindner and Rosa [5] showed that for each $k \in A=\{0,1,2$, $\cdots, 14,16,18,20,22,26\}$, there exists a pair of Steiner triple systems of order 13 (the structure with 13 loops forms $\operatorname{ETS}(13)$) intersecting in k triples. Therefore, $3 A+13 \subseteq J[13]$. The missing data give the following:

Let $E_{1}=\left\{111,124,135,16 t_{3}, 179,18 t, 1 t_{1} t_{2}, 223,255,267,289,2 t t_{1}, 2 t_{2} t_{3}\right.$, $334,368,37 t_{1}, 39 t_{3}, 3 t t_{2}, 445,46 t_{1}, 47 t_{2}, 48 t_{3}, 49 t, 56 t_{2}, 578,59 t_{1}, 5 t t_{3}, 66 t, 699$, $\left.77 t_{3}, 7 t t, 88 t_{2}, 8 t_{1} t_{1}, 9 t_{2} t_{2}, t_{1} t_{3} t_{3}\right\} . E_{2}=\left\{11 t_{1}, 124,137,156,188,19 t, 1 t_{2} t_{3}\right.$, $228,235,267,299,2 t t_{3}, 2 t_{1} t_{2}, 33 t_{3}, 346,38 t_{2}, 39 t_{1}, 3 t t, 44 t_{2}, 457,48 t, 49 t_{3}, 4 t_{1} t_{1}$, $\left.559,58 t_{3}, 5 t t_{1}, 5 t_{2} t_{2}, 66 t, 68 t_{1}, 69 t_{2}, 6 t_{3} t_{3}, 777,789,7 t t_{2}, 7 t_{1} t_{3}\right\} . E_{3}=A \cup B$, where $A=\left\{111,123,145,17 t_{2}, 189,225,244,269,2 t_{2} t_{3}, 334,355,38 t_{1}, 3 t t_{3}\right.$, $\left.49 t, 568,57 t_{3}, 59 t_{1}, 5 t t_{2}, 7 t t\right\}$ and $B=\left\{16 t, 1 t_{1} t_{3}, 278,2 t t_{1}, 367,39 t_{2}, 46 t_{2}, 47 t_{1}\right.$, $\left.48 t_{3}, 66 t_{1}, 6 t_{3} t_{3}, 779,88 t, 8 t_{2} t_{2}, 99 t_{3}, t_{1} t_{1} t_{2}\right\} . E_{4}=\left\{118,122,137,14 t_{3}, 156,19 t\right.$, $1 t_{1} t_{2}, 235,249,267,288,2 t t_{2}, 2 t_{1} t_{3}, 33 t_{1}, 346,38 t_{3}, 39 t_{2}, 3 t t, 44 t_{2}, 457,48 t, 4 t_{1} t_{1}$, $\left.559,58 t_{1}, 5 t t_{3}, 5 t_{2} t_{2}, 66 t, 68 t_{2}, 69 t_{1}, 6 t_{3} t_{3}, 777,789,7 t t_{1}, 7 t_{2} t_{3}, 99 t_{3}\right\} . E_{5}=\{112$, $137,14 t_{3}, 156,188,19 t, 1 t_{1} t_{2}, 228,235,249,267,2 t t_{2}, 2 t_{1} t_{3}, 33 t, 346,38 t_{3}, 39 t_{2}$, $3 t_{1} t_{1}, 44 t_{1}, 457,48 t, 4 t_{2} t_{2}, 55 t_{2}, 58 t_{1}, 599,5 t t_{3}, 66 t_{3}, 68 t_{2}, 69 t_{1}, 6 t t, 777,789$, $\left.7 t t_{1}, 7 t_{2} t_{3}, 9 t_{3} t_{3}\right\} . E_{6}=C \cup D$, where $C=\left\{111,123,145,16 t, 17 t_{1}, 18 t_{2}, 19 t_{3}\right.$, $\left.224,255,26 t_{1}, 28 t_{3}, 335,344,36 t_{2}, 37 t_{3}, 38 t, 39 t_{1}, 46 t_{3}, 48 t_{1}, 568,5 t_{1} t_{3}\right\}$ and $D=\left\{279,2 t t_{2}, 47 t_{2}, 49 t, 57 t, 59 t_{2}, 669,677,788,899, t t t_{3}, t t_{1} t_{1}, t_{1} t_{2} t_{2}, t_{2} t_{3} t_{3}\right\}$. $E_{7}=E \cup F$, where $E=\left\{16 t, 18 t_{2}, 26 t_{1}, 27 t_{2}, 28 t_{3}, 29 t, 36 t_{3}, 37 t_{3}, 38 t, 39 t_{1}\right.$, $\left.46 t_{3}, 47 t, 48 t_{1}, 49 t_{2}, 568,5 t t_{2}, t t t_{1}, t t_{3} t_{3}, t_{1} t_{1} t_{2}, t_{2} t_{2} t_{3}\right\}$ and $F=\{111,124,135$, $\left.17 t_{1}, 19 t_{3}, 223,255,334,445,579,5 t_{1} t_{3}, 667,699,778,889\right\} . E_{8}=\{112,133$, $145,167,189,1 t t_{1}, 1 t_{2} t_{3}, 223,246,257,28 t, 29 t_{2}, 2 t_{1} t_{3}, 348,35 t_{2}, 36 t_{3}, 37 t_{1}, 39 t$, $444,479,4 t t_{3}, 4 t_{1} t_{2}, 555,56 t, 58 t_{1}, 59 t_{3}, 666,68 t_{2}, 69 t_{1}, 77 t, 78 t_{3}, 7 t_{2} t_{2}, 888$, $\left.999, t t t_{2}, t_{1} t_{1} t_{1}, t_{3} t_{3} t_{3}\right\}$.

