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Abstract

We consider the nth order ordinary differential equation (—1)" %y = Xa(t)f(y), t €
[0,1], n > 3 together with boundary condition y(0) = 0, 0 < i < k — 1, and y)(1) = 0,
j<i<j+n—-k—1forl<j<k-—1fixed. Values of )\ are characterized so that the boundary

value problem has a positive solution.

1 Introduction

Let n>3,2<k<n-—1,and 1 <j < k—1 be given. In this paper we shall consider the nth order

differential equation
(=" *y™ = ha()f(y), te0,1], (1)

satisfying the boundary conditions
y@(0)
y (1) =

Throughout, we assume the following hypotheses :

0, j
(2)
0, j<I<j4+n—k—1.

(H1) a(t) is a continuous nonnegative function on [0, 1] and is not identically equal to zero on any

subinterval of [0, 1].
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(Hy) f: R —[0,00) is continuous and nonnegative.
(H3) The limits fo = lim,_,o+ @ and foo = limy, 0 @ exist in [0, 00).

We shall determine values of A for which the boundary value problem (1), (2) has a positive solution.
By a positive solution y of (1), (2), we mean y € C' (™0, 1] satisfies (1) on [0, 1] and fulfills (2), and

y is nonnegative and is not identically zero on [0, 1]. We let
Sp(a) ={A >0 (1),(2) has a postive solution}.

The motivation for the present work originates from many recent investigations. In the case n = 2
the boundary value problem (1), (2) describes a vast spectrum of scientific phenomena; we refer the
reader to [1, 3, 5, 6, 14, 16]. It is noted that only positive solutions are meaningful in those models.
Our results complement the work of many authors, see, e.g. [2,4, 8,9, 10, 11, 12,13, 17, 18, 19]. In
Section 2, we provide some definitions and background results, and state a fixed point theorem due
to Krasnosel’skii [15]. Also, we present some properties of certain Green’s function where needed.

By defining an appropriate Banach space and cone, in Section 3, we characterize the set Sp(a).

2 Background Notation and Definitions

We first present the definition of a cone in a Banach space and the Krasnosel’skii Fixed Point
Theorem. Definition 2.1. Let B be a Banach space over R. A nonempty closed convex set P C B

is said to be a cone provided the following are satisfied:
(a) If y € P and o > 0, then ay € P;

(b) If y e P and —y € P, then y = 0.

Theorem 2.1 Let B be a Banach space, and let P C B be a cone in B. Assume Q1,$s are open
subsets of B with 0 € Q1,91 C Qo, and let

T’PH(Q_Q\Ql) —>7D
be a completely continuous operator such that, either
(i) || Tu| <||ul|,u € PN, and |Tul| > |jull,u € PNIN: ;
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(ii) |Tu| > |lul,u € PNoQy, and |Tu|| < ||ull,u € P N Oy,

Then T has a fized point in P N (Qa \ Q1).

To obtain a solution for (1) and (2), we require a mapping whose kernel G(t,s) is the Green’s

function of the boundary value problem

(_1)n—ky(n) _ O,

y@(0)

yO(1) =0,

IN

j<I<j+n—-k-1
Wong and Agarwal [20] have found that if y satisfies

(1) Pyt) >0,

then, for § € (0,1) and ¢ € [6,1 — 4],

y(t) = min{b(p) min{c(p), ¢(n —p—"1)}, b(p — 1) minfc(p — 1), ¢(n —p)}}yll

where the functions b and ¢ are defined as

(TL _ 1)n—1
x®(n —x — 1)n—z-1’

b(x) =

Aided by this, we have the following lemma.

c(z) = 6%(1 — o)»= L,

3)

(6)

Lemma 2.2 Let n > 3. Assume u € C™[0,1], (=1)" *u(t) >0, 0<t<1 andu satifies (2).

Then for 0 <t<1,

and fort € [6,1 — J]

where

o1 = min{b(k — j) min{c(k — j), ec(n —k —1)}, bk —j—1)min{c(k —j—1), c(n —k)}}.
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Proof: First, ul) € C(=9[0,1]. Also u) satisfies
(=" Fy (1) = 0.
Let the boundary condition (2) be partitioned into two parts:

yD(0)=0, j<i<k-1 )
yW(1)=0, j<I<j+n—-k-1

and

yP(1)=0, 0<i<j—1. (8)

Now u satisfies (7), so u9) satisfies (k — j,n — k) homogeneous conjugate boundary conditions. The

conclusion then follows from inequality (6).

Lemma 2.3 Let n > 3. Assumeu € C™[0,1], (—=1)" %y (t) >0, 0<t <1, and u satifies (2).
Then for 0 <t <1,
u(t) >0

and fort € [3,1— 4],

u(t) > U2|u(j)|oo

1_ 57 . .
where o3 = 20 and [u)] g = maxgepo,y[u®(¢)].

