English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51296/86402 (59%)
造訪人次 : 8161752      線上人數 : 61
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/99931


    題名: Mining Customer Knowledge for Channel and Product Segmentation
    作者: Liao, Shu-Hsien;Chen, Yin-Ju;Yang, Hsiao-Wei
    貢獻者: 淡江大學管理科學學系
    日期: 2013-07-01
    上傳時間: 2015-01-14 12:03:24 (UTC+8)
    出版者: Philadelphia: Taylor & Francis Inc.
    摘要: Segmentation is particularly challenging in current markets. Hence, companies operating on consumer markets face significant implementation complexities. However, successful implementation of market segmentation is reported problematic, despite being extensively researched and widely acknowledged as a powerful concept in practice. The desired outcome, and the knowledge discovery of market segmentation, is to reap the benefits of competitive advantage. This study takes Computers/Communications/Consumer (3C) products as an example and uses a two-step data mining approach to the cluster analysis and association rules to analyze customer channels and product segmentation. Moreover, we look at what kinds of products and brands customers of different segments prefer and how these preferences differ in relation to varying channel types. Thus, this study finds some 3C product-buying behavior patterns, including customer purchase preferences and customer purchase demands, in order to generate different 3C segmentation marketing alternatives.
    關聯: Applied Artificial Intelligence 27(7), pp.635-655
    DOI: 10.1080/08839514.2013.813195
    顯示於類別:[管理科學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML126檢視/開啟
    MINING CUSTOMER KNOWLEDGE FOR CHANNEL AND PRODUCT SEGMENTATION.pdf1252KbAdobe PDF303檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