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#® < 4 & : In this work, we consider a three species Lotka-

Volterra food web model with omnivory which 1is
defined as feeding on more than one trophic level.
Based on a non-dimensional transformation, the system
1s actually a model of three equations of first order
ordinary differential equations with seven
parameters. Analytically, we completely classify the
parameter space into three categories containing
eight cases, show the extinction results for five
cases, and verify uniform persistence for the other
three cases. Moreover, in the region of parameter
space where the system is uniform persistent we prove
the existence of peri- odic solutions via Hopf
bifurcation and present the chaotic dynamics
numerically. Biologically, the omnivory module blends
the attributes of several well-studied community
modules, such as food chains (food chain models),
exploitative competition (two predators—one prey mod-
els), and apparent competition (one predator-two
preys models). We try to point out the differences
and similarities among these models quantitatively
and give the biological interpretations.

#~ M4z ¢ three species, uniform persistence, Hopf bifurcation,
chaos



TERRBEXHZZR R oM E AT KT ERR
WA

HEALARE ZYENFRBEPHARE, ETE R ERRT 28
B RAT A B o

sEEAN . EHETE
T EHIE : NSC 102-2115-M-032-004-
PATHIM : 102F 8 A 1EBHE 103 # 7 H 31 H

BFEERFA  HEE
FFESBEAR ELAE BT, KT

AT ERD (KEERTFERATHUK) : MEHRE
AERRBRECLFEUTHERZ M

B fmzwm X— 1,

PATEAML : RILAZHE R

FERE  —BE= £ + A



Contents
1 HEWRE

2 BER

3 ERREF
4 sk



1 HENE

Three species food web models are fundamental building blocks of large
scale ecosystems. To clarify the local or global and short-term or long-term
behavior of ecosystems, it is essential to understand the interacting dynam-
ics of three species food web models. A monotone ecosystem whose inter-
actions between n-species that are all cooperative or competitive are well
studied in the past three decades due to the theory of monotone dynamical
systems [9]. However, for a non-monotone system whose interactions are
blended at least one consumption (i.e. herbivory, predation and parasitism),
most known results are constrained on two species cases since the classi-
cal Poincare-Bendixson Theorem can be applied. Hence the dynamics of a
non-monotone ecosystem with at least 3-species are paid attentions recently.

Since 1970’s, there have been some interesting and impressive results on
investigating the dynamics of three species predator-prey systems [7, 8, 11,
12, 15]. In particular, Krikorian [15] has classified all three-species food web
Lokta-Volterra models into four types in all 34 cases : food chains (Figure
1 (a)), two predators competing for one prey (Figure 1 (b)), one predator
acting on two preys (Figure 1 (c)), and loops (Figure 1 (d), (e)). We separate
the case loop into two sub-cases, food chain with omnivory (Figure 1 (d))
and cycle (Figure 1 (e)). Because we observe that all species except for
species z of case (d) with consumption in the above cases are the so-called
the specialist predators which has a limited diet. On the other hand, the
species z of case (d) is called the generalist predator which can make use of
a variety of different resources from two trophic levels.

In this paper, we will focus on three species food web models of predator-
prey type with an omnivorous top predator which is defined as feeding on
more than one trophic level. Actually, this is a general part of marine or
terrestrial food web ecological systems. For example, species = are plants,
species y are herbivores, and species z consume not only plants but also
other herbivores. One can find more examples in the complex marine food
web systems. This type of models has been reported in the past two decades
(10, 20, 21, 23, 24]. This phenomenon has been variously called “trophic
level omnivory”, “intraguild predation”, “higher order predation”, or “hy-
perpredation”. Moreover, Holt and Polis [10] point out that there is growing
evidence for the importance of intraguild predation in many natural commu-
nities, yet little formal ecological theory addresses this particular blend of
interactions, a mixture of competition and predation between two predators.
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Figure 1: All possible schematic diagrams of the direct and indirect inter-
actions among three species predator-prey systems. The arrows present the
directions of biomass. (a) food chain; (b) two predators-one prey; (c) one
predator-two preys; (d) food chain with omnivory; and (e) food chain with
cycle.

Motivated by the articles [4, 10, 13, 15, 17, 27], we consider the follow-
ing three species food web model with the Lotka-Volterra type interaction
between populations,

dN

d—Tl :Nl(B — afllNl — a12N2 - CL13N3),

dN-

_d7—2 :NQ(_Dl + a21N1 - a23N3)7 (1)
dN.

d_: :N3(_D2 —+ a31N1 + a32N2)’

Nl(O) Zoa NQ(O) Z Oa N3(0) Z Oa

where N7, No, and N3 denote the densities of a basal resource, an intermedi-
ate consumer (intraguild prey), and an omnivorous top predator (intraguild
predator), respectively. The parameters are all positive and B, Dy, and Dy
are the intrinsic growth rate of the resource Ny, the death rate of the prey
Ny, and the death rate of the predator Nj, respectively. The coefficient ai;
denotes the intraspecific competition in the resource and a;;(i < j) is the
rate of consumption; and a;;(i > j) measures the contribution of the victim
(basal resource or intraguild prey) to the growth of the consumer.

System (4) can be regarded as a food-chain or two predators-one prey
model when a3 = az; = 0 or ass = agy = 0, respectively (See Figure 2). In
this work, we would like to clarify the global dynamics and corresponding bi-
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Figure 2: Three most simple interactions between three species with one
renewable resource.

ological interpretations of (4). But this task is non-trivial since it blends the
attributes of several well-studied community modules, such as food chains,
and exploitative competition (two predators-one prey). Actually, Holt and
Polis [10] highlight similarities and differences among these modules and
model (4). From the mathematical point of views, we give the quantita-
tive and biological interpretations in which some results are parallel to the
compatible results of [10] and some results are new.
For mathematical simplification, we write the model (4) in non-dimensional

forms. Let

t:BT, J]:CLHNI/B,
Yy = a12N2/B, z :N?y/Ba

then (4) takes the form

d
d—i =y(—dy + ax — Bz), (2)
dz

— =2(—dy + vz + dy),
with initial conditions, z(0) > 0, y(0) > 0, 2(0) > 0, where the parameters

3



are all positive with the rescaling:
dy=D./B, dy=Ds/B,
o= a21/a11, B = ass, (3)
y=az/an, y=a3,  0=azp/an.

If we rewrite the first equation of (4) as the form,

dN, ai a2 ai3
L BN(1— 22N, 22N, - I8N
dr i B'' B? B 3)

then we can see that the traditional environmental carry capacity K of the
logistic growth model is B/aj;. The parameters proportioned to K are a =
a1 K /B and v = a3; K /B which are positive relative to the basal resource
productivity. The parameter

5= 32 a3z 0423 421

a2 Q23 Q21 G12
measures the efficiency of biomass in the direction from z to y (ag1/ai2) and
y to z (ase/ass3), and the conversion rate for species y (ag3/as1). The more
biological details and implications will be discussed in the last section.

The rest of the paper is organized as follows. In Section 2, we show the
boundedness of solutions of (5) and recall some known local and global results
for two-dimensional subsystems. Then some global behaviors of the bound-
ary equilibria are investigated by the methods of Lyapunov and McGehee
Lemma. In Section 3, we classify all parameters into six categories to in-
vestigate the existence of positive equilibria. Global dynamics are presented
analytically for five cases including y die-out or z die-out, bi-stability phe-
nomenon, and global stability of the coexistence state. In Section 4, two
numerical results are given. One presents the existence of periodic solutions
resulted from the Hopf bifurcation. The other presents complex behaviors
routed by a period-doubling cascade. In Section 5, we give some discussions
and remarks.
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TEEFE TS RIIEE=EWES Lotka-Volterra B & 44 R H&xTE
MR EEAERRE - FELT,

dN

d—Tl :Nl(B — G11N1 — a12N2 - CL13N3),

dN.

_d7—2 :NQ(_Dl + a21N1 — a23N3)7 (4)
dN.

_d7—3 :Ng(—Dz + a31N1 + a32N2)a

N1(0) 20, N5(0) =0, N3(0) =0,

e Ny, Ny, and N3 2 BIRERE Y, # HHE %% (intraguild prey) K& E
Bz f# (intraguild predator) WA M T E. AN SHE AEH, £+ B %
Ny &%, Dy % Dy % Ny B N3 WRTFE. R¥ a; AWE R j AR T
GRS @

t = Br, & =a11 N1/ B,
y:algNz/B, Z:Ng/B,



A4 (4) THRTPIER

d
L —y(—d +az — p2), (5)
t
dz
= =z(—dy + vz + dy),
H AR,
d, = D,/B, dy=Ds/B,
o = a21/a11, 5 = Q23, (6>
v =asi/a, 7= s, d = asz/ass.

ZARAKER LR BB TR A BERARCESH - BoM > RPKSH
SR TENSHZRELEN\EFR > o A A# A RAE (extinction), H 4=
Bl BAERE T RAEN—BIFH M (uniform persistence) © W4t > ESHEHAE,
A EF—FFHEENER T, #i® Hopf Bifurcation, F & ¥ 7 # Bt 7=
Tl BHEETRAREE IITHANKEESE A LR BB EARS
THERREMALEFER, v F 8 (food chain modules ) > | | ¥4 By 3 F
( exploitative competition, two predators-one prey modules ) DA K& B B ek %%
% (apperant compotition, one predator-two preys modules ) # &M% &AM
RERHELHEATEZRNER > SETAYAE RMNEEIERNEELZX
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Abstract

In this work, we consider a three species Lotka-Volterra food web
model with omnivory which is defined as feeding on more than one
trophic level. Based on a non-dimensional transformation, the system
is actually a model of three equations of first order ordinary differential
equations with seven parameters. Analytically, we completely classify
the parameter space into three categories containing eight cases, show
the extinction results for five cases, and verify uniform persistence for
the other three cases. Moreover, in the region of parameter space
where the system is uniform persistent we prove the existence of peri-
odic solutions via Hopf bifurcation and present the chaotic dynamics
numerically. Biologically, the omnivory module blends the attributes
of several well-studied community modules, such as food chains (food
chain models), exploitative competition (two predators-one prey mod-
els), and apparent competition (one predator-two preys models). We
try to point out the differences and similarities among these models
quantitatively and give the biological interpretations.