Now, N_{1} comes from E_{4} by replacing $\left\{118,122,14 t_{3}, 249,288,33 t_{1}, 346\right.$, $\left.3 t t, 4 t_{1} t_{1}, 66 t, 99 t_{3}\right\}$ with $\left\{11 t_{3}, 124,188,228,299,333,34 t_{1}, 36 t, 466,49 t_{3}, t t t\right.$, $\left.t_{1} t_{1} t_{1}\right\}$. N_{2} comes from E_{7} by replacing F with $\left\{112,133,145,179,1 t_{1} t_{3}, 224\right.$, $\left.235,344,555,57 t_{1}, 59 t_{3}, 669,677,788,899\right\} . N_{3}$ comes from E_{3} by replacing B with $\left\{16 t_{3}, 1 t t_{1}, 27 t_{1}, 28 t, 36 t_{2}, 379,467,48 t_{2}, 4 t_{1} t_{3}, 66 t, 6 t_{1} t_{1}, 778,88 t_{3}, 99 t_{2}\right.$, $\left.9 t_{3} t_{3}, t_{1} t_{2} t_{2}\right\} . N_{4}$ comes from E_{4} by replacing $\left\{118,122,137,14 t_{3}, 156,235,249\right.$, $\left.267,288,99 t_{3}\right\}$ with $\left\{11 t_{3}, 124,135,167,188,228,237,256,299,49 t_{3}\right\} . N_{5}$ comes from E_{6} by replacing D with $\left\{27 t_{2}, 29 t, 47 t, 49 t_{2}, 579,5 t t_{2}, 667,699,778,889\right.$, $\left.t t t_{1}, t t_{3} t_{3}, t_{1} t_{1} t_{2}, t_{2} t_{2} t_{3}\right\}$. N_{6} comes from E_{4} by replacing $\{118,882,221\}$ with $\{112,228,881\} . N_{7}$ comes from E_{2} by replacing $\left\{137,156,235,267,33 t_{3}, 3 t t\right.$, $\left.66 t, 6 t_{3} t_{3}\right\}$ with $\left\{135,167,237,256,33 t, 3 t_{3} t_{3}, 66 t_{3}, 6 t t\right\}$. N_{8} comes from E_{2} by replacing $\left\{11 t_{1}, 124,188,228,299,44 t_{2}, 4 t_{1} t_{1}, 559,5 t_{2} t_{2}\right\}$ with $\left\{111,128,14 t_{1}\right.$, $\left.229,244,4 t_{2} t_{2}, 55 t_{2}, 599,888, t_{1} t_{1} t_{1}\right\} . N_{9}$ comes from E_{8} by replacing $\{112,133$, $\left.145,223,444,555,77 t, 7 t_{2} t_{2}, t t t_{2}\right\}$ with $\left\{114,123,155,222,333,445,777,7 t t_{2}\right.$, $\left.t t t, t_{2} t_{2} t_{2}\right\} . N_{10}$ comes from E_{4} by replacing $\left\{118,122,14 t_{3}, 249,288,99 t_{3}\right\}$ with $\left\{11 t_{3}, 124,188,228,299,49 t_{3}\right\}$.

Table 2.

Intersection	Size	Intersection	Size
$E_{1} \cap(2 t)\left(38 t_{2} t_{1} 4759 t_{3} 6\right) E_{1}$	1	$E_{5} \cap N_{2}$	48
$E_{1} \cap(138)(267459) E_{1}$	4	$E_{3} \cap N_{3}$	50
$E_{1} \cap(174692538) E_{1}$	5	$E_{5} \cap N_{4}$	53
$E_{1} \cap(29486)(357) E_{1}$	6	$E_{7} \cap N_{2}$	56
$E_{1} \cap(1759368) E_{1}$	8	$E_{6} \cap N_{5}$	57
$E_{1} \cap(27463)(598) E_{1}$	9	$E_{4} \cap N_{4}$	65
$E_{1} \cap(127589)(34) E_{1}$	10	$E_{4} \cap N_{1}$	66
$E_{1} \cap(15)(286)(3479) E_{1}$	11	$N_{1} \cap N_{4}$	68
$E_{1} \cap(384756) E_{1}$	17	$N_{4} \cap N_{6}$	69
$E_{1} \cap(13948)(567) E_{1}$	20	$E_{2} \cap N_{7}$	71
$E_{1} \cap(34689) E_{1}$	21	$E_{2} \cap N_{8}$	72
$E_{1} \cap(1369)(47) E_{1}$	29	$E_{8} \cap N_{9}$	74
$E_{1} \cap(4586) E_{1}$	32	$E_{4} \cap N_{10}$	77
$E_{1} \cap(3457) E_{1}$	33	$N_{1} \cap N_{10}$	80
$E_{1} \cap(39)(46) E_{1}$	41	$N_{6} \cap N_{10}$	81
$E_{1} \cap(78)(9 t) E_{1}$	44	$E_{4} \cap N_{6}$	85
$E_{2} \cap N_{1}$	45		

