English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58335/91896 (63%)
造访人次 : 29301      在线人数 : 129
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/99699

    题名: Functional inference for interval-censored data in proportional odds model with covariate measurement error
    作者: Wen, Chi-Chung;Chen, Yi-Hau
    贡献者: 淡江大學數學學系
    关键词: Conditional score;interval-censoring;measurement error;semiparametric;survival analysis
    日期: 2014-07-01
    上传时间: 2014-12-10 14:19:41 (UTC+8)
    出版者: Academia Sinica * Institute of Statistical Science
    摘要: It is common in regression analysis of failure time data, such as the AIDS Clinical Trail Group (ACTG) 175 clinical trial data, that the failure time (AIDS incidence time) is subject to interval-censoring and the covariate (baseline CD4 count) is subject to measurement error. To perform valid analysis in this setting, we propose a functional inference method under the semiparametric proportional odds model. The proposal utilizes the working independence strategy to handle general mixed case interval censorship, as well as the conditional score approach to handle mismeasured covariate without specifying the covariate distribution. The asymptotic theory, together with a stable computational procedure combining the Newton-Raphