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b
Fundamental numerical methods to calculate definite integrals j f(x)dx include Trapezoidal, Midpoint and

‘ d
Simpson’s rule. When calculating definite integrals with these methods, however, people usually apply error
approximation rules with strict and specified requirements in numerical analysis. This paper studies integrands

which satisfy (1) being differentiable on (a, b) or (2) convex functions with the existence f, (a) and f (b), in
order to obtain the approximation rule for error bounds.
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INTRODUCTION
b
In order to evaluate J- f(x) dx, using the Fundamental Theorem of Calculus, we need to know the
a

antiderivative of f. Occasionally, however, it is difficult, or even impossible, to find an antiderivative.
In virtue of this, we usually evaluate approximate value of the definite integrals instead. The most
familiar approximations of the definite integrals are

(1) the Trapezoidal Rule

| f(x)dxz% [£00)+270) + 2 () + . 4205, £ () ] 4

b-a . .
where Ax= " and x;=a+idx; i=1,2, .., n,
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(ii) the Midpoint Rule

b
[ e ax= [FE) 4G +f G+ +/ @y )+ ] Ax

where Ax=2"2 and X.=a+ i—l Ax; i =1, 2, .., n,
n t 2

and (iii) the Simpson’s Rule
b
[ 7o) de=3 1)+ 476 + 2 () + 47 (xg) +

o 2, )+ (x, ) +f(x)] Ax

—a

where n is even, Ax= and xi=a+iAx;i=1,2,...,n.

The error bounds of Trapezoidal rule, Midpoint rule and Simpson’s rule are given as follow

Let If” (x)1<K and If(4)(x)|SM for as<x<b. If EE), and Eg are the errors in the
Trapezoidal, Midpoint and Simpson’s Rules, respectively, then

K®-a)’

|E 1<
T 12n2

: )
K(b-a)’

VE, | <
M 24n?

. (2

M(b—a)5

. (3)
180 n*

and IEsls

However in many practical situations, the integrands may not be continuously fourth
differentiable, among them some are even not continuously twice differentiable so that (1), (2) and

(3) cannot be used. One simple example to demonstrate this is fx) = (x3—c)” with
c#0,a<c<b and 1 < p < 2. In this case the antiderivative is difficult to find Af” (x) and
f “4) (x) are not bounded in (a, b) but £’ (x) is continuous on'[a, b]. So that (1), (2) and (3) can
not be applied to this example.

The aim of this paper is (i) to show that the errors in the Midpoint rule and Simpson’s rule
satisfy first-order estimate and (ii) to determine the error bounds in the Trapezoidal, Midpoint and
simpson’s Rules for convex functions.

NOTATIONS AND ERROR BOUNDS OF THE FIRST ORDER ESTIMATE
Let [a, b] be a closed interval in R and let f be a real valued function on [a, b] and let Pn be the

-—a
n

regular partition of [a, b] into n subintervals of equal length. Set Ax=b and define
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M, [a,bl= Y f[a+(k—%JAx)Ax;n=l,2,3, e (4)
k=1
1— n-1
T,la,b]=5| f(@)+2 Y fla+kdx)+f®) |Ax;n=1, 2,3, .., (5
k=1
and Sn[a,b]zé fl@+4 f(a+[k—%)AxJ
L k=1

n-1

+2 Y fla+kAx)+f(b) |Ax;
k=1

n=123 .

We note that T, [a,b],M, [a,b] and S, [a,b] are approximations of Trapezoidal rule,
Midpoint rule and Simpson’s rule, respectively. We also note that 7, [a,b] and S, [a, b] can be

written as follows :

Tn[a,b]=% 2 fla+k-1)Ax)+f(a+kAx)]Ax, ... (6)
k=1
Sn[a,b]=% Z I:f(a+(k—l)Ax)+4f[a+(k—%JAxJ+f(a+kAx):|Ax
k=1
= %-(Tn {a, b] + 2M, [a, D]). . (1)

In 1938 Ostrowski’ proved that if |f (x) | <M;a<x<b, then

2

b a+b
1 N
Foa | T0d-f0)s| gr g |e-a M, - ®

and at the same year Iyeng.ar4 proved that, if |f (x)|<SM;a<x<b, then

b 2
[ roa-252g@+rep | <M= ) -f(@)?