We have $J[13]=I_{o}[13]$.
When $v=17$, we have $J[17] \supseteq I_{o}[17] \backslash\{120,124,140,143,145\}$. Let $E_{1}=\left\{113,12 t_{1}, 14 t_{3}, 15 t_{6}, 16 t_{5}, 17 t_{7}, 18 t_{4}, 199,1 t t_{2}, 224,23 t_{2}, 25 t_{4}, 26 t_{7}, 27 t_{6}\right.$, $28 t_{5}, 29 t_{3}, 2 t t, 335,34 t_{1}, 36 t_{3}, 37 t_{5}, 38 t_{7}, 39 t_{6}, 3 t t_{4}, 446,45 t_{2}, 47 t_{4}, 48 t_{6}, 49 t_{7}$, $4 t t_{5}, 557,56 t_{1}, 58 t_{3}, 59 t_{5}, 5 t t_{7}, 668,67 t_{2}, 69 t_{4}, 6 t t_{6}, 779,78 t_{1}, 7 t t_{3}, 88 t, 89 t_{2}, 9 t t_{1}$, $t_{1} t_{1} t_{1}, t_{1} t_{2} t_{3}, t_{1} t_{4} t_{6}, t_{1} t_{5} t_{7}, t_{2} t_{2} t_{2}, t_{2} t_{4} t_{5}, t_{2} t_{6} t_{7}, t_{3} t_{3} t_{4}, t_{3} t_{5} t_{6}, t_{3} t_{7} t_{7}, t_{4} t_{4} t_{7}, t_{5} t_{5} t_{5}$, $\left.t_{6} t_{6} t_{6}\right\}, E_{2}=\left\{11 t, 124,139,157,168,1 t_{1} t_{1}, 1 t_{2} t_{7}, 1 t_{3} t_{6}, 1 t_{4} t_{5}, 22 t_{1}, 235,269\right.$, $278,2 t t_{2}, 2 t_{3} t_{3}, 2 t_{4} t_{7}, 2 t_{5} t_{6}, 33 t_{5}, 348,367,3 t t_{4}, 3 t_{1} t_{3}, 3 t_{2} t_{2}, 3 t_{6} t_{7}, 44 t_{3}, 456,479$, $4 t t_{6}, 4 t_{1} t_{5}, 4 t_{2} t_{4}, 4 t_{7} t_{7}, 55 t_{4}, 589,5 t t, 5 t_{1} t_{7}, 5 t_{2} t_{6}, 5 t_{3} t_{5}, 66 t_{2}, 6 t t_{1}, 6 t_{3} t_{7}, 6 t_{4} t_{6}$, $6 t_{5} t_{5}, 77 t_{6}, 7 t t_{3}, 7 t_{1} t_{2}, 7 t_{4} t_{4}, 7 t_{5} t_{7}, 88 t_{7}, 8 t t_{5}, 8 t_{1} t_{4}, 8 t_{2} t_{3}, 8 t_{6} t_{6}, 999,9 t t_{7}, 9 t_{1} t_{6}$, $\left.9 t_{2} t_{5}, 9 t_{3} t_{4}\right\}$ and $E_{3}=\left\{111,123,14 t_{3}, 159,16 t_{5}, 17 t_{7}, 18 t_{6}, 1 t t_{4}, 1 t_{1} t_{2}, 224,25 t_{3}\right.$, $26 t, 27 t_{6}, 28 t_{7}, 29 t_{5}, 2 t_{1} t_{4}, 2 t_{2} t_{2}, 333,345,36 t_{3}, 37 t_{1}, 38 t_{5}, 39 t_{7}, 3 t t_{6}, 3 t_{2} t_{4}, 446$, $47 t_{4}, 48 t_{2}, 49 t_{6}, 4 t t_{7}, 4 t_{1} t_{5}, 555,567,58 t_{4}, 5 t t_{5}, 5 t_{1} t_{7}, 5 t_{2} t_{6}, 668,69 t_{4}, 6 t_{1} t_{6}, 6 t_{2} t_{7}$, $777,789,7 t t_{3}, 7 t_{2} t_{5}, 88 t, 8 t_{1} t_{3}, 999,9 t t_{1}, 9 t_{2} t_{3}, t t t_{2}, t_{1} t_{1} t_{1}, t_{3} t_{3} t_{4}, t_{3} t_{5} t_{5}, t_{3} t_{6} t_{7}$, $\left.t_{4} t_{4} t_{6}, t_{4} t_{5} t_{7}, t_{5} t_{6} t_{6}, t_{7} t_{7} t_{7}\right\}$.