*Department of Mathematics and The National Center for Theoretical Sci-
ence, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China
(sbhsu@math.nthu.edu.tw)

"Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, USA
(ruan@math.miami.edu)

"Department of Mathematics, Tamkang University, 151 Ying-chuan Road, New Taipei
City 25137, Taiwan, Republic of China. (thyang@math.tku.edu.tw)



1 Introduction

Three species food web models are fundamental building blocks of large scale
ecosystems. To clarify the local or global and short-term or long-term be-
havior of ecosystems, it is essential to understand the interacting dynamics
of three species food web models. A monotone ecosystem whose interactions
between n-species that are all cooperative or competitive are well studied in
the past three decades due to the theory of monotone dynamical systems [9].
However, for a non-monotone system whose interactions are blended at least
one consumption (i.e. herbivory, predation and parasitism), most known
results are constrained on two species cases since the classical Poincare-
Bendixson Theorem can be applied. Hence the dynamics of a non-monotone
ecosystem with at least 3-species are paid attentions recently.

Since 1970’s, there have been some interesting and impressive results on
investigating the dynamics of three species predator-prey systems [7, 8, 11,
12, 15]. In particular, Krikorian [15] has classified all three-species food web
Lokta-Volterra models into four types in all 34 cases : food chains (Figure
1.1 (a)), two predators competing for one prey (Figure 1.1 (b)), one predator
acting on two preys (Figure 1.1 (c)), and loops (Figure 1.1 (d), (e)). We
separate the case loop into two sub-cases, food chain with omnivory (Figure
1.1 (d)) and cycle (Figure 1.1 (e)). Because we observe that all species
except for species z of case (d) with consumption in the above cases are
the so-called the specialist predators which has a limited diet. On the other
hand, the species z of case (d) is called the generalist predator which can
make use of a variety of different resources from two trophic levels.

In this paper, we will focus on three species food web models of predator-
prey type with an omnivorous top predator which is defined as feeding on
more than one trophic level. Actually, this is a general part of marine or
terrestrial food web ecological systems. For example, species = are plants,
species y are herbivores, and species z consume not only plants but also
other herbivores. One can find more examples in the complex marine food
web systems. This type of models has been reported in the past two decades
(10, 20, 21, 23, 24]. This phenomenon has been variously called “trophic
level omnivory”, “intraguild predation”, “higher order predation”, or “hy-
perpredation”. Moreover, Holt and Polis [10] point out that there is growing
evidence for the importance of intraguild predation in many natural commu-
nities, yet little formal ecological theory addresses this particular blend of
interactions, a mixture of competition and predation between two predators.
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Figure 1.1: All possible schematic diagrams of the direct and indirect inter-
actions among three species predator-prey systems. The arrows present the
directions of biomass. (a) food chain; (b) two predators-one prey; (c) one
predator-two prey; food chain with omnivory; and (d) food chain with cycle.

Motivated by the articles [4, 10, 13, 15, 17, 27], we consider the follow-
ing three species food web model with the Lotka-Volterra type interaction
between populations,

dN

d_rl =Ny (B — a1, Ny — ayaNy — ay3Ns),

dN-

_d7—2 :N2(—D1 4+ a1 N7 — a23N3)a (11>
dN.

d_7—3 :N3<—D2 + ClglNl + a32N2)7

Nl(o) 207 NQ(O) Z 07 N3(0) Z 07

where Ny, Ny, and N3 denote the densities of a basal resource, an intermedi-
ate consumer (intraguild prey), and an omnivorous top predator (intraguild
predator), respectively. The parameters are all positive and B, Dy, and Dy
are the intrinsic growth rate of the resource Ny, the death rate of the prey
Ny, and the death rate of the predator Nj, respectively. The coefficient a;;
denotes the intraspecific competition in the resource and a;;(i < j) is the
rate of consumption; and a;;(i > j) measures the contribution of the victim
(basal resource or intraguild prey) to the growth of the consumer.

System (1.1) can be regarded as a food-chain or two predators-one prey
model when a3 = a3z; = 0 or ass = agy = 0, respectively (See Figure 1.2).
In this work, we would like to clarify the global dynamics and correspond-
ing biological interpretations of (1.1). But this task is non-trivial since it
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Figure 1.2: Three most simple interactions between three species with one
renewable resource.

blends the attributes of several well-studied community modules, such as
food chains, and exploitative competition (two predators-one prey). Actu-
ally, Holt and Polis [10] highlight similarities and differences among these
modules and model (1.1). From the mathematical point of views, we give
the quantitative and biological interpretations in which some results are par-
allel to the compatible results of [10] and some results are new.
For mathematical simplification, we write the model (1.1) in non-dimensional

forms. Let

t = Br, r =a1 N/ B,
y:a12N2/Ba Z:N3/BJ

then (1.1) takes the form

d

d_j:x(l_x_y_’_}/z),

d

= =y(—di +ax — 2), (12)
dz

pr =z(—dy + vz + dy),

with initial conditions, z(0) > 0, y(0) > 0, z(0) > 0, where the parameters



are all positive with the rescaling:

dlle/B, dQIDQ/B,
a = a21/a11, [ = a3, (1-3)

Y =an/an, 7= as, 0 = aga/ara.
If we rewrite the first equation of (1.1) as the form,

dN; ai a2 a3

— =BN;(1— —=—N; — —N; — —N.

dr =T M= e = ),

then we can see that the traditional environmental carry capacity K of the
logistic growth model is B/ay;. The parameters proportioned to K are o =
a1 K/B and v = az; K/B which are positive relative to the basal resource
productivity. The parameter

5= az2 (32 423 421

a12 Q23 A21 Q12

measures the efficiency of biomass in the direction from x to y (as1/a12) and
y to z (ase/ass), and the conversion rate for species y (ag3/as1). The more
biological details and implications will be discussed in the last section.

The rest of the paper is organized as follows. In Section 2, we show the
boundedness of solutions of (1.2) and recall some known local and global
results for two-dimensional subsystems. Then some global behaviors of the
boundary equilibria are investigated by the methods of Lyapunov and McGe-
hee Lemma. In Section 3, we classify all parameters into six categories to
investigate the existence of positive equilibria. Global dynamics are pre-
sented analytically for five cases including y die-out or z die-out, bi-stability
phenomenon, and global stability of the coexistence state. In Section 4, two
numerical results are given. One presents the existence of periodic solutions
resulted from the Hopf bifurcation. The other presents complex behaviors
routed by a period-doubling cascade. In Section 5, we give some discussions
and remarks.

2 Preliminaries

In this section, first of all, we show that solutions of (1.2) are bounded. Then
some well known two-dimensional results are recalled. Moreover, stabilities



of all boundary equilibria in R?® are clarified. Finally, a necessary and suffi-
cient condition which can reduce system (1.2) to the one- or two-dimensional
subsystem is given.

We can easily see that the solutions of (1.2) are positive (nonnegative)
with positive (nonnegative) initial conditions. The following results on the
boundedness of solutions of system (1.2) can be verified easily.

Proposition 2.1. The system (1.2) is dissipative.

Proof. From the first equation in system (1.2) we have
pr <z(l—ux),

so that the comparison principle implies that

limsup z(t) < 1.

t—o00

Thus, for ¢ > 0 small, we have z(f) < 1+ ¢ when ¢ is sufficiently large.
Denote M = max{«, 5v/(70)} and D = min{d;, dy, 1}. From the equations
in (1.2) we have

%(Mx+y+(ﬂ/5)z)

=Mz(l—z—y—7z)— diy+ axy — do(8/0)z + (Bv/d)xz
< Mz — D(y + (8/6)z)
< K —D(Mz+y+(8/8)2),

where K = (D +1)(1+¢)M. Using the comparison principle a second time,
we have

K
limsup(Mz +y+ (8/d)z) < —,
t—00 D
which implies that system (1.2) is dissipative. O

2.1 Boundary Equilibria and Subsystems

By the previous result, it is easy to see that all solutions with nonnegative
initial conditions will stay in a bounded region of the first octant with bound-
ary. In this subsection, we will list all trivial and semi-trivial equilibria on



the boundary of the first octant. It will help us to clarify the dynamics of all
solutions on the boundary.

Based on biological meanings, we ask all equilibria to be nonnegative.
Hence it is straightforward to calculate that there are one trivial equilibrium,
Es = (0,0,0), and three semitrivial equilibria in system (1.2), E, = (1,0,0),
E,, = (di/a,1—di/a,0), and E,, = (d2/7,0,(y — d2)/(77)). It is obvious
that the equilibria Ey and E, always exist without any restriction, the equi-
librium FE,, exists if @ > d;, and the equilibrium F,. exists if v > dy. We
recall some well-known one or two dimensional results.

Proposition 2.2. The subspaces, H; = {(x,0,0) : x > 0}, Hy = {(x,y,0) :
xz,y > 0}, Hy = {(x,0,2) : 2,2 > 0} and Hy = {(0,y,2) : y,z > 0}, are
wnwvariant. Moreover, the following statements are true.

(i) On Hy, system (1.2) is reduced to the one-dimensional subsystem

d

d—f = 2(1 - 2). (2.1)
Then the trivial equilibrium Ey is unstable and E, is globally asymp-
totically stable.

(ii) On H,, system (1.2) is reduced to the two-dimensional subsystem

d

dt (2.2)
Ay _ (—di + ax)

dt Y 1 :

If o < dy then E,, doest not exist and E, is globally asymptotically
stable; otherwise, if a > dy then the equilibria Ey, E, are saddles and
E,, s globally asymptotically stable.

