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Abstract

We consider the nth order ordinary differential equation (−1)n−ky(n) = λa(t)f(y), t ∈

[0, 1], n ≥ 3 together with boundary condition y(i)(0) = 0, 0 ≤ i ≤ k − 1, and y(l)(1) = 0,

j ≤ l ≤ j +n−k−1, for 1 ≤ j ≤ k−1 fixed. Values of λ are characterized so that the boundary

value problem has a positive solution.

1 Introduction

Let n ≥ 3, 2 ≤ k ≤ n− 1, and 1 ≤ j ≤ k− 1 be given. In this paper we shall consider the nth order

differential equation

(−1)n−ky(n) = λa(t)f(y), t ∈ [0, 1], (1)

satisfying the boundary conditions

y(i)(0) = 0, 0 ≤ i ≤ k − 1,

y(l)(1) = 0, j ≤ l ≤ j + n − k − 1.
(2)

Throughout, we assume the following hypotheses :

(H1) a(t) is a continuous nonnegative function on [0, 1] and is not identically equal to zero on any

subinterval of [0, 1].
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(H2) f : R → [0,∞) is continuous and nonnegative.

(H3) The limits f0 = limu→0+
f(u)

u
and f∞ = limu→∞

f(u)
u

exist in [0,∞).

We shall determine values of λ for which the boundary value problem (1), (2) has a positive solution.

By a positive solution y of (1), (2), we mean y ∈ C (n)[0, 1] satisfies (1) on [0, 1] and fulfills (2), and

y is nonnegative and is not identically zero on [0, 1]. We let

Sp(a) = {λ > 0 | (1), (2) has a postive solution}.

The motivation for the present work originates from many recent investigations. In the case n = 2

the boundary value problem (1), (2) describes a vast spectrum of scientific phenomena; we refer the

reader to [1, 3, 5, 6, 14, 16]. It is noted that only positive solutions are meaningful in those models.

Our results complement the work of many authors, see, e.g. [2, 4, 8, 9, 10, 11, 12, 13, 17, 18, 19]. In

Section 2, we provide some definitions and background results, and state a fixed point theorem due

to Krasnosel’skii [15]. Also, we present some properties of certain Green’s function where needed.

By defining an appropriate Banach space and cone, in Section 3, we characterize the set Sp(a).

2 Background Notation and Definitions

We first present the definition of a cone in a Banach space and the Krasnosel’skii Fixed Point

Theorem. Definition 2.1. Let B be a Banach space over R. A nonempty closed convex set P ⊂ B

is said to be a cone provided the following are satisfied:

(a) If y ∈ P and α ≥ 0 , then αy ∈ P;

(b) If y ∈ P and −y ∈ P , then y = 0.

Theorem 2.1 Let B be a Banach space, and let P ⊂ B be a cone in B. Assume Ω1,Ω2 are open

subsets of B with 0 ∈ Ω1,Ω1 ⊂ Ω2, and let

T : P ∩ (Ω2 \ Ω1) → P

be a completely continuous operator such that, either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2 ;
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(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \ Ω1).

To obtain a solution for (1) and (2), we require a mapping whose kernel G(t, s) is the Green’s

function of the boundary value problem

(−1)n−ky(n) = 0, (3)

y(i)(0) = 0, 0 ≤ i ≤ k − 1,

y(l)(1) = 0, j ≤ l ≤ j + n − k − 1.

Wong and Agarwal [20] have found that if y satisfies

(−1)n−py(n) ≥ 0, (4)

y(i)(0) = 0, 0 ≤ i ≤ p − 1,

y(l)(1) = 0, 0 ≤ l ≤ n − p − 1,
(5)

then, for δ ∈ (0, 1
2) and t ∈ [δ, 1 − δ],

y(t) ≥ min{b(p)min{c(p), c(n − p − 1)}, b(p − 1)min{c(p − 1), c(n − p)}}‖y‖ (6)

where the functions b and c are defined as

b(x) =
(n − 1)n−1

xx(n − x − 1)n−x−1
, c(x) = δx(1 − δ)n−x−1.

Aided by this, we have the following lemma.

Lemma 2.2 Let n ≥ 3. Assume u ∈ C (n)[0, 1], (−1)n−ku(n)(t) ≥ 0, 0 ≤ t ≤ 1 and u satifies (2).

Then for 0 ≤ t ≤ 1,

u(j)(t) ≥ 0

and for t ∈ [δ, 1 − δ]

u(j)(t) ≥ σ1|u
(j)|∞

where

σ1 = min{b(k − j)min{c(k − j), c(n − k − 1)}, b(k − j − 1)min{c(k − j − 1), c(n − k)}}.
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Proof: First, u(j) ∈ C(n−j)[0, 1]. Also u(j) satisfies

(−1)n−ky(n−j)(t) ≥ 0.