Now, N_{1} comes from E_{1} by removing the blocks $\{113,199,335,557,779$, $\left.t_{1} t_{4} t_{6}, t_{1} t_{5} t_{7}, t_{2} t_{4} t_{5}, t_{2} t_{6} t_{7}, t_{3} t_{3} t_{4}, t_{3} t_{5} t_{6}, t_{3} t_{7} t_{7}, t_{4} t_{4} t_{7}, t_{5} t_{5} t_{5}, t_{6} t_{6} t_{6}\right\}$ and replacing them with $\left\{119,133,355,577,799, t_{1} t_{4} t_{5}, t_{1} t_{6} t_{7}, t_{2} t_{4} t_{6}, t_{2} t_{5} t_{7}, t_{3} t_{3} t_{5}, t_{3} t_{4} t_{7}\right.$, $\left.t_{3} t_{6} t_{6}, t_{4} t_{4} t_{4}, t_{5} t_{5} t_{6}, t_{7} t_{7} t_{7}\right\} . N_{2}$ comes from E_{1} by removing the blocks $\{113$, $\left.199,335,557,779, t_{1} t_{4} t_{6}, t_{1} t_{5} t_{7}, t_{2} t_{2} t_{2}, t_{2} t_{6} t_{7}, t_{3} t_{5} t_{6}, t_{3} t_{7} t_{7}, t_{4} t_{4} t_{7}, t_{5} t_{5} t_{5}, t_{6} t_{6} t_{6}\right\}$ and replacing them with $\left\{119,133,355,577,799, t_{1} t_{4} t_{7}, t_{1} t_{5} t_{6}, t_{2} t_{2} t_{7}, t_{2} t_{6} t_{6}\right.$, $\left.t_{3} t_{5} t_{5}, t_{3} t_{6} t_{7}, t_{4} t_{4} t_{6}, t_{5} t_{7} t_{7}\right\} . N_{3}$ comes from E_{2} by removing the blocks $\{278$, $\left.2 t_{4} t_{7}, 7 t_{4} t_{4}, 88 t_{7}\right\}$ and replacing them with $\left\{27 t_{4}, 28 t_{7}, 788, t_{4} t_{4} t_{7}\right\}$. N_{4} comes from E_{3} by removing the blocks $\left\{t_{3} t_{3} t_{4}, t_{3} t_{5} t_{5}, t_{3} t_{6} t_{7}, t_{4} t_{4} t_{6}, t_{4} t_{5} t_{7}, t_{7} t_{7} t_{7}\right\}$ and replacing them with $\left\{t_{3} t_{3} t_{3}, t_{3} t_{4} t_{6}, t_{3} t_{5} t_{7}, t_{4} t_{4} t_{7}, t_{4} t_{5} t_{5}, t_{6} t_{7} t_{7}\right\}$. N_{5} comes from E_{3} by removing the blocks $\left\{t_{3} t_{3} t_{4}, t_{3} t_{5} t_{5}, t_{4} t_{4} t_{6}, t_{5} t_{6} t_{6}\right\}$ and replacing them with $\left\{t_{3} t_{3} t_{5}, t_{3} t_{4} t_{4}, t_{4} t_{6} t_{6}, t_{5} t_{5} t_{6}\right\}$.

Then $\left|E_{1} \cap N_{1}\right|=120,\left|E_{1} \cap N_{2}\right|=124,\left|E_{2} \cap N_{3}\right|=143,\left|E_{3} \cap N_{4}\right|=140$ and $\left|E_{3} \cap N_{5}\right|=145$. Thus, $J[17]=I_{o}[17]$.

When $v=21$, the only missing data is 218 , we can embed $\operatorname{ETS}(5)$ into $\operatorname{ETS}(21)([3])$. Thus we have $J[21]=I_{o}[21]$.
$\boldsymbol{v}=\mathbf{1 1}, \boldsymbol{v}=\mathbf{1 5}$ or $\boldsymbol{v}=\mathbf{1 9}$. First, we use a similar argument to Lemma 4.2.