2
SM(b—a) .

2 . (9

Using the inequalities (8) and (9) together with
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[ fecdx—m, 1a,b)

a

n a+kAx
< Z _[ f(x‘)dx—f(a+(k—%JAx)Ax .. (10)
k=1 |a+k-1)Ax
and [ fydx-T,1a,b)
0
n a+kAx
SE J f(x)dx——A-zi(f(a-k(k—l)Ax)+f(a+kAx)) . . (1)
k=1 |a+(k-1)Ax

S. S. Dragomir and S. Wang have proved the following two theorems.

Theorem 2.1 ([3]) — Let f:[a,b] >R be a differentiable function on (a, b). If

Hfi_= sup If (x)] then we have
X€ (a. b)

[ ey de-m,la ) | <L ") I, 1)

Theorem 2.2 ([2]) — Let f:[la,b] >R be a differentiable function on (a. b). [f
Hf' N, = sup 1f"(x}|, then we have
X € (a. h)
L

[ rac-7, 101 <

a

F 12 (b - a) - (F (b) (@)
aniif

(b “) WF. . (13)

For the approximation of Simpson’s rule, we have

Theorem 2.3 — Let f:{a,b] >R be a differentiable function on (a, b). If
Wf'i_= sup If"(x)\ then we have
x€ (a,b)

(b a) 1
[ fxydc-s,1a,b]| < e T

(f b) - £ (@)
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(b-a? .
<= If I . (14)

PROOF : It follows from (7), (12) and (13) that

jf(x)a'x—sn[a,b] = J'f(x)dx—%(Tn[a,b]+2Mn[a,b])

a

b
s% [ feydx-T,1a,b) +% [ fw dx-M, (a,b]

a

(b - a)2 ’
S (f (b)~f (@)

" 12n Hf I

(b “) WFN.

Remark : The estimations in (12), (13) and (14) are of first order accuracy, they depend
only on lif"Il_.
THE ERROR ESTIMATION ON CONVEX FUNCTIONS

A real-valued function f defined on an interval / C R is called convex if the inequality

FAx+(A - SAf@+A-Af®» .. (15)

is valid for all x,y € I and for all real numbers A€ [0, 1]. If f:[a, b] > R is convex, then

b
f[ ax2 )S,;—l; [ roar<sg@=+ren. - (16)

The inequality (16) is known as Hermite-Hadamard inequality (see [6]).
In order to estimate the error of convex function, we need the following two lemmas :
Lemma 3.1 — Let f:[a, b] > R be a convex function and let n be a positive integer.

Then we have

(@) M, [a,b]< | F()dx<T, [a,b)

a

(b) M, [a, b} <M,, [a, b]

(© T,,la,b]<T, |a, b]
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(d) T,, [a,b] = % (T, [a, b] + M, [a, b])

PROOF : (a), (b) and (c) have proved by S. S. Dragomir (see [1]).
(d) Since

n

)m]m: Y f[a+(2k-1)f’—2—’£JAx, . (17

k=1

| =

M (a,bl= ), f(a+(k—

k=1
it follows from (5) and (17) that

1

5{T,la, b1+ M, [a,b]}

n-1
=% 1 fla)+2 Z fla+kAx)+f(b) Ax+k21 f[a+(2k-1)é2£)Ax}
- J

s feon{2)) 3

k=1

[oves-n s | )

2n-1 .
% f@+2 Y f(a+k%]+f(b) %

k=1

T,, la, b].

This completes the proof.
Let

f; ()= lim &i__.ﬂl and f ()= lim xx:c(c ,

+
xX—=c X—)C

Then we have v
Lemma 3.2 — Let f:[a, b] -—-; R be a convex function such that f;_ (a), f’_ (b) exist. Then

£ () S[in_:%@ <f x<f, ) sﬂ%giﬁ <f (b), V x€ (ab).