Proof: Since u satisfies (2), u satisfies (8) as well. Thus for 0 <¢ <1,
bt —s)y ™t
u(t :/ ~——_ul)(s)ds.
Aided by Lemma 2.2

_ [ 6 (t=s)" o
u(t) —/5 G=1) ds+/ e (s)ds.

t—s" 4

/5 G- ul )(s)ds

o1(t —0)’ )
5!

Y

|OO'

Consequently, for ¢ € [3,1 -],
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The nonnegativity of u follows.

It is noted that Eloe [7] proved that GU)(t,s) = %G(f, s) is the Green’s function of (=7 = 0

subject to the boundary conditions
’ 9)
The proof follows from the four properties of the Green’s function. Consequently we have the
following result, whose conclusion follows from Lemma 2.2.
Lemma 2.4 For each s € (0,1), and t € [6,1 — J]

(1" GO (1,5) 2 1|GU () e

where ]G(j)(-,s)]oo = maxogtgl\G(j)(t,s)\.

3 Main Results

We are now in a position to give some chacterization of Sp(a). Define a Banach space, B, by
B = {u e CV[0,1]|u satisfies (8)}

with norm |ju|| = mazo<i<i|ul? ()],

01(%75)1'
T

Let 0 =09 = . Define a cone, P, C B, by

Py ={ueBlu?(t)>0 onf[0,1], and min u(t) > olul}.
te[d,1-4]

Let
Tu(t) = (=1)"F /OIG(t,s)a(s)f(u(s)) ds,0<t<1, ueb.

To obtain a solution of (1), (2), we shall seek a fixed point of the operator AT in the cone P,. In

order to apply the Krasnosel’skii Fixed Point Theorem, for A > 0, we need the following.

Lemma 3.1 For A > 0,\T : P, — P, and is a completely continuous operator.
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Proof: Let u € P,. It sufffices to verify this lemma when A = 1. By properties of (—1)""*GU)(t, s),
it is clear that (Tw)Y)(t) > 0 and (Tw)Y)(¢) is continuous on [0, 1].

Furthermore, for any 0 < 7 <1

mingegs 1) (Tu) (1) > /mmtegl A(=1)" GO, s)as) f (u(s))ds

> o [ G, s)als) f(u(s))ds
> o [ 169 8)|als)f (uls))ds
> o|Tul

Also, the standard arguments yield that AT is completely continuous.

Theorem 3.2 Assume (Hy),(H2), and (Hs) with fo < foo < 00. Assume there exists a value of A
such that

)\fo/ G-, s)|la(s)ds < 1, (10)
and
1-6
A foo [ 1G5 lals)ds > 1. (11)
3
Then the BVP (1),(2) has a positive solution in the cone P.

Proof: For each A > 0 satisfying both of the conditions (10) and (11), let €(\) > 0 be sufficiently

small such that

Ao +e) [ 16 )lafs)ds <1, (12)

and

1-6
Ao = 0) [ IGES)lals)ds > 1. (13)

Consider fj first. There exists Hi(e) > 0 such that f(u) < (fo+€)u, forall 0 <u < Hy. Let

O = {U S B|||UH < Hl}
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For all u € 901 NPy, 0 <u(s) < [Juf|, and
ATull <A J G s)llals) f(uls))ds

< A )G s)llals)(fo + uls)ds

A
2
=
+
Ny
o\
>,
Q
=
3
s
>
=
Va)
=

Hence, (12) implies that
AT ul] < [fufl-

On the other hand, consider fo. There exists Ha(e) > 0 such that f(u) > (foo — €)u , for all
u > H,. Let
1 -
H2 = maCL‘{2H1, —HQ},
o

Q= {uc B | ul < Hs}.
For all u € 00 NPy, u(s) > ofull,3 <s<1-4, and
[ATul| > mingessATu(t)
> [ mingsaq (-G s)als)f(u(s))ds
A [ oG latpsu(s)ds
2o [ 16 3 la(s) ()

2

v

v

v

-5
3o [ NG ot — uls)as

2

Y

-5
Ao /: 1G(; s)llals)(foo — €)olullds

2

1-6
Ao?(foo = 6)/l G 8)llals)ds]lul.

2

Y

Hence, (13) implies that
[ATul| = [|u]-

Finally, we apply part (i) of Krasnosel’skii’s Fixed Point Theorem and obtain a fixed point u1
of AT in Py N (22\Q1). Note that for £ <t <1-34,

ui(t) > ollui]| > oHy > 0.
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Hence, u; is a nontrivial solution of (1),(2). Successive applications of Rolle’s theorem imply that
u1 does not vanish on (0,1) and so u; is a positive solution.

This completes the proof.