(i) On Hs, system (1.2) is reduced to the two-dimensional subsystem

dt (2.3)
dz =z(—dy + yx)
a 2 TT).

If v < dy then E,. doest not exist and E, is globally asymptotically
stable; otherwise, if v > dy then the equilibria Ey, E, are saddles and
E... is globally asymptotically stable.

(iv) On Hy, the trivial equilibrium Eq is globally asymptotically stable.



2.2 Local Stability and Some Global Dynamics of Bound-
ary Equilibria in R3
In this subsection, the dynamics of all solutions in R3 near the boundary

equilibria will be addressed. It is easy to find the Jacobian matrix of system
(1.2) by direct computation,

1-22—-y—7z - —yx
J(x,y,2) = ay —di + az — Bz —By . (24)
vz 0z —dy + vz + by

We now consider the local stability of equilibria on the boundaries, H,-Hjy.

(a) Ey : The trivial equilibrium Ej is a saddle point, where H; is the unstable
subspace and Hy is the stable subspace.

(b) E, : The semi-trivial equilibrium E, with the Jacobian evaluated at E,,

B
JE)=|0 a-d 0 |, (2.5)
0 0 ~v—d

is asymptotically stable if @ < d; and v < dy. Otherwise, it is a saddle if
a > dy or v > ds.

(c) Eyy : The equilibrium E,, exists if @ > d; and the Jacobian evaluated at
E,, is given by

—dl/Oé —dl/Oé —dl"y/a
J(Ey) = |la—dy 0 —B(1 — dy /o) . (2.6)
0 0 —dy+ydi/a+ (1 —dy /)

It easy to see that the top left 2 x 2 sub-matrix is exactly the Jacobian matrix
for the subsystem (2.2) at the equilibrium E,, and the third eigenvalue is
given by A = —dy +vdy /o + 6(1 — dy /a). Thus the semi-trivial solution £,
is asymptotically stable in R? if and only if

dy

d
—d2+751+5(1—5)<0.



(d) E,. : Similarly, the equilibrium FE,, exists if v > dy and the Jacobian
evaluated at F,, is given by

—da /v —dy /v —da7y /Y
J(E,.) = 0 —dy +ady/y — B(1 —dy/v)7 O
(v —d2)/(v¥) 6(1 —da/v)/(v7) 0

It is similar to the case (¢). We can get the 2 x 2 sub-matrix by erasing
the second row and column of the Jacobian matrix J(E,.) and it is exactly
the Jacobian matrix for subsystem (2.3) at the equilibrium E,,. The third
eigenvalue is given by A = —d; + ads /v — B(1 — dy /7). Thus the equilibrium
E,. is asymptotically stable in R? if and only if

a2 Lao®y g

T gl

Summarizing the above discuss, we have results on the local stability of
boundary equilibria in R3.

Proposition 2.3. For system (1.2), the following statements are true.

(i) The trivial equilibrium FEy is always a saddle with the unstable subspace
H, and the stable subspace Hy.

(ii) The semi-trivial equilibrium E, is asymptotically stable if « < di and
v < dy. Otherwise, it is a saddle.

(iii) If @ > dy then E,, exists and it is asymptotically stable in R? if and
only if
dy

d
—dy + 751 +0(1——) <0. (2.7)

(iv) Similarly, if v > dy then E,. exists and it is asymptotically stable in R3
if and only if

—d; + a@ — g(l — %) < 0. (28)

T v
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To clarify the dynamics of global behaviors of the semi-trivial equilibria
of system (1.2) with the restriction o < dy, we have the following extinction
results.

Proposition 2.4. Let (z(t),y(t),z(t)) be a solution of system (1.2) with
initial condition p = ((0),y(0), 2(0)) where x(0) > 0, y(0) > 0, and z(0) >
0. Then the following statements are true.

(i) If a < dy and v < dy, then the semi-trivial equilibria E,, and E,, do
not exist and we have the limits lim; . y(t) = 0 and limy_, 2(t) = 0.
Furthermore, E, is globally asymptotically stable.

(i) If @« < dy and v > dy, then one semi-trivial equilibrium E,, does not
exist but another semi-trivial equilibrium E,, exists. Moreover, we have
the limit limy_,, y(t) = 0 and the equilibrium E,, is globally asymptot-
ically stable.

Proof. (i) By the first equation of (1.2), for any positive number ¢ we have

x(t) < 1+ ¢ for enough large t. Take € = (d; — «)/2c > 0, then for large ¢

consider . p
yga—dl—a(l—m)—ﬁzg i
Y

Hence we have the limit lim; ,, y(t) = 0. Similarly, take e = (dy — 7) /47y

and ¢ large enough such that xz(t) < 1+ ¢ and y(t) < (da — v)/49. Consider

< 0.

zgv—dg—y(l—x)—kdyg 7 2d2 < 0.
Hence we also have lim; .., 2(f) = 0. Therefor we can find a point q €
HiNw(p) where w(p) is the w-limit of p. Since the equilibrium £, is globally
asymptotically stable on H; and applies the property of invariance of the w-
limit set, £, € w(p). The assumptions o < d; and v < dy guarantee that E,
is asymptotically stable in R?. Hence lim,_,o (z(t),y(t), 2(t)) = E,.

(ii) The assumptions @ < d; and v > do imply that E,, does not exist
and E,., exists. And E,, is asymptotically stable in R? since the inequality

d d
—d1+a72—g(1——2)<—d1+a<0

Y v
holds. Similar to case (i) by taking ¢ = (d; — «)/2a > 0, for large ¢ consider

Y a —d;

S=—di+ar—pz< < 0.
Yy
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So we have the limit lim;_,, y(t) = 0. The remaining arguments of the proof
of this part are similar to case (i), so we omit it. The proof is complete. [

These results can be easily interpreted in the biological point of view. If
the mortality rate d; of species y is greater than the conversion rate «a, then
y will die out eventually and system (1.2) is reduced to the one-dimensional
x subsystem (2.1) or two-dimensional z-z subsystem (2.3). Thus classical
two-dimensional results, Proposition 2.2, can be applied. Therefore, from
now on, we make the assumption,

(A]_) o > dl,

which will be used in the rest of this article. However, for species z the
dynamics are more complicated due to the omnivorous effects. We consider
this in next section.

3 Existence, Local Stability and Global Dy-
namics of the Equilibria in R?

By the results of the last section, we always assume that assumption (A1)
holds. Logically, we have six generic cases of classification of parameters
based on the relation of v and 0 respect to the death rate of species z,
dy. See Figure 3.1. Biologically, if v > ¢ hold, then for the top predator’s
conversion rate v of z is larger than the conversion rate § of y. It means that
z will prefer to eat x because of the better efficiency. In this section, we will
classify the dynamics of (1.2) according to ds within regions (1)-(6) by the
following four categories,

(I) dy > max{v,d} (in region (3) and (6) of Figure 3.1.);
(IT) v > max{d,ds} (in region (1) and (2) of Figure 3.1.);
(111
(IV

We will discuss the dynamics of each category in the following subsections.

)
) do <y <9 (in region (4) of Figure 3.1.);
)

v < dy <6 (in region (5) of Figure 3.1.).
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(a) vy>94 (b) vy <

Figure 3.1: All generic possibilities of classification of parameters with varied
ds in regions (1)-(6) with d; > a.

3.1 Category (I) : dy > max{~,d}

In this category, assumption (A1) and ds > max{~, d} imply that one bound-
ary equilibrium £, exists and another boundary equilibrium £,, does not
exist. In order to complete the classification, we consider the possible ex-
istence of positive equilibria. To find the positive coexistence equilibrium
E. = (%4, Y« 2.) is to find positive numbers z,, y. and z, satisfying the
following linear equations

0=1—2—-y—7¢z,
0=—di +axr— Bz, (3.1)
0=—ds+ vz + dy.

With the substitution, z = 1 — y — 4z, we obtain two straight lines, L; and
L27

Ly:ay+ (a7 + f)z = a —dy, (3.2)
Ly: (v =0)y+77z =7 — do.

Hence the coexistence state exists if and only if these two straight lines L,
and Lo intersect in the interior of the first quadrant of the yz-plane. The
only possibility of existence of positive equilibrium is that parameters satisty
inequalities 7 < 0 and C?_—_] < 2=d1 But, this is impossible since if v < §

then C?:J >1> Q*le. Hence there is no positive equilibrium in the category
(I). However, we have the following extinction and globally stability results

and the dynamics of category (I) are summarized in Table 3.1.

Proposition 3.1. Let assumption (A1) and dy > max{vy,0} hold. Then
equilibria E,, and E, do not ezxist. Moreover, we have the limit lim,_,, z(t) =
0 and the equilibrium Eg, 1s globally asymptotically stable.
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Proof. We first claim that the semi-trivial solution E,, is asymptotically
stable. Consider two subcases, v > ¢ or v < 4. If v > 4 then

d d d d
—d2+fy§+5(1—j)g—d2+7§+7(1—§):—d2+7<0

holds. On the other hand, if v < § then

d d
—dy 01— ) =F—dy+ (7 0)

1

o | &

<tr-02 <o

holds. Hence E,, is locally asymptotically stable in R® by Proposition 2.3.
Without loss of generality, we may assume that z(¢) < 1 for ¢ is large
enough. Define ¢ = max{y,d} and consider

z x
;4—05:(—d2+7x+5y)+c(1—x—y—7yz)

=c—dy+ (y—c)x+ (0 — )y — vz
§c—d2<0.

Then we have z(t)(z(t))¢ approaches 0 as ¢ approaches co. There are two
possibilities that should be considered. The first one is that we can find a
sequence of time {t,} such that ¢, approaches oo and x(t,) approaches 0 as
n approaches co. Another one is that there is a positive number ¢ such that
x(t) > ¢ for all time t.