Let the boundary condition (2) be partitioned into two parts:

y(i)(0) = 0, j ≤ i ≤ k − 1

y(l)(1) = 0, j ≤ l ≤ j + n − k − 1
(7)

and

y(i)(1) = 0, 0 ≤ i ≤ j − 1. (8)

Now u satisfies (7), so u(j) satisfies (k− j, n−k) homogeneous conjugate boundary conditions. The

conclusion then follows from inequality (6).

Lemma 2.3 Let n ≥ 3. Assume u ∈ C (n)[0, 1], (−1)n−ky(n)(t) ≥ 0, 0 ≤ t ≤ 1, and u satifies (2).

Then for 0 ≤ t ≤ 1,

u(t) ≥ 0

and for t ∈ [ 12 , 1 − δ],

u(t) ≥ σ2|u
(j)|∞

where σ2 =
σ1( 1

2
−δ)

j

j! and |u(j)|∞ = maxt∈[0,1]|u
(j)(t)|.

Proof: Since u satisfies (2), u satisfies (8) as well. Thus for 0 ≤ t ≤ 1,

u(t) =

∫ t

0

(t − s)j−1

(j − 1)!
u(j)(s)ds.

Aided by Lemma 2.2

u(t) =

∫ t

δ

(t − s)j−1

(j − 1)!
u(j)(s)ds +

∫ δ

0

(t − s)j−1

(j − 1)!
u(j)(s)ds.

≥

∫ t

δ

(t − s)j−1

(j − 1)!
u(j)(s)ds

≥
σ1(t − δ)j

j!
|u(j)|∞.

Consequently, for t ∈ [ 12 , 1 − δ],

u(t) ≥
σ1(

1
2 − δ)

j

j!
|u(j)|∞.
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The nonnegativity of u follows.

It is noted that Eloe [7] proved that G(j)(t, s) = ∂j

∂tj
G(t, s) is the Green’s function of y(n−j) = 0

subject to the boundary conditions

y(i)(0) = 0, 0 ≤ i ≤ k − j − 1,

y(l)(1) = 0, 0 ≤ l ≤ n − k − 1.
(9)

The proof follows from the four properties of the Green’s function. Consequently we have the

following result, whose conclusion follows from Lemma 2.2.

Lemma 2.4 For each s ∈ (0, 1), and t ∈ [δ, 1 − δ]

(−1)n−kG(j)(t, s) ≥ σ1|G
(j)(·, s)|∞

where |G(j)(·, s)|∞ = max0≤t≤1|G
(j)(t, s)|.

3 Main Results

We are now in a position to give some chacterization of Sp(a). Define a Banach space, B, by

B = {u ∈ C(j)[0, 1]|u satisfies (8)}

with norm ‖u‖ = max0≤t≤1|u
(j)(t)|.

Let σ = σ2 =
σ1( 1

2
−δ)j

j! . Define a cone, Pσ ⊂ B, by

Pσ = {u ∈ B|u(j)(t) ≥ 0 on[0, 1], and min
t∈[δ,1−δ]

u(t) ≥ σ‖u‖}.

Let

Tu(t) = (−1)n−k

∫ 1

0
G(t, s)a(s)f(u(s)) ds, 0 ≤ t ≤ 1, u ∈ B.

To obtain a solution of (1), (2), we shall seek a fixed point of the operator λT in the cone Pσ. In

order to apply the Krasnosel’skii Fixed Point Theorem, for λ > 0, we need the following.

Lemma 3.1 For λ > 0, λT : Pσ → Pσ and is a completely continuous operator.
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Proof: Let u ∈ Pσ. It sufffices to verify this lemma when λ = 1. By properties of (−1)n−kG(j)(t, s),

it is clear that (Tu)(j)(t) ≥ 0 and (Tu)(j)(t) is continuous on [0, 1].

Furthermore, for any 0 ≤ τ ≤ 1

mint∈[δ,1−δ](Tu)(j)(t) ≥

∫ 1

0
mint∈[δ,1−δ](−1)n−kG(j)(t, s)a(s)f(u(s))ds

≥ σ

∫ 1

0
(−1)n−kG(j)(τ, s)a(s)f(u(s))ds

≥ σ

∫ 1

0
|G(j)(·, s)|∞a(s)f(u(s))ds

≥ σ‖Tu‖.

Also, the standard arguments yield that λT is completely continuous.

Theorem 3.2 Assume (H1), (H2), and (H3) with f0 < f∞ < ∞. Assume there exists a value of λ

such that

λf0

∫ 1

0
‖G(·, s)‖a(s)ds < 1, (10)

and

λσ2f∞

∫ 1−δ

1

2

‖G(·, s)‖a(s)ds > 1. (11)

Then the BVP (1),(2) has a positive solution in the cone Pσ.

