English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51772/86996 (60%)
造訪人次 : 8376206      線上人數 : 146
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/99933

    題名: Mining Customer Knowledge for a Recommendation System in Convenience Stores
    作者: Liao, S. H.;Wen, C. H.;Hsiao, P.Y.;Li, C. W.;Hsu, C. W.
    貢獻者: 淡江大學管理科學學系
    日期: 2014-06-01
    上傳時間: 2015-01-14 12:09:29 (UTC+8)
    出版者: Hershey: I G I Global
    摘要: Taiwan's rapid economic growth with increasing personal income leads increasing numbers of young unmarried people to eat out, and shopping at convenience stores for food is indispensable to the lives of these people. Thus, it is an essential issue for convenience store owners to know how to accurately market appropriate products and to choose effective endorsers for brands or products in order to attract target consumers. Data mining is a business intelligence analysis approach with great potential to help businesses focus on the most important business information contained in a database. Therefore, this study uses the Apriori algorithm as an association rules approach, and clustering analysis for data mining. The authors divide consumers into three groups by their consumer profiles and then find each group's product preference mixes, product endorsers, and product/brand line extensions for new product development. These are developed as a recommendation system for 7-11 convenience stores in Taiwan.
    關聯: International Journal of Data Warehousing and Mining 10(2), pp.55-86
    DOI: 10.4018/ijdwm.2014040104
    顯示於類別:[管理科學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    Mining customer knowledge for a recommendation system in convenience stores.pdf256KbAdobe PDF432檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