Assume that there is a sequence {t, } such that x(t,) approaches zero as
n approaches infinity. And since the solutions of (1.2) are bounded, there
is a point ¢ = (0,y,2) € Hy Nw(p). By Proposition 2.2, the solution of
(1.2) with initial condition q € Hy, ¢(t,q), will approach Ey when time
goes to infinity. Hence Ey € w(p). It is clear that w(p) # {Eo}. Applying
Butler-McGehee Lemma [6], there is a point r = (Z,0,0) € H; N w(p).
Clearly, r # Ey and ¢(t; r) approaches E, as time goes to infinity. Similarly,
{E;} € w(p) and applying Butler-McGehee Lemma again, we can find a
point s € w(p) N Hy since the unstable manifold of E, is contained in Ho.
Again, ¢(t; s) approaches E,,, hence E,, € w(p). Since E,, is asymptotically
stable in R?, we have the limit lim; o ¢(t;p) = E,,.

On the other hand, if z(t) > ¢ > 0 for all ¢ then we have z(t) approaches
zero as t approaches infinity. Similar to the previous arguments, we can find
a point s; € Hy Nw(p). The remaining arguments of the proof are almost
the same as the previous one, so we omit them. We complete the proof. [
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z z
a—d; ’Y—dQ
ay+p8 ~
y—d2 a—dy
Yy Ly ay+pB Lo
Lo Ly
Yy Yy
’Y_dZ a—dy a—dq 'y—d2
=6 « a  y=0
(a) (b)
¥4 y4
77d2 afdl
Y ay+pB
Ly Ly
a—dy y—d2
ay+p Ly gl Lo
Y Y
y—d2 a—dy a—dy y—d2
y—4 «a «a y—6

Figure 3.2: The four possible generic cases for the intersection of the two
straight lines Ly and Ly for category (II).

3.2 Category (II) : v > max{J, dq}

In this category, assumptions (A1) and v > dy imply the existence of bound-
ary equilibria E,, and E,,. Similarly, we solve (3.2) and (3.3) to find the
positive equilibrium F,. Note that all coefficients of these two straight lines,
Ly and Lo, are positive. Hence category (II) has four generic cases as shown
in Figure 3.2.

In Figure 3.2(a), the two straight lines do not intersect in the first quad-
rant if (o —dy)/a > (y—d2)/(y = 0) and (a —dv) /(a7 + B) > (v — d2) /(7).
These two inequalities are equivalent to (2.7) and reversed (2.8). Hence in
this case F,, is stable, E,, is unstable and F, does not exist. The arguments
of local dynamics in other three cases of category (II) are similar, so we omit
them and summarize the results of local stability of the boundary equilibria
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and existence of positive equilibrium of category (II) in Table 3.1.
From equation (2.4), if F, exists then the Jacobian evaluated at E, is
given by
—Tx —Tx —YTx
J(E) = |ay. 0 —Pu.
Yz 02z 0

Let A be an eigenvalue. Then the characteristic equation is
N4 2 A2 (s + VYT 20 + BOYze) A+ (@Y + B6 — VB)2yuze = 0. (3.4)

By Routh-Hurwitz criterion, the real parts of three roots of the characteristic
equation are all negative if and only if

ayd+ B6—~B>0 (3.5)

and
AT Ys + VYT2s > (Y0 — YP) Y Zs- (3.6)

For this category, we obtain two extinction results and one bistability
phenomenon.

Proposition 3.2. Let assumption (A1) hold and parameters be of category
(IT). Then the following statements are true.
(i) In case (a) of category (II), that is =1 > % and fg—f_% > 7;;[2, if
(3.5) holds, then the species z dies out eventually and the equilibrium
E,, is globally asymptotically stable.

(ii) In case (b) of category (II), that is =% < % and 2;_% < 7;;12, if
(3.5) holds, then the species y dies out eventually and the equilibrium
E.. is globally asymptotically stable.

(iii) In case (c) of category (II), that is <=4 > VW__‘? and 2;_% < 7;;12,
the equilibrium FE, is a saddle point with one positive eigenvalue and
two eigenvalues with negative real part, that is, there is a bistability

phenomenon.
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Proof. (i) It is easy to see that the inequality of (3.5) is equivalent to the
inequality ”T_‘SB —~0 < 0. Let p= 77_5(04 —dy) — (v —dg) > 0. Consider

i =89 Y

-+ : oy —d2+7I+5y+5(1—x—y—72)—T(—dl—l—ax—ﬁz)

:("}/—d2>—"}/(1—.1')4—(5(1—5[')—5’_}/2—’YT_5<@—d1—C((1—£C>—BZ)

)

-9
o= d) + (B - )z <

=(y —dy) —

Hence we have z(t)(x(t))? approaches zero as t approaches infinity. The
remaining arguments are similar, so we omit them.
(ii) Similarly, (3.5) is equivalent to the inequality 5 — %J’Bé < 0. Let us

define p = (a7 + B)”’;i —¥(a —dy) > 0 and consider

Y x 7y 2
—5(—dy + oz — §2) — B — 3~y —32) — Ly 1+ 3y)
Zﬁ(a—dl)—&ﬁ(l—w)—ﬁ(l—:v)Jrﬁy—aﬁ+ﬁ(v—dz—’y(1—x)+5y)
—Ao—d)~ TPy (5- T gy <

Hence y(t) approaches zero as t approaches infinity. The remaining argu-
ments are similar, so we omit them. i i

(iii) It is easy to see that the assumptions 2=% > 2=% and ‘”jf > A

v a—ay y—a2

imply the inequality,

a+h Y
o =30

This inequality is equivalent to ayd + 03 — v < 0. Hence the coexistence
state F, is unstable. By simple computing, the Routh array for (3.4) is

1 amyye +YyTe2e +00y.2ze 0 0
. (90408 —y8)Tysze 0 0
by 0 0 0"
1 0 00
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z z
a—d; "/—d2
ay+B gl
’y—dg Oé—dl
gl Ly Lo +8
Ly
2
Yy Yy
y—da a—dq y—da a—dq
y—9d a =0 a

Figure 3.3: The two possible generic cases for the intersection of the two
straight lines Ly and L, for category (III).

where by = az, Y. +772 2+ (VB — )y ze and ¢; = (aFI+068—70) Ty zi <
0. We claim that (3.4) cannot have a purely imaginary root. If not let A = iw,
then we have

i(w—w?) = z® — (Y0 + 08 — YB) Ty 2 < 0.

This is impossible for any w € R. So whenever b, is positive or negative,
the signs of first column always change once. Hence the equilibrium F, is a
saddle point with one positive eigenvalue and two eigenvalues with negative
real part. We complete the proof. O

3.3 Category (III) : do <y <

In this category, assumptions (A1) and v > dy imply that the boundary
equilibria E,, and E,, exist. Similarly, we solve (3.2) and (3.3) to find the
positive equilibrium F,. Note that all coefficients of these two straight lines,
Ly and Ly, are positive except for v — 4. Hence category (III) has two generic
cases as shown in Figure 3.3.

For category (III), it is obvious that E,, is unstable, since

dy dy

(D) 450~ D) = G- )1~ D) by by >0

o)
Remaining arguments of local dynamics of category (III) are similar to the
previous category, so we omit them and summarize the results on the local
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stability of boundary equilibria and the existence of a positive equilibrium of
category (III) in Table 3.1. We obtain the following global extinction result.

Proposition 3.3. Let assumption (A1) hold and parameters be of category
(III). In case (b) of category (III), that is “=4 > % and % < %, the
species y dies out eventually and equilibrium E,., is globally asymptotically
stable.

Proof. We first show that inequality (3.5) holds in this case. Note that
dy < v < ¢ in the category. Hence inequalities

Ct—d1>7—d2 and a—dy <’Y—d2

o Y=o ay+p6
directly imply that

. _
YHB Y

a vy =9
which is equivalent to (3.5). Moreover, it is also equivalent to 8 < %Jrﬁ

Moreover, the condition g;—f}; < % holds if and only if the inequality (2.8)

holds, hence the equilibrium FE,, is asymptotically stable.

Take a positive number p = %M(v —dy) — (o — dy). Consider

Ty T T

A(dy oz~ 2) — B0~y —72) ~ Ty e 1)
(o —dy) — (1~ ) — B~ 2) + By~ T~ dy (1= ) - 3y)
o= )~ Ty ) 4 (5= T gy <

Hence y(t) — 0 as t — co. The remaining arguments are similar, so we omit
them. u

3.4 Category (IV) : y<dy <9

In this category, assumption (A1) and 7 < dy < ¢ imply that one boundary
equilibrium £, exists and another boundary equilibrium F,. does not exist.
Similarly, we solve (3.2) and (3.3) to find the positive equilibrium F, and
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z z
a—d; L a—dy
avt8 N Lo A+ N [,
Ly
Y Y
Ao —~ a—dy a—dj da—v
o—y e a o—
y—d2 y—da
Y Y
da—v —d da—~ —d
(a) %2 < o=t (b) =2 > o=

Figure 3.4: The two possible generic cases for the intersection of the two
straight lines Ly and Ly for category (IV).

there are two generic cases as shown in Figure 3.4. In Figure 3.4(b), the
inequality (o — dy)/a < (dy —7)/(6 — ) is equivalent to (2.7) hence E,,
is asymptotically stable. The other case of category (IV) is similar, so we
summarize the results of stability of the boundary equilibria and the existence
of a positive equilibrium of category (IV) in Table 3.1. In this category, we
show the extinction result in case (b) and the globally stability of the positive
equilibrium in case (a) in the following.

Proposition 3.4. Let assumption (A1) hold and parameters be in the case
(b) of category (IV). Then we have the limit lim;_, z(t) = 0 and the equi-
librium E, 1s globally asymptotically stable.