Proof: For each λ > 0 satisfying both of the conditions (10) and (11), let ε(λ) > 0 be sufficiently

small such that

λ(f0 + ε)

∫ 1

0
‖G(·, s)‖a(s)ds ≤ 1, (12)

and

λσ2(f∞ − ε)

∫ 1−δ

1

2

‖G(·, s)‖a(s)ds ≥ 1. (13)

Consider f0 first. There exists H1(ε) > 0 such that f(u) ≤ (f0 + ε)u, for all 0 < u ≤ H1. Let

Ω1 = {u ∈ B|‖u‖ < H1}.
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For all u ∈ ∂Ω1 ∩ Pσ, 0 ≤ u(s) ≤ ‖u‖, and

‖λTu‖ ≤ λ

∫ 1

0
‖G(·, s)‖a(s)f(u(s))ds

≤ λ

∫ 1

0
‖G(·, s)‖a(s)(f0 + ε)u(s)ds

≤ λ(f0 + ε)

∫ 1

0
‖G(·, s)‖a(s)ds · ‖u‖.

Hence, (12) implies that

‖λTu‖ ≤ ‖u‖.

On the other hand, consider f∞. There exists H̄2(ε) > 0 such that f(u) ≥ (f∞ − ε)u , for all

u ≥ H̄2. Let

H2 = max{2H1,
1

σ
H̄2},

Ω2 = {u ∈ B | ‖u‖ < H2}.

For all u ∈ ∂Ω2 ∩ Pσ, u(s) ≥ σ‖u‖, 1
2 ≤ s ≤ 1 − δ, and

‖λTu‖ ≥ mint∈[δ,1−δ]λTu(t)

≥

∫ 1

0
mint∈[δ,1−δ](−1)n−kG(t, s)a(s)f(u(s))ds

≥ λ

∫ 1

0
σ‖G(·, s)‖a(s)f(u(s))ds

≥ λσ

∫ 1−δ

1

2

‖G(·, s)‖a(s)f(u(s))ds

≥ λσ

∫ 1−δ

1

2

‖G(·, s)‖a(s)(f∞ − ε)u(s)ds

≥ λσ

∫ 1−δ

1

2

‖G(·, s)‖a(s)(f∞ − ε)σ‖u‖ds

≥ λσ2(f∞ − ε)

∫ 1−δ

1

2

‖G(·, s)‖a(s)ds‖u‖.

Hence, (13) implies that

‖λTu‖ ≥ ‖u‖.

Finally, we apply part (i) of Krasnosel’skii’s Fixed Point Theorem and obtain a fixed point u1

of λT in Pσ ∩ (Ω2\Ω1). Note that for 1
2 ≤ t ≤ 1 − δ,

u1(t) ≥ σ‖u1‖ ≥ σH1 > 0.
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Hence, u1 is a nontrivial solution of (1),(2). Successive applications of Rolle’s theorem imply that

u1 does not vanish on (0, 1) and so u1 is a positive solution.

This completes the proof.

Corollary 3.3 Assume all the conditions for Theorem 3.2 hold. Then

(i) For f0 = 0 and f∞ = ∞ (superlinear), Sp(a) = (0,∞).

(ii) For f0 = 0 and f∞ < ∞, ((σ2f∞
∫ 1−δ

1

2

‖G(·, s)‖a(s)ds)−1,∞) ⊆ Sp(a).

(iii) For f0 > 0 and f∞ = ∞, (0, (f0
∫ 1
0 ‖G(·, s)‖a(s)ds)−1) ⊆ Sp(a).

(iv) For 0 < f0 < f∞ < ∞,

((σ2f∞
∫ 1−δ

1

2

‖G(·, s)‖a(s)ds)−1, (f0
∫ 1
0 ‖G(·, s)‖a(s)ds)−1) ⊆ Sp(a).

Theorem 3.4 Assume (H1), (H2) ,and (H3) with f∞ < f0 < ∞. Assume there exists a value of λ

such that

λσ2f0

∫ 1−δ

1

2

‖G(·, s)‖a(s)ds > 1. (14)

In addition, if f is not bounded, assume also that

λf∞

∫ 1

0
‖G(·, s)‖a(s)ds < 1. (15)

Then the BVP (1),(2) has a positive solution in the cone Pσ.

Proof: For each λ > 0 satisfying the condition (14), let ε(λ) > 0 be sufficiently small such that

λσ2(f0 − ε)

∫ 1−δ

1

2

1‖G(·, s)‖a(s)ds ≥ 1. (16)

Consider f0 ∈ R+ first. There exists H1(ε) > 0 such that f(u) ≥ (f0 − ε)u, for 0 < u ≤ H1.

Let

Ω1 = {u ∈ B | ‖u‖ < H1}.

