淡江大學機構典藏:Item 987654321/99931
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58788/92495 (64%)
造访人次 : 633719      在线人数 : 43
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/99931


    题名: Mining Customer Knowledge for Channel and Product Segmentation
    作者: Liao, Shu-Hsien;Chen, Yin-Ju;Yang, Hsiao-Wei
    贡献者: 淡江大學管理科學學系
    日期: 2013-07-01
    上传时间: 2015-01-14 12:03:24 (UTC+8)
    出版者: Philadelphia: Taylor & Francis Inc.
    摘要: Segmentation is particularly challenging in current markets. Hence, companies operating on consumer markets face significant implementation complexities. However, successful implementation of market segmentation is reported problematic, despite being extensively researched and widely acknowledged as a powerful concept in practice. The desired outcome, and the knowledge discovery of market segmentation, is to reap the benefits of competitive advantage. This study takes Computers/Communications/Consumer (3C) products as an example and uses a two-step data mining approach to the cluster analysis and association rules to analyze customer channels and product segmentation. Moreover, we look at what kinds of products and brands customers of different segments prefer and how these preferences differ in relation to varying channel types. Thus, this study finds some 3C product-buying behavior patterns, including customer purchase preferences and customer purchase demands, in order to generate different 3C segmentation marketing alternatives.
    關聯: Applied Artificial Intelligence 27(7), pp.635-655
    DOI: 10.1080/08839514.2013.813195
    显示于类别:[管理科學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML245检视/开启
    MINING CUSTOMER KNOWLEDGE FOR CHANNEL AND PRODUCT SEGMENTATION.pdf1252KbAdobe PDF345检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