Proof. Inequality “‘le < Cfi;” implies that £, is asymptotically stable and
is equivalent to the following inequality,

o —
d2—7> ,Y(Oé—dl)
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Let p=dy — vy — ‘S?Tw(a —dy) > 0 and consider
20—y
_+§£ +_’Yy
z a vy

5—
:(—d2+'yx+5y)+(5(1—x—y—z)+77(—d1+ax—ﬂz)

=y —dy =71 = @) + (1~ @) = 02+ — (a — dy — a1 — ) - Bz)

«

<y —do+ = Ta—d) = —p.

Hence we have (x(t))°(y(t))®=/2z(t) approaches zero as t approaches in-
finity. Similarly, we consider two possibilities. One is that we can find a
sequence of time {t,} such that z(¢,) approaches zero as n approaches infin-
ity. The proof of this case is similar to previous one, we can obtain that F,,
is globally asymptotically stable. So we omit the details.

Another one is that 2(t) > ¢ for all time ¢. This implies that (y(¢))®=7/*z(t)
approaches zero as t approaches infinity. We still have two-subcases, that is,
we can find a sequence of time {t,} such that y(¢,) approaches zero as n
approaches infinity or y(t) > ¢ for all time ¢. If y(¢,) approaches zero as
n approaches infinity then by Butler-McGehee lemma again we can find a
point ¢ € H3Nw(p). By Proposition 2.2 (iii), the solution ¢(t; q) approaches
E, as t approaches infinity. Hence E, € w(p). The remaining arguments are
similar, so we omit them. However, if y(t) > ¢ for all ¢ then z(¢) approaches
zero as t approaches oco. Similar arguments are omitted. We complete the
proof. ]

Proposition 3.5. Let assumption (A1) hold and parameters be of category
(IV). In case (a) of Table 4.2, that is, a;dl > 77__‘162 and z;f_% > 7;;12, if B and
~ are small enough, then the equilibrium FE, is globally asymptotically stable.

Proof. Note that first the condition Q*le > % implies that the reversed
(2.7) holds, hence equilibrium FE,, is unstable. Moreover, it can be showed
that E, is asymptotically stable by checking the Routh-Hurwitz criteria (3.5)
and (3.6) since § >y and 0 < 7, f < 1.
Consider Lyapunov function
x 1.y 1, =z

v S P P A
(x,y,2) nx* any* 6n2*,
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then
d x ly 12
Y=z _ -7 __Z
dt r ay 0z
1 1
:—(1—x—y—f_yz)—a(—dl—i—ax—ﬁz)—g(—d2+”yx+5y)
di  do i .8
T T A Py <
if ¥ and §/« are small enough. Let
_ ) di | dy Y _ B

By tedious computations, we obtain

B(0 — dp) +7dd y a(d —dg) —di(6 —7)
ayd + B6 —~B 7T ays + B — B
We would like to clarify the maximal invariant set of M.

The set M is a two dimensional plane whose projection on x-z plane is
the straight line

E, = (s, Ys, 2¢) = ( ) € M.

or in this form
3+ -2 = e ),
a )
Hence the values z — z, and z — z, of orbits of (1.2) which are invariant in

M must be the same sign or zero simultaneously. M can be separated into
nine disjoint parts as the forms,

M:MlUMQUMgUM4UN1UNQUNgUN4U{E*},
where

Miy=Mn{z>x,z2>2,y>y}, Mo=MnD{x>z,2> 2,y <y},
My=Mn{z <z,z<z,y>yt, My=MnN{x <z z<z,y <yul,
Ni=Mn{rx=2x.2=2,y >y}, No=MnN{r=1x,2=2,y <y},
Ny=Mn{zx>z2>z0,y =0y}, No=MnN{x <z, 2< 2,y =Ys}
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Solutions which are invariant in M should have tangent vectors

dz _ z(=dy+yx+dy) 2(y(z—z) +6(y — yi))

dv  z(l—2z—y—7z2) x((x*—x)+(y*—y)+7(z*—z)) 20 (37
if (2. —2) 4+ (e —y) + (2 — 2) #0, or

dx _ r(l—z—y—72) _ m((x*—x)—l—(y*—y)—i—’_y(z*—z)) S0 (38)

dz  z(—dy +yx + 6y) 2(y(@ = 2) +8(y — v.))

if y(x — ) +0(y — ys) # 0. It is clear that solutions of (1.2) cannot go into
regions Nyi-Ny, My and My, since g—; < 0 if orbits are on these six regions.
Let solutions of (1.2) with initial conditions on M, be invariant in Ms.
We consider two cases, (2. —z)+(yx—y)+7(2s—2) > 0 or (. —2)+ (v —y)+
F(ze—2) < 0. Let the first case hold, that is, (z.—z)+ (y.—y)+5(z. —2) > 0,
then v(z — z,) + 6(y — y.) < 0. This contradicts to & > 0. Hence, we always
have (z. — ) + (Y« —y) + ¥(2. — 2) < 0 and y(x — x,) + d(y —y.) < 0 on
Ms. These two inequalities imply that x(¢) and z(t)-coordinates of solution
of (1.2) are decreasing for all time. But there is only one equilibrium F, on
M, solutions of (1.2) on M, approaches to F, as time goes to infinity. It is
similar to handle solutions with initial conditions on M3, so we omit it.
Finally, by LaSalle’s invariant principle, solutions with positive initial
conditions will approach F,. This completes the proof. O

3.5 Dynamics of the Positive Equilibrium

Note that all global dynamics of (1.2) are clarified analytically except for
cases of parameters in (II)(d), (III)(a), and part of (IV)(a). Hence, in this
subsection, we would like to discuss the dynamics of (1.2) with parameters
in these three regions. We show an analytical result in which system (1.2) is
uniformly persistent and present some numerical simulations.

3.5.1 Uniform Persistence

First, we present a typical picture, Figure 3.5, of v-0 parameter space with
fixed o, B, di, dy and 4 and the restriction o« > d; (See Proposition 2.4
and assumption (A1)). We use different colors to clarify the dynamics of
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0
=0
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(IT) (a)
d2 d2
Category (I) (Iv) (a)
0
T (1) (b)

Figure 3.5: A typical picture of parameter space with various v, 4, and fixed
dy, do, my, Mo, o, B with a > d.
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Table 3.1: Dynamics of equilibria of classifications categories (I)-(IV) (GAS
means globally asymptotically stable).

Eacy Eacz E*
Category (I) : dy > max{v,d} GAS | does not exist | does not exist
Category (II) : v > max{d, da}
(a) o=t > 1=F a—d - 3 GAS” unstable does not exist
a ol g oy+8 17, .
(b) a;dl < “fy: 5 fgf}; < 7;72 unstable GAS does not exist
(c) =4 > 77__‘?, g;lei < 7;52 stable stable exists(saddle)
(d) “;dl < 77__‘?, g;f% > 7;52 unstable unstable exists
Category (III) : do <y < §
(a) =4 > 7;”?, g;f}j > V;;l"’ unstable unstable exists
(b) &=d > 1= "a—d - 7—d | yypgable GAS does not exist
! y=6 oy+B vy
Category (IV) : v < dy < 0
(a) =% > d;__], g;f}a > 7;;[2 unstable | does not exist exists
(b) &=b « &y a—d 7 GAS | does not exist | does not exist
! 60—y a+p o]

" With an extra inequality (3.5).

solutions of (1.2) by the two inequalities of Table 3.1. One straight line,
Y4 4+ §(1 — 4) = dy, and one horizontal line,

v=7"= W—mdz, (3.9)
Ydi +
are obtained to separate regions (II)-(IV) into two or four subregions by the
inequalities of Table 3.1.

We indicate the dynamics of each region of parameter space with different
color. First, in the gray region species y and z die out by Proposition 3.1; in
the yellow regions species z dies out eventually because of results in Propo-
sitions 3.2(i) and 3.4. In the orange region, species y dies out eventually
(Propositions 3.2(ii) and 3.3). Moreover, in the green region, the bistabil-
ity phenomenon occurs (Proposition 3.2(iii)). Finally, the coexistence state
appears in the pink region. The detailed biological interpretations will be
discussed in the last section.

Now we are the position to show that system (1.2) with parameters in the
pink region is uniformly persistent. It is easy to check that system (1.2) is
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persistent by the results of [6]. Moreover, we now have the following results
on the uniform persistence of system (1.2) (Bulter et al. [2], Freedman et al.

[5])-

Proposition 3.6. Let assumption (A1) hold and 0 < v < ~* defined in
(3.9). If 6 > % then (1.2) is uniformly persistent.

To show this proposition, we need the following results.

Lemma 3.7. If assumption (A1) and d > ‘”lof_—_gldl hold, then the semi-trivial
equilibrium E,, exists and it 1s a saddle with a two-dimensional stable man-
ifold, the interior of the x-y plane, and a one-dimensional unstable manifold
with tangent vectors which are non-zero in the z coordinate.

Proof. 1t is easy to see that the inequality ¢ > "‘Cf_—_gfll is equivalent to
d d
—dy + 7=+ 61— =) >0.
o o

By Proposition 2.3(iii), we only need to check the z coordinate of a tangent
vector of its unstable manifold is non-zero. To simplify the notations, let
Euy = (di/a,1—di/,0) = (21,51,0) and p = —dp + 742 + §(1 — L) > 0.
Then the Jacobian of E,, (2.6) can be simplified as

—T1 —T1 =T
ayi 0 =By
0 0 P

To find a tangent vector (u,v,w) of the one-dimensional unstable manifold
with respect to the positive eigenvalue p, we solve linear equations

—T1U — TV — YT W = PU
ayu — Byw = pv.

Rearrange the above equations, we have

—ry1—p —Iy| (ul _ |YTw
oyt —p] v Byrw |
Since the determinant of the previous 2 X 2 matrix is positive, the existence

of a non-zero eigenvector implies that the z coordinate of the eigenvector is
non-zero. We complete the proof. O
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Lemma 3.8. If assumption (A1) and dy < v < ~v* hold, then the semi-trivial
equilibrium E,.. exists and it s a saddle with a two-dimensional stable man-
ifold, the interior of the x-z plane, and a one-dimensional unstable manifold
with tangent vectors which are non-zero in the y coordinate.