EJQTDE, 1999 No. 12, p. 8



For all u ∈ ∂Ω1 ∩ Pσ, u(s) ≥ σ‖u‖, 1
2 ≤ s ≤ 1 − δ, and so

‖λTu‖ ≥ min
t∈[δ,1−δ]

λTu(t)

≥ λ

∫ 1

0
min

t∈[δ,1−δ]
(−1)n−kG(t, s)a(s)f(u(s))ds

≥ λ

∫ 1

0
σ‖G(·, s)‖a(s)f(u(s))ds

≥ λσ

∫ 1

0
‖G(·, s)‖a(s)(f0 − ε)u(s)ds

≥ λσ(f0 − ε)

∫ 1−δ

1

2

‖G(·, s)‖a(s)u(s)ds

≥ λσ(f0 − ε)

∫ 1−δ

1

2

‖G(·, s)‖a(s)σ‖u‖ds

≥ λσ2(f0 − ε)

∫ 1−δ

1

2

‖G(·, s)‖a(s)ds‖u‖.

Hence, (16) implies that

‖λTu‖ ≥ ‖u‖.

On the other hand, consider f∞ ∈ R+. Given f0 > f∞, there are two subcases for us to consider:

Case 1: f is bounded. Let λ > 0 satisfying condition (14) be given throughout this case. Let

N > 0 be large enough so that

f(u) ≤ N, for all u ≥ 0,

and

λN

∫ 1

0
‖G(·, s)‖a(s)ds > H1.

Let

H2 = λN

∫ 1

0
‖G(·, s)‖a(s)ds,

and

Ω2 = {u ∈ B | ‖u‖ < H2}.

Then, for all u ∈ ∂Ω2 ∩ Pσ,

‖λTu‖ ≤ λ

∫ 1

0
‖G(·, s)‖a(s)f(u(s))ds

≤ λN

∫ 1

0
‖G(·, s)‖a(s)ds

= ‖u‖.
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Coupled with condition (14), we apply part (ii) of Krasnosel’skii’s Fixed Point Theorem and obtain

a fixed point of λT in Pσ ∩ (Ω2\Ω1).

Case 2: f is not bounded. Assume now that λ > 0 also satisfies the condition (15). Without

loss of generality, we let the preceding ε also satisfy

λ(f∞ + ε)

∫ 1

0
‖G(·, s)‖a(s)ds ≤ 1. (17)

There exists H̄2 > 0 such that for all u ≥ H̄2, f(u) ≤ (f∞+ε)u. Since f is continuous at u = 0,

it is unbounded on (0,∞) as u approaches +∞. Let

H2 > max{2H1, H̄2}

be such that

f(u) ≤ f(H2)

for all 0 ≤ u ≤ H2. Let

Ω2 = {u ∈ B | ‖u‖ < H2}.

For all u ∈ ∂Ω2 ∩ Pσ, 0 ≤ s ≤ 1,

f(u(s)) ≤ f(H2)

≤ (f∞ + ε)H2,

and so,

‖λTu‖ ≤ λ

∫ 1

0
‖G(·, s)‖a(s)f(u(s))ds

≤ λ

∫ 1

0
‖G(·, s)‖a(s)(f∞ + ε)H2ds

≤ λ(f∞ + ε)

∫ 1

0
‖G(·, s)‖a(s)ds · ‖u‖.

Hence,(17) implies that

‖λTu‖ ≤ ‖u‖.

Finally, we apply part (ii) of Krasnosel’skii’s Fixed Point Theorem and obtain a fixed point u1

of λT in Pσ ∩ Ω2\Ω1.

By an argument similar to that in the proof of Theorem 3.2 there is a positive solution, u1, of

(1), (2).
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Corollary 3.5 (Case 1) Assume all the conditions for Theorem 3.4 hold and in addition that f

is bounded. Then

(i) For f0 = 0, Sp(a) = (0,∞).

(ii) For f0 < ∞, ((σ2f0
∫ 1−δ

1

2

‖G(·, s)‖a(s)ds)−1,∞) ⊆ Sp(a).

Corollary 3.6 (Case 2) Assume all the conditions for Theorem 3.4 hold.Then

(i) For f0 = ∞ and f∞ = 0 (Sublinear), Sp(a) = (0,∞).

(ii) For f0 = ∞ and f∞ > 0, (0, (f∞
∫ 1
0 ‖G(·, s)‖a(s)ds)−1) ⊆ Sp(a).

(iii) For 0 < f0 < ∞ and f∞ = 0, ((σ2f0
∫ 1−δ

1

2

‖G(·, s)‖a(s)ds)−1,∞) ⊆ Sp(a).

(iv) For 0 < f∞ < f0 < ∞,

((σ2f0
∫ 1−δ

1

2

‖G(·, s)‖a(s)ds)−1 , (f∞
∫ 1
0 ‖G(·, s)‖a(s)ds)−1) ⊆ Sp(a).
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