When $v=11$, we can embed $\operatorname{ETS}(3)$ into $\operatorname{ETS}(11)$ as follows. Given a $\operatorname{ETS}(3)$ $\left(V_{1}, B_{1}\right)$, where $V_{1}=\left\{a_{1}, a_{2}, a_{3}\right\}$, we can decompose the graph K_{8}^{+}(based on $\left.V_{2}=\left\{x_{1}, x_{2}, \cdots, x_{8}\right\}\right)$ into three 1-factors $\mathcal{F}=\left\{F_{1}, F_{2}, F_{3}\right\}$, triangles T, lollipops L_{1}, and loops L_{2}, where $F_{1}=\left\{x_{1} x_{5}, x_{2} x_{6}, x_{3} x_{7}, x_{4} x_{8}\right\}, F_{2}=\left\{x_{1} x_{4}, x_{2} x_{7}\right.$, $\left.x_{5} x_{8}, x_{3} x_{6}\right\}, F_{3}=\left\{x_{4} x_{7}, x_{2} x_{5}, x_{3} x_{8}, x_{1} x_{6}\right\}, T=\left\{x_{1} x_{2} x_{3}, x_{3} x_{4} x_{5}, x_{5} x_{6} x_{7}\right.$, $\left.x_{7} x_{8} x_{1}\right\}, L_{1}=\left\{x_{2} x_{2} x_{4}, x_{4} x_{4} x_{6}, x_{6} x_{6} x_{8}, x_{8} x_{8} x_{2}\right\}$ and $L_{2}=\left\{x_{1} x_{1} x_{1}, x_{3} x_{3} x_{3}\right.$, $\left.x_{5} x_{5} x_{5}, x_{7} x_{7} x_{7}\right\}$. Let $C=\left\{a_{i} x y \mid x y \in F_{i}, i=1,2,3\right\}$, then $\left(V_{1} \cup V_{2}, B_{1} \cup\right.$ $\left.C \cup T \cup L_{1} \cup L_{2}\right)$ is an $\operatorname{ETS}(11)$. Replacing the blocks in $\operatorname{ETS}(3)$ on V_{1} and changing C by $\left\{a_{\alpha(i)} x y \mid x y \in F_{i}, i=1,2,3\right\}$ with $\alpha=(23)$ or (123), L_{1} by $\left\{x_{2} x_{2} x_{8}, x_{8} x_{8} x_{6}, x_{6} x_{6} x_{4}, x_{4} x_{4} x_{2}\right\}$, or $T \cup L_{1} \cup L_{2}$ by $\left\{x_{2} x_{3} x_{4}, x_{4} x_{5} x_{6}, x_{6} x_{7} x_{8}\right.$, $\left.x_{8} x_{1} x_{2}, x_{1} x_{1} x_{3}, x_{3} x_{3} x_{5}, x_{5} x_{5} x_{7}, x_{7} x_{7} x_{1}, x_{2} x_{2} x_{2}, x_{4} x_{4} x_{4}, x_{6} x_{6} x_{6}, x_{8} x_{8} x_{8}\right\}$, we have $J[11] \supseteq\{0,6\}+\{0,12,36\}+\{0,16,24\} \supseteq\{0,6,18,22,24,30,36,58\}$. The missing data gives the following.

Let $E_{1}=\left\{111,123,145,167,18 t_{1}, 19 t, 224,255,268,279,2 t t_{1}, 335,344,369\right.$, $\left.37 t_{1}, 38 t, 46 t, 478,49 t_{1}, 56 t_{1}, 57 t, 589,666,777,888,999, t t t, t_{1} t_{1} t_{1}\right\} . E_{2}=\{116$, $123,145,177,18 t_{1}, 19 t, 225,244,268,279,2 t t_{1}, 334,355,369,37 t_{1}, 38 t, 46 t, 478$, $\left.49 t_{1}, 56 t_{1}, 57 t, 589,667,888,999, t t t, t_{1} t_{1} t_{1}\right\} . E_{3}=\left\{112,133,145,167,18 t_{1}\right.$, $19 t, 224,235,268,279,2 t t_{1}, 344,369,37 t_{1}, 38 t, 46 t, 478,49 t_{1}, 556,57 t, 589$, $\left.5 t_{1} t_{1}, 66 t_{1}, 777,888,999, t t t\right\} . E_{4}=\left\{118,123,145,166,179,1 t t_{1}, 225,244,267\right.$, $28 t_{1}, 29 t, 334,355,369,37 t_{1}, 38 t, 46 t, 478,49 t_{1}, 56 t_{1}, 57 t, 589,688,777,999$, $\left.t t t, t_{1} t_{1} t_{1}\right\} . E_{5}=\left\{112,13 t_{1}, 144,156,179,18 t, 22 t, 237,249,25 t_{1}, 268,336,34 t\right.$, $\left.358,399,457,466,48 t_{1}, 555,59 t, 67 t, 69 t_{1}, 778,7 t_{1} t_{1}, 889, t t t_{1}\right\}$.