Proof. We only would like to point out that the inequality v < v* is equiva-
lent to

d d
—m+a3—§u——%>o
Yo Y
which implies that equilibrium FE,, is a saddle by Proposition 2.3 (iv). The
rest of the proof is similar to the previous lemma, so we omit it. n

Lemma 3.9. If assumption (A1) and 0 < v < dy hold, then the semi-
trivial equilibrium E, is a saddle with a two-dimensional stable manifold,
the interior of the x-z plane, and a one-dimensional unstable manifold with
tangent vectors on the x-y plane.

Proof. In the case of 0 < v < dy, the equilibrium FE,, does not exist. And
assumption (A1) implies that E,, exists and is globally asymptotical stable
on the x-y plane. The Jacobian matrix evaluated at E, is

-1 -1 -5
0 O./—dl 0
0 0 ")/—dg

Whatever v < d; or v = dy, it is easy to verify that the equilibrium FE, is
a saddle with a two-dimensional stable manifold, the x-z plane, and a one-
dimensional unstable manifold with tangent vectors on the z-y plane. O]

Proof of Proposition 3.6. Our strategy is to use the main result in [5] to verify
the uniform persistence of (1.2). It is sufficient to show that the boundary
of the first octant for the solution of (1.2) is isolated and acyclic.

The parameters which satisfy the assumptions are exactly in the interior
of the pink region of Figure 3.5. We separate the pink region of the parameter
space into two cases, 0 < v < dy or v > dy. It is clear that the isolated
invariant sets of solutions on the boundary are {Ey, E,, E,,} if 0 < v < dy
or {Ey, By, Eyy, By} if do < v < +*. Showing that the set of equilibria on
the boundary is acyclic is sufficient to complete the proof. This can be done
by identifying the invariant manifolds of equilibria in each case. So we recall
results of Proposition 2.2 and Proposition 2.3 on the dynamics of solutions
on the boundary of the first octant.
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1. The trivial equilibrium Fj is always a saddle with a two-dimensional
stable manifold, the y-z plane with boundaries, the y-axis and z-axis,
and a one-dimensional stable manifold, the z-axis.

2. By Proposition 2.3(iii), the semi-trivial equilibrium £, exists because

of assumption (A1l). By Lemma 3.7, assumption § > O“if_;d”l‘h implies
that it is a saddle with a two-dimensional stable manifold, the interior
of the z-y plane, and a one-dimensional unstable manifold with non-

vanish z-coordinate tangent vectors.

3. Similarly, the interior of the z-z plane is the stable manifold of the
semi-trivial equilibrium F,,.

4. The whole z-axis is the stable manifold of the equilibrium FE, and the
unstable manifold of Ej.

Summarize the above results, we can find a chain from £y to i,
Ey — E, — Eyy,

if 0 < v < dy, but E,, cannot be chained to Ey or E,. Similarly, if v > dy
then there is either a chain from Ej to E,y,

Ey — Ey — Eyy,
or a chain from Fy to E,.,
Ey—FE, > E,,.

And neither E,, nor E,, can be chained to Ey or E,. Thus, the set of
equilibria {Ey, E,, E,,, E,.} on the boundary is acyclic and the system is
uniformly persistent. This completes the proof. O

3.5.2 Hopf Bifurcation

In this part, we investigate the existence of periodic solutions via the Hopf
bifurcation in the pink region of the parameter space. By the previous ar-
guments, the coexistence state F, is stable if and only if the inequalities
(3.5) and (3.6) hold. Since condition (3.5) is always true in this region, we
manipulate the inequality (3.6) and use similar arguments in Ruan [25] to
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establish the existence of periodic solutions bifurcated from the equilibrium
E,. Moreover, in this part we assume that the inequality

ayd > ~vf (3.10)

holds. Otherwise, if ayd < ~«f then the positive equilibrium F, is always
asymptotically stable.

Let us reconsider the characteristic function (3.4) at E, with a complex
eigenvalue A\ = a + bi,

(a+bi)* + 2.(a+ bi)? + F(x., ys, 2:)(a + bi) + Av,y,2, = 0, (3.11)
where A = a¥0 + 50 — v and
F(z,y,2) = ary + yyzz + Boyz.
Solving (3.11), we have

a® — 3ab® + z,(a* — b?) + F(x,, ys, 2)a + Az,y,2, = 0,

3.12
3a*b — b* + 2abx, + F (2., 9., 2.)b = 0. ( )

If a = 0, then we obtain
P74, Y, 22) = Ay.2.

and the coexistence state F, loses its stability. Moreover, this is equivalent
to failure of the inequality (3.6). Simultaneously, the characteristic equation
(3.4) can be factored as the form

Hence we obtain one negative real eigenvalue and two purely imaginary eigen-
values. Let p be a parameter, z,, 3., and z, depend on u, and i be the
value such that a(f1) = 0. Hence to verify the existence of periodic solutions
bifurcated from F,, we only need to establish the transversality condition
3‘3|u=n # 0. Differentiating (3.12) with respect to p and solving linear sys-
tem of g—m __and g—b __, we obtain

p=p plp=n

da
dp

= (i) g (e = Flane)|
= (g aa) (v (4= 25250)

Tuze \dAF
= (=% )\ (). 1
(262 + 2x§) du () (3:13)

=P
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where the function

_ F (4, Ys, 24)

F(p)=A- " = (aY0 — VB)Ys2e — QXY — YVTx2e.  (3.14)

Note that the inequality (3.6) holds if and only if F' < 0. Therefore we have
the following conclusion on the Hopf bifurcation at the coexistence state Fi.

Proposition 3.10. Assume that (3.10), F(jii) = 0 and dF /du() > 0 hold.
Then the positive equilibrium FE, is locally stable when p < i and loses its
stability when p = . When p > f, E, becomes unstable and a family of
periodic solutions bifurcates from Fi.

Straight forward to solve equations (3.2) and (3.3), we can find the posi-
tive equilibrium explicitly,

E. = (24, Ys, 24)
((a—di)yy — (v — da)(ay + B))

(aly = ds) = (@ = di) (7 = 9))
a5 1855 ). (3.15)

It is possible to set p in any one of the seven parameters, {«, 3,7,7,9,d, da}
to cause the existence of periodic solutions bifurcated from the instability of
coexistence F,. For 9xam121e, if we take u = 0 and ¢ is the value such that

Ay, z — F(24(6),9+(5), 2.(5)) = 0 then the transversality condition is

> 0.

0

g(a- Hrtezly)

We present some numerical simulations of the function A—F(x, ys, 2.)/ (Y« 2+)
and Hopf bifurcation with respective to parameter . Choose parameter val-
ues as follows:

Q B i o d; dsy
2510210251004 10.24

(3.16)

The graph of F, Figure 3.6, can be obtained by vary 4 from 1.5 to 3.5
and calculating the value of the function F' in (3.14) with respective to d.
Since the function F'is negative if and only if the inequality (3.6) holds, the
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function A — L@eyze)
4 1 Yx Zx
2 1
5 1 115 2 925
92|
—4

Figure 3.6: The graph of the function F in terms of 4.

positive equilibrium E, is unstable if F'(§) > 0. Hence there is a periodic
solution bifurcated from the positive equilibrium F,. Furthermore, numerical
simulations of (1.2) at § = 0.25,1.0 are performed and presented in the
Figure 3.7 (a) and (b), respectively. We can see that the positive equilibrium
is asymptotically stable (see Figure. 3.7 (a)) if § = 0.25. Now, using 0 as
a bifurcation parameter, increase ¢ will destabilize the positive equilibrium
and Hopf bifurcation will occur. When ¢ = 1.0, the positive equilibrium loses
its stability and a periodic solution bifurcates from it (see Figure 3.7 (b)).

3.5.3 Chaos

In this section, some numerical simulations are presented to show the chaotic
phenomena. We take the same parameter values as in [27] after the nondim-
mensional scaling, d1 = Dl/B = 02, d2 = DQ/B = 024, a = CL21/CL11 = 257
v = ag/a;n = 0.25, and § = aga/a1z = 1. The parameter § varies from 0.2 to
0.06 with stepsize -0.0001. The parameters are in case (a) of Table 77. We
fix all parameters mentioned above and use 3 as the bifurcation parameter.
A bifurcation diagram is drawn in Figure 3.8. The vertical axis is the popu-
lation density of the top predator z on the section of which y is fixed at the
equilibrium value. It is easy to see that the period-doubling cascade occurs
numerically.
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(a) 6 =0:

Figure 3.7: (a) The coexistence state is asymptotically stable when § =
0.25. (b) A periodic solution bifurcates from the coexistence state via Hopf
bifurcation when ¢ = 1.0.

Tanabe and Namba [27] have numerically presented a bifurcation diagram
of system (1.1) with parameters B =5, D; =1, Dy = 1.2, a1; = 0.4, ajp = 1,
a1 = 1, asz3 = 1, azs = 1, and az; = 0.1. And the parameter a3 are varies
from 0 to 20. They found that chaotic dynamics appear via a period-doubling
cascade.

4 Comparison of Omnivory Models to Food
Chain and Two Predators-One Prey Mod-
els

In this section, we rewrite system (1.2) in the following form

d

d—f ::L‘(l —r—y— (sy)z),

dy

o =y(—di + az — (1d)z), (4.1)
dz

o —2(=da 72+ 0y),
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806 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

Figure 3.8: The numerical simulation of a period-doubling cascade when the
bifurcation parameter 5 varies from 0.2 to 0.06.
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where s and p are scaling parameters of 4, v and [, J, respectively. It is
clear that if set v = 0 then system (4.1) is the following form,

dz

d

d—? =y(—di + ax — pdz), (4.2)
dz

at =z(—dy + 0y).