Corollary 3.3 Assume all the conditions for Theorem 8.2 hold. Then

(1) For fo =0 and foo =0 (superlinear), Sp(a) = (0, 00).

(i) For fo=0 and foo <00, ((02foe JL 2 G(,5)a(s)ds) 1, 0) C Sp(a).

2

(i7i) For fo >0 and foo =00, (0, (fo fol IG(-,s)|la(s)ds)™1)  C Sp(a).

(iv) For 0 < fo < foo < 00,
(0 e 11 NG Vlals)ds) 1 (o J3 IGC, 9)a(s)ds) ™) € Sp(a).

Theorem 3.4 Assume (Hy),(Hsz) ,and (H3) with foo < fo < 00. Assume there exists a value of A
such that

1-6
Aa%fo/l G-, 8)||a(s)ds > 1. (14)

In addition, if f is not bounded, assume also that

1
Mo [ GG $)lla(s)ds < 1. (15)
0
Then the BVP (1),(2) has a positive solution in the cone P-.

Proof: For each A > 0 satisfying the condition (14), let ¢(A) > 0 be sufficiently small such that

1-6

Ao2(fo —e)/ |G 8)lals)ds > 1. (16)

1

2
Consider fo € R* first. There exists Hq(e) > 0 such that f(u) > (fo — €)u, for 0 < u < Hj.
Let

O = {U eB ’ ||UH < Hl}
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For all u € 90 NPy, u(s) > oull, 1 <s<1-46, and so

|ATul| > min ATu(t)
te[6,1-4]

1

A ; tef?iln 6](—1)"_kG(t, s)a(s) f(u(s))ds

A [ oG ot ws)ds
)\o—/ G-, 8 la(s)(fo — u(s)ds
Moo =) [ It ) la(s)u(s)ds

2

1-6
Ao(fo— 6)/l G 8)llals)ol|ullds

2

v

Y

v

Y

Y

v

A=) [ 16t ) la(s)asl.

2

Hence, (16) implies that
ATl = Jlull

On the other hand, consider fo, € RT. Given fo > fo, there are two subcases for us to consider:
Case 1:  f is bounded. Let A\ > 0 satisfying condition (14) be given throughout this case. Let
N > 0 be large enough so that
flw) <N, for all u>0,

and

)\N/ G (-, 8)l|a(s)ds > Hi.
Let

Hy = w/o1 1G(-, 5)l|a(s)ds
and

Oy = {u eB ’ H'LLH < HQ}
Then, for all u € 0Q NP,
Il < 3 [ 60 s)lats) ftuts))ds
< AN/ IG(-.5)las)ds
0

=l
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Coupled with condition (14), we apply part (ii) of Krasnosel’skii’s Fixed Point Theorem and obtain
a fixed point of AT in Py N (Q2\ Q).
Case 2: f is not bounded. Assume now that A > 0 also satisfies the condition (15). Without

loss of generality, we let the preceding € also satisfy

Mo t6) [ 166 9)as)ds < 1. )

There exists Hy > 0 such that for all u > Hs, f(u) < (foo +€)u. Since f is continuous at u = 0,

it is unbounded on (0,00) as u approaches +oo. Let
Hy > maz{2H1, Hy}
be such that
flu) < f(Hs)

for all 0 < u < Hy. Let
Oy = {u eB ’ H'LLH < HQ}

Forallu € 9 NP,, 0<s<1,

flu(s) < f(Hy)
< (foo+€)H2,
and so,
1
INTull < A [ G s)a(s)f (uls))ds
1
< A /0 1G(-,5)a(s)(foo + €) Hads
< Amto [ 1G9 als)ds - ]l

Hence,(17) implies that
AT ul] < [lu]-

Finally, we apply part (ii) of Krasnosel’skii’s Fixed Point Theorem and obtain a fixed point u1
of AT in P, N N2\Q.

By an argument similar to that in the proof of Theorem 3.2 there is a positive solution, wi, of

(1), (2).
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Corollary 3.5 (Case 1) Assume all the conditions for Theorem 3.4 hold and in addition that f
s bounded. Then

(i) For fo =0, Sp(a)=(0,00).

(id) For fo < oo, ((0*fo fél_é IG(, s)lla(s)ds) ", 00) € Sp(a).

Corollary 3.6 (Case 2) Assume all the conditions for Theorem 3.4 hold. Then

(1) For fo =00 and foo =0 (Sublinear), Sp(a) = (0,00).
(i) For fo =00 and foo > 0,(0, (foo [y |G( 5)[la(s)ds)™")  C Sp(a).
(iii) For 0 < fo < 0o and fso = 0, (02 fo fél_é IG(-, s)||la(s)ds)™t,00) C Sp(a).

(iv) For 0 < feo < fo < 00,
(o fo f%HS IG(-, 5)lla(s)ds) ™, (foo fo G 8)lals)ds)™") € Sp(a).
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