Now, N_{1} comes from E_{2} by removing the blocks $\left\{116,123,145,177,18 t_{1}\right.$, $\left.225,244,355,667,888, t_{1} t_{1} t_{1}\right\}$ and replacing them with $\{118,124,135,167$, $\left.1 t_{1} t_{1}, 223,255,445,666,777,88 t_{1}\right\}$. N_{2} comes from E_{4} by removing the blocks $\left\{166,179,1 t t_{1}, 267,28 t_{1}, 29 t, 688, t_{1} t_{1} t_{1}\right\}$ and replacing them with $\{167,19 t$, $\left.1 t_{1} t_{1}, 268,279,2 t t_{1}, 666,88 t_{1}\right\} . N_{3}$ comes from E_{2} by removing the blocks $\{116$, $\left.177,18 t_{1}, 225,244,334,355,667,888, t_{1} t_{1} t_{1}\right\}$ and replacing them with $\{118,167$, $\left.1 t_{1} t_{1}, 224,255,335,344,666,777,88 t_{1}\right\}$. N_{4} comes from E_{3} by removing the blocks $\left\{112,133,167,235,556,5 t_{1} t_{1}, 66 t_{1}, 777\right\}$ and replacing them with $\{116$, $\left.123,177,255,335,56 t_{1}, 667, t_{1} t_{1} t_{1}\right\} . N_{5}$ comes from E_{5} by removing the blocks $\{112,144,22 t, 237,336,466,67 t\}$ and replacing them with $\{114,122,233,27 t$, $367,446,66 t\} . N_{6}$ comes from E_{5} by removing the blocks $\left\{466,889,48 t_{1}, 69 t_{1}\right\}$
and replacing them with $\left\{669,884,46 t_{1}, 89 t_{1}\right\} . N_{7}$ comes from E_{3} by removing the blocks $\left\{112,133,167,224,235,344556,5 t_{1} t_{1}, 66 t_{1}, 777\right\}$ and replacing them with $\left\{116,123,177,225,244,334,35556 t_{1}, 667, t_{1} t_{1} t_{1}\right\}$.

Table 3.

Intersection	Size	Intersection	Size
$E_{5} \cap(14)(23)\left(6 t_{1} 7 t 8\right) E_{5}$	1	$E_{1} \cap(46)(57) E_{1}$	32
$E_{5} \cap\left(3865 t_{1} 4 t 79\right) E_{5}$	2	$E_{1} \cap E_{4}$	37
$E_{1} \cap(13764)(2958) E_{1}$	3	$E_{1} \cap(26)(37) E_{1}$	38
$E_{1} \cap(1263)(475) E_{1}$	4	$E_{2} \cap N_{1}$	43
$E_{1} \cap(135624) E_{1}$	5	$E_{2} \cap E_{4}$	44
$E_{1} \cap(156)(2734) E_{1}$	7	$E_{3} \cap N_{7}$	45
$E_{1} \cap(14)(2736) E_{1}$	10	$E_{4} \cap N_{2}$	46
$E_{1} \cap(157426) E_{1}$	11	$E_{2} \cap N_{3}$	47
$E_{1} \cap(234756) E_{1}$	14	$E_{3} \cap N_{4}$	49
$E_{1} \cap(14)(36)(57) E_{1}$	19	$E_{5} \cap N_{5}$	50
$E_{1} \cap(2734) E_{1}$	20	$E_{2} \cap N_{2}$	55
$E_{1} \cap(265)(47) E_{1}$	23	$E_{5} \cap N_{6}$	56
$E_{1} \cap(257634) E_{1}$	25		