It is actually a Lotka-Volterra food chain model. Similarly, if set § = 0 then
system (4.1) is the following form,

d

R

W gy +az), (13
dz

g =z(—dy + yx)

It is actually a Lotka-Volterra two predators-one prey model. If we take
system (4.1) as a general three species food web model with the “specialist
predator” y and the “generalist predator” z, then the parameters v and
are taken as the factors of the species z how general it is. Since the species
z is actually a specialist predator when either v or ¢ is equal to zero.

Before comparing the dynamics of of these three models, we clarify the
dynamics of the food chain model (4.2) and the two predators-one prey model
(4.3) in the following two subsections.

4.1 Dynamics of Food Chain Models (4.2)
It is straightforward to calculate that E, = (0,0,0), E, = (1,0,0), and

E,, = (di/a,1 —dy/a,0) are equilibria of system (4.2). The equilibria E,
and £, always exist without any restriction and the equilibrium E,, exists

if & > d;. The following extinction results also can be easily obtained in R3.

Proposition 4.1. If di > «a then limy, y(t) = 0 and lim;_, 2(t) = 0.
Moreover, system (4.2) can be reduced to the one-dimensional subsystem with
E. as its global attractor.
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By previous proposition we always assume the inequality o > d; holds
for (4.2) in this subsection and it clearly implies the existence of E,,. The
local stability of the equilibrium FE,, can be obtained easily by linearization
since the Jacobian matrix evaluated at F,, is given by

—dl/Oé —dl/Oé 0
J(Exy) = Oé—dl O —ﬁ(l—dl/a)
0 0 —d2+6(1—d1/01)

Hence E,, is asymptotically stable if and only if 1 — d; /o < d2/d. Actually,
we can show the following global results.

Proposition 4.2. If inequalities o > di and

d,  ds
1222
a<5

hold, then limy;_,o, 2(t) = 0. Moreover, the equilibrium E,, is globally asymp-
totically stable.

Proof. Let p=1—dy/a— /6 < 0. Consider

Li) 1) | )
520 Taz0) )
= %(—dz +0y) + —(—di +ax — fz) + (1 —z —y)
d2 d1
<1-2_4_
- 0 «

Hence z(t)Y9y(t)"/*z(t) — 0 as t — oo. Applying McGehee Lemma and
similar arguments in Proposition 2.4, we can show that lim; . z(t) = 0.
Finally, system (4.2) can be reduced to a two-dimensional subsystem with
only species x and y eventually, hence FE,, is globally asymptotical stable.
We complete the proof. O

The coexistence state of (4.2) E, = (Z., i, ) = (1%, %2, L(e=h b))
exists if and only if the inequality,

a—d1 d2

Y

«
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holds. Since equation (4.4) is equivalent to

di  dy

and implies & > d; and § > dy. The following global result of E, can be
obtained by the Lyapunov method.

Proposition 4.3. If inequality (4.4) holds then the coexistence state E, exists
and is globally asymptotically stable.

Proof. Define Lyapunov function

a(t) ) _ o y(t) o 2) o
n—z 1 n—y p n—=z
Vixz(t),y(t), z(t :/ dT]—i——/ d77+—/ dn.

Along the trajectories of system (4.2) we have

v . d 1, g B2
=—(r—1,)° <0.

Then dV/dt < 0 and dV/dt = 0 if and only if x = Z,. The largest invariant
set of {dV/dt = 0} is {(Z4, Js, z)}. Therefore, LaSalle’s Invariant Principle
implies that F, = (Z, ¥s, Z«) is globally stable. This completes the proof. [

We summarize the results on the dynamics of (4.2) in Table 4.2 and a
picture of the parameter space of (4.2) with various «, ¢ and fixed dy, dy,
is presented in Figure 4.1.

4.2 Dynamics of Two Predators-One Prey Model (4.3)

Similarly, it is straightforward to calculate that Ey = (0,0,0), E, = (1,0,0),

B, = (2,1-%0), E,, = (%, 73;”52,0) are equilibria of system (4.3). The

equilibria E’xy, Exz exist if a« > dy, v > ds, respectively. Actually, the
following extinction results can be easily obtained in R3.

Proposition 4.4. (i) If dy > « and dy > 7, then lim; o y(t) = 0 and
limy o 2(t) = 0. Moreover, system (4.3) can be reduced to a one-
dimensional subsystem with E, as its global attractor.
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Table 4.1: Classification of equilibria and global dynamics of system (4.2).

cases Egy E, global dynamics
FI:a<d; does not exist | does not exist | y, z die out
E, is GAS.
FII: a > d,
(a)l<L 42 stable does not exist | z dies out
E,, is GAS.
(b)1>4 4 & unstable exists E, is GAS.
Q@
da

2
The species z o 6

dies out and ——{’i\ The Coexistence State
E,, is GAS. (ii) E (ii) exists and is GAS.

E ady 5 b (fy)

The species y,
z die out and
E, is GAS.

Figure 4.1: The parameter space and its corresponding dynamics of (4.2)
with various «, ¢ and fixed dy, ds, 3.
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(ii) If di < a and dy > 7, then liny_, 2(t) = 0. Moreover, system (4.3)
can be reduced to a two-dimensional subsystem with E,, as its global
attractor.

(iii) If dy > a and dy < 9§, then limy .o y(t) = 0. Moreover, system (4.3)
can be reduced to a two-dimensional subsystem with E,, as its global
attractor.

By previous proposition we always assume that the inequalities o > d;
and vy > ds hold for (4.3) in this subsection and it clearly implies the existence
of Exy and E,..

It is well known that the coexistence state of (4.3) does not exist gener-
ically by the reason of Competitive Exclusion Principle. Considering the
linearization of (4.3), it is easy to see that equilibrium FE,, is asymptotically
stable if and only if %1 > %. Moreover, we can show the following global re-
sult which says that the species z wins the exploitative competition because
of the lower death rate d, or the better conversion rate ~.

Proposition 4.5. Let a > dy and v > dy. If da—l > %2 then the species y will
die out eventually. Moreover, the equilibrium E,., is globally asymptotically
stable.

Proof. Consider

Similarly, we can easily verify that species y will die out eventually. This
completes the proof. O

We summarize the results of dynamics of (4.3) in the Table 4.2 and a
picture of parameter space of (4.2) with various «, v and fixed dy, dy, 3 is
presented in Figure 4.1.

4.3 Food Chain, Two Predators-One Prey and Om-
nivory Models
Now we are in the position to compare these three models.

First, we note that there are more rich dynamics of (1.2) than the other
two models, (4.2) and (4.3). Let us re-examine the biological meaning of
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Table 4.2: Classification of equilibria and global dynamics of system (4.3).

cases E,, E,. global dynamics

TI: a < dy, v < ds does not exist | does not exist | y, z die out
E, is GAS.

TII: o > dy, v < dy stable does not exist | z die out
E,, is GAS.

TII : o < dy, v > dy | does not exist stable y die out
E,.. is GAS.

TIV :a > dy, v > ds

‘i—l > ‘i—2 unstable stable y dies out
E,. is GAS.
Y

z survives and

The species y y dies out. %1 - (17_2
dies out and
E,.. is GAS. .
y survives and
z dies out.
________________ d2
(i)
The species v, l «
z die out and \ The species z
E, is GAS. dies out and
E,, is GAS.

Figure 4.2: The parameter space and its corresponding dynamics of (4.2)
with various «, ¢ and fixed dy, ds, .
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model (4.2) in the parameter space, Figure 4.1. The species y will die out by
the reason of the high mortality d; in the gray region (i). And the species z
dies out too, since it is a specialist predator with food y only (Proposition
4.1). In the yellow region (ii) and (iii), the species z dies out due to the high
mortality ds and low conversion rate ¢ of species z, respectively (Proposition
4.2). Finally, the species can coexist if inequality (4.4) holds. Similarly, we
re-examine the parameter space of the model (4.3), Figure 4.2. In the gray
region (i), yellow region (ii), and orange region (iii), the death rates of species
y and z dominate the dynamics of (4.3). However, in the two white regions
separated by the line % = %2, the positive equilibrium cannot exist due to
the Competitive Exclusion Principle. Furthermore, those who with lower
death rate or higher conversion rate can win and survive.

A fundamental difference between the omnivory model (1.2) and food
chain model (4.2), two predators-one prey models (4.3) is that the omnivory
model contains a generalist predator z. It is well known that the existence
of a positive equilibrium implies the globally asymptotically stability in two
species predator-prey systems with Lotka-Volterra functional response and
there is no periodic solution in this kind of models for any parameters. Similar
results without any periodic solutions are obtained in the models of (4.2) and
(4.3). However, the coexistence of (1.2) can be found in the state of positive
equilibrium or in the state of periodic solutions. Moreover, the phenomenon
of bistability also are found in the omnivory model.

Finally, we present a picture, Figure 4.3, of a-y-d-parameter space to
interpret the relations of these three models. Figure 4.2 is put on the left
two-dimensional plane of Figure 4.3 which is presented the dynamics of model
(4.3) and denoted by “a-v plane”. Similarly, Figure 4.1 is put on the under
two-dimensional plane of Figure 4.3 which denoted by “a-d plane”. Finally,
we put Figure 3.5 on the 7-0 plane with a > d;. The biological meanings
and quantitative properties of these pictures and models will be given in the
final section.

5 Discussion

In this work, we considered a three-species food web model with omnivory
(intraguild predation) which are the species feed at more than one tropic level.
Using a non-dimensional scaling model with seven parameters, all possible
dynamics of (1.2) are clarified and classified theorically and numerically. We
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Figure 4.3: Relations of the these food chain.
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not only analyze the model (1.2) but also find the connections of three basic
models (1.2), (4.2), (4.3) by two factors s and .

Recall that the parameters proportioned to K are o = a9 K/B and
v = az1 K/B which are positive relative to the basal resource productivity.
Parameter

5= a3z a3z A23 (21
aiz Q23 A21 A12
measures the efficiency of biomass in the direction from x to y (as1/a12) and
y to z (aga/ass), and conversion rate for species y (azs/as).