PROOF : It is well-known ([5], p17) that, if f:[a,b] & R is convex, then fl_ (x) and f; x)

exist, and f:(x) Sf:r x), V x€ (a,b). Now if ye (x,b), then there exists a€ (0,1) such that

y=ax+(l-a)b. Since f is convex, it follows that
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fO)=flax+(1-0)b) < af(x)+(1-a)f(b). .. (18)

this implies f(y) ~f(b) < a (f(x) —f (b)), so that

[B)-fx) B -fO)_fB) - f(\)
b-x ~ alb-x) by v YE WD)
Hence f(b) (x < lim f(b) 0 -f )
y=b

From (18) we also have

- f(x) LB f(x) Voye b

‘7

This implies

f:..(X)= lim f(y) f(x) f(b}),_J:(X)~

y-—-)x

Similarly let y=aa+(1-a)x, ae (0, 1), we have
folay<HO=L@ _f
x—~a -

This completes the proof.

Now, we are ready to prove the following theorems :

Theorem 3.3 — Let f:[a,b] > R be a convex function and assume that both m = f; (a) and

M= f_ (b) exist. Then

0<T,[a,b]-M,a, b]<(b4a)

(M —m).

PROOF : It follows from Lemma 3.1 (a) and the identities (4) and (6), that

0<T, [a,b]- M, [a,b)

=y {%[f(a+(k—— l)Ax)+f(a+kAx)]—f(a+(k—%]AxJ}Ax
k=1

J]

N |

=(Ax)2 if(a-*—kAx)—f(tH—(k—

AN Y
4 k=1 -;-Ax
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(Ax)2 n (a+k—%})x‘)—ﬂa+k—1)Ax)

4 7
k=1 2Ax

Using Lemma 3.2, we have

f(a+kAx)—f(a+(k—%)Ax)
~ ] Sf'@+kAx)<f’ (b)=M,
—Ax
2
and
f(a+(k—%Ax)—f(a+(k—l)Ax) ,
] 2f (a+k-1)Ax)2f (a)=m,
—Ax
2
for k=1, 2, .., n
2
Hence T, [a,b]-M, [a,b] S-}I(Ax)z (n(M-m)) =£bj;nL) M - m).

This completes the proof.
Theorem 3.4 — Let f:[a,b] > R be a convex function and assume that both m = f; (a) and
M= f,_ (b) exit. Then we have

b 2
@ 0<T, [a, b] - | f(x)dxsg%z—(M—m).
® 0% | f() dc~M, la, b1 < EE M- m)

b 2
© | fedr-s, [, 4] sSbT‘z;‘:)—(M-m).

a

PROOF : (a) By Lemma 3.1 (a) and Theorem 3.3, we have

b 2
0ST,la. b~ | f()dxST, la, b]-M, la, b) =L M- m).

- a

(b) By Lemma 3.1 (a) and (c), we have
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M, [a,b] < j.f(x)dx<T l[a,b}<T, [a, b].

a

It follows from Lemma 3.1 (a), (b) and Theorem 3.3 that

b
0< [ f)dv-M, (a,b1<T,, [a,b]-M, [, b]

a

%(r [a. b] - M, [a, b])

cb-a)” a)®

. M - m).

b
(¢) First, if _[ f (x)deSn [a, b], then it follows from Lemma 3.1(a), inequality (7) and

a
Theorem 3.3 that

b
0<S fa.bl- | f(0)dx<S, [a,b]-M, [a,b]

a

=1 (2. b1-M, (a,B)

L»)

(b a) M —m).

b
Next, if §,[a,b)< | f(x)dx, then it follows from Lemma 3.1 (a), (d), inequality (7) and

a
Theorem 3.3 that

0< | f(x)dx-5,[a,BI1ST,, [a,b]-S, [a,b]

a

Lt b1-m, L)

_ (b-a)

2an M-m.

Thus
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b 2
| £ dx-5, 1a,b) SQT_QZ_) (M — m).

Remark : Although our estimations in Theorem 3.4 require that f is a convex function,

acutally their accuracies depend only on the difference between ) and f; (a). In general there

are many convex functions that are not differentiable, so that (1), (2), (3) (12), (13) and (14) can
not be used. Thus our results in Theorem 3.4 provide some estimations for convex functions.

I N
>0 0 RV 0®
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