We have $J[11]=I_{o}[11]$.
When $v=15$, we can obtain $J[15] \supseteq I_{o}[15] \backslash\{1,83\}$ using Lemma 3.3. Let $E_{1}=A \cup B$, where $A=\left\{123,1 t t_{5}, 1 t_{1} t_{4}, 1 t_{2} t_{3}, 28 t, 29 t_{1}, 2 t_{3} t_{4}, 335,38 t_{1}, 39 t_{3}\right.$, $3 t t_{2}, 3 t_{4} t_{5}, 48 t_{2}, 49 t_{5}, 4 t t_{4}, 4 t_{1} t_{3}, 58 t_{3}, 59 t, 5 t_{1} t_{5}, 5 t_{2} t_{4}, 68 t_{4}, 69 t_{2}, 6 t_{3} t_{5}, 777,78 t_{5}$, $\left.79 t_{4}, 7 t t_{3}, 7 t_{1} t_{2}, t_{3} t_{3} t_{3}, t_{4} t_{4} t_{4}\right\}$ and $B=\left\{118,146,157,199,22 t_{2}, 247,256,2 t_{5} t_{5}\right.$, $\left.344,367,455,66 t, 6 t_{1} t_{1}, 889, t t t_{1}, t_{2} t_{2} t_{5}\right\}$. N_{1} is obtained from E_{1} by removing the blocks B and replacing them with $\left\{111,145,167,189,222,246,257,2 t_{2} t_{5}\right.$, 347, 366, 444, 556, $\left.6 t t_{1}, 888,999, t t t, t_{1} t_{1} t_{1}, t_{2} t_{2} t_{2}, t_{5} t_{5} t_{5}\right\}$. Then $\left|E_{1} \cap N_{1}\right|=83$ and $\left|\left(1529 t_{2} 4\right)\left(3 t_{1}\right)\left(6 t t_{4}\right)\left(7 t_{3} 8 t_{5}\right) E_{1} \cap E_{1}\right|=1$. Thus we have $J[15]=I_{o}[15]$.

For $v=19$, the only missing data is 177 , we can embed $\operatorname{ETS}(5)$ into $\operatorname{ETS}(19)$ ([3]). Thus we have $J[19]=I_{o}[19]$.

Lemma 4.5. $J[9]=I_{o}[9] \backslash\{32\}$ and $J[v]=I_{o}[v]$ for $v=11,13,15,17,19,21$.
Applying Lemma 4.5 to Lemmas 4.1 and 4.4 recursively, we obtained the following result.

Theorem 4.6. $J[v]=I_{o}[v]$ for $o d d v, v \geq 11$.

5. Conclusions.

By Theorems 3.5 and 4.6 , we obtained the following results:
Main Theorem. For even $v, J[v]=I_{e}[v]$ if $v \geq 8$; and for odd $v, J[v]=$ $I_{o}[v]$ if $v \geq 11$.

References

[1] H.-L. Fu, On the construction of certain types of latin squares having prescribed intersections, Ph. D. thesis, Auburn University, 1980.
[2] A. J. W. Hilton and C. A. Rodger, Graphs and configurations, A look at graph theory, (Proc. colloq., Cerisy) (French), 1980, 55-64.
[3] D. G. Hoffman and C. A. Rodger, Embedding totally symmetric quasigroups, Annals of Discrete Mathematics, 34(1987), 249-259.
[4] D. M. Johnson and N. S. Mendelsohn, Extended triple systems, Aequationes Math., 3(1972) 291-298.
[5] C. C. Lindner and A. Rosa, Steiner triple systems having a prescribed number of triples in common, Canad. J. Math., 27(1975), 1166-1175.
[6] C. C. Lindner and W.D. Wallis, A note on one-factorizations having a prescribed number of edges in common, Annals of Discrete Math., 12(1982), 203-209.
[7] G. Lo Faro, A class of extended triple systems and numbers of common triples, Australas. J. Combinat., 12(1995), 209-224.
[8] R. G. Stanton and I. P. Goulden, Graph Decomposition, general triple systems and cyclic triple systems, Aequat. Math., 22(1981), 1-28.

Department of Mathematics, Tamkang University, Tamsui, Taipei Shien, Taiwan, Republic of China.

Department of Mathematics, Soochow University, Taipei, Taiwan, Republic of China.

[^0]: Received March 02, 2000; revised October 18, 2000.