First, for the two predators-one prey model (4.3), it happens exploitative
competition between two predators, because both predators share the same
basal resources. Let the ratio 7 and J—2 be defined the index of resource
exploitation of species y and z, respectively. The inequality dﬁl < (>)%
means that the species y is inferior (superior) at resource exploitation than
species z. So Proposition 4.5 says that in model (4.3) species y loses and dies
out since it is inferior at resource exploitation than species z. This result is
the so-called Competitive Exclusion Principle. On the other hand, for the
food chain model (4.2), if species y and z overcome the mortality, i.e. a > d;
and 0 > dy, then they coexist if the resource exploitation (d;/a) is good for
y and the conversion efficiency (ds/d) is excellent for z. Hence the inequality
(4.4) guarantees the existence and globally asymptotical stability of positive
equilibrium.

Next, let us look at the omnivory model (1.2) and 4-0 plane of Figure 4.3
carefully. The straight line

O, %0-=2 (5.1)

of the 7-d plane which connects the straight line d;/a = dy/v of left a-
di

7 plane and the curve 1 = & + %2 of the bottom a-d plane separates the
whole -0 plane into two parts. This straight line implies that the ability of
persistence of species z is depend on two factors, the resource exploitation of
y and conversion efficiency of z. If the resource exploitation of y is inferior
(dy/a is large) and the conversion efficiency of z is exellect (9 is large), then
parameters fall into the right hand side. So the dynamics of model (1.2) is
that z will persist (the orange and pink regions). The horizontal line
v _ay+p

dy Y+ (5:2)
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indicates that the borderline of the real resource exploitation of vy, ;11%,
with a positive predation factor 5 by species z. Hence in the orange regions,
species z wins and y dies out since % > %, i.e. the resource exploitation of
z is superior than y. On the contrary, all species coexist in the pink regions.
This result has been indicated in [10] which states that model (1.2) can
coexist and suggests that coexistence requires that the species y be superior
at exploiting shared resources . Since the inferior competitior z can gain
sufficiently from predation on the species y to offset competitive inferiority
on the shared resource.

For left hand side of the straight line (5.1), if - < (z?;% then species z
cannot persist. Since it is neither superior at exploiting shared resources nor
efficient in converting species y. But, there is a different story in the green
region. Mathematically, we obtain a bistability phenomenon in here (Propo-
sition 3.2(iii)), hence the final dynamics is depend on the initial condition.
Biologically, species z is superior just a little bit in resource exploitation
than y. So the advance in this point can be eliminated by large amount of
species y. Therefore, the solution will approaches to £, eventually if the
population of species z is rare. And the other symmetric case can be argued
similarly. This mathematical result and biological interpretations has not
been reported so far in our best knowledge.

Moreover, we would like to mention the recent works by Kang & Wedekin

[13]. They consider an IGP model with specialist predator :

r=zx(l—z—y—2)

a1yz
yzvly(x—m— 1)
a2yZ
Z/ = 722(%“" ‘y2 —|—/62 — d2)7

and an IGP model with generalist predator :

r=z(l—z—y—2)

=~ (:U—ﬂ—d)
Yy 1Y 2+ 32 1 (5.?))
2
a
2 =z(az —asz +x + 2y ).

y2 + /82
They call species z of model (5.3) the generalist predators since they feed
on the basel resource x, IG-prey y, and other diet resources described by
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the logistic growth ,2(a3 — a4z). By the theoretical analysis and numerical
simulations, they will get the following implications:

1. IGP with generalist predator can have potential top down regulation.

2. The persistence of species y requires it being superior competitor to IG
predator[R. Holt & G. Polis Am. Nat. 1997].

3. The IGP model with generalist predator is prone to have coexistence
of three species.

4. Holling-Type III functional response between IG-prey and 1G-predator
in IGP models lead to much more complicate dynamics than IGP mod-
els with only Holling-Type I functional response

Not only in functional response but also nonlinear interactions of our model
(1.1) are more simple than Kang’s. But we still obtain a periodic solution
and very complex dynamics. We suggest that the complex dynamics are
due to the impact of presentation of a generalist predator rather than the
complexity of functional response II/111.

Finally, we would like to discuss a longstanding debate in ecology[14] :
Does omnivory destabilize [19, 18] or stabilize [16, 28, 20, 3, 22, 26, 1] the food
web system? Based on our analytical and simulation results, we try to answer
this question by transferring it to the following : How does the omnivorous
effect v effect the stability of the positive equilibrium of an omnivory model?
Before answer this question, we should do some numerical works.

By the persistent result of (1.2) Proposition 3.6, if parameters are in
the pink region of Figure 3.5 then all solutions of (1.2) with positive initial
conditions are in a bounded set of first octant and e-away from zy, yz, and
xz-planes for some positive number €. We have showed global stability of
E, for some parameters in pink region near the region of parameters of the
food chain model (Proposition 3.5). However, it is difficulty to determine
the global dynamics of a system with dimension large than two. So we
numerically check the conditions (3.5) and (3.6) for the local stability of E,
with a particular set of parameters, a = 2.5, § = 1.0, d1=0.8, dy = 0.9,
s = 1.0 and discretized parameters v and ¢ in the pink region of Figure 3.5.

And it is straightforward to see that the first condition (3.5) of Routh-
Hurwitz criterion is always true if parameters are in the pink regions because
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dy

da

Figure 5.1: A typical picture of parameter space with variously =, 4, and
fixed dy, do, my, mo, o, f with a > d;.

of the inequalities
d d
v<~* and y— +0(1 — =) > dy.
Q e

Based on the explicit form of y* and z* (3.15) , the second condition (3.6)
of Routh-Hurwitz criterion can be checked numerically for previous setting
parameters. We find numerically that inequality (3.6) is true in the shadow
region of Figure 5.1.

Now we are on the position to answer the question. Our answer is that
it is depend on the values of v and §. For middle values of §, equilibrium F,
is stable if 0 < v < ~* or unstable if v > ~*. For larger 9, equilibrium F,
will be stable, unstable, stable or unstable when v increases from 0 to the
orange region of Figure 5.1. Finally, equilibrium F, is stable only on large ¢
and small ~.
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FERE : Dynamics of Three Species Lotka—Volterra Food Web Models with
Omnivory and Why Omnivory ¢

ﬁ%%% : In this work, we consider a three species Lotka—Volterra food web model with

omnivory. Based on a non—-dimensional transformation, the system is a model of three
equations of first order ordinary differential equations with seven parameters. The
model with some suitable parameters can be seen as a food chain model or a two

predator—one prey model.

The difficulties are that a predator—-prey ecological model is not monotonic and the
classical Poincare—Bendixson Theorem cannot be applied. However, we completely
classify the parameter space into eight cases of four categories and determine global
dynamics analytically for six cases. For some particular parameters, we show that the
Hopf bifurcation occurs and some chaotic phenomena are presented numerically. Finally,
we interpret the biological meanings of our numerical results. Moreover, we compare
three predator—prey models, omnivory models, food chain models and two predator—one

prey models, with a omnivorous effect.

I %5
iy HEEIE R RS R A

N~ Al



FAEIMA G A EFE S R T A

p#:2014/09/25

PR e 4

Ph LA SRR AT G HEA], B R ehF ROdT X B RS feA BT -

PRI A

3 F e 102-2115-M-032-004- BEAE . ¥ kA AR

F Y R Ry




12 #REHFATHEAFL SR EL

PRI PR

33 S5 0 102-2115-M-032-004-

LA 3P A S B & B,

ARk ST BT IoAEET o

£

£ i R (F 0w
ipgy| P wEBPE
* %3 p REe S gyt s |FFRF (g |7 FFF T
B OB g |BERE | A IS L
pegg) | 2 ST i S
%)
R 0 0 100%
e PIEERRL 0 of 1004 | %
¥ E T
i g h 0 0 100%
P 0 0 100%
by [ RE 0 0 100% |
S 0 0 100%
P i g 0 of 100y |
HA 1
#114& 0 0| 100% |-=*=
A 0 0 100%
fgraid L4 (L4 0 0[ 100% L
=X
(AR LT h 0 0 100%
LiFmm 0 0| 100%
8 7% 1 1| 100%
o e PR 0 0| 100% =
gﬁ‘nQ E T
it g 0 0| 100%
L1 0 of 100% |%/%
py [ RE 0 o 100% |
S 0 0 100%
BN ?P
# s 0 of 100% | ©
A
11 4& 0 0| 100% |+ =
L4 9 2 100%
graig A4 g d 0 0 100%
A =
(HhRE) [BLimg R 0 0 100% ’
LiEmm 0 0 100%




g

H A%
(miz gz
5 hoyE B s d S
HREE S ERREE
V=g g NP LB T
SR R D B
Vicne S TSN | 2
EE G F A

}ljo)

= % I8 P

frebs

—

#R%EL S(7 FRredn)

/e

Re gz e fada e

0

0

0
21
e S 0
b B EB 0
B |Fg/1iep 0
b B A - BN A 0
B 0

PEASHAEZ 2 (BR) Ak




PEBHB LA ESRHL =4

HRE R B R R R A AR LT PR ] SR FE Y
& (f £%+¢%wﬁix&a\$m\%§é\ HEBELZT ) LF R
ELFPIF LAY FEN AL FRNE B HGEE S T FEFER o

1 ey M FERTHPFARR ~ T8 P HFHERIT
W=
(IR p & (8P > 12100 F 5 '2)
[ 5 =% % Pz
[z & » %r
(8 @ R’ 7

s
2. Py Ak B A A I HA

W FE JAgiz~f ERY &
IS TRECE T AN T

Fig [ F#E l:‘lr'?k‘:; .jﬂL

A (2100 2 5)

Tk BT RIAT ARG RFE D G TR SR FRA R
B (et 52 L& HiE PN e-HFE27 ) (1
500 % 5 *2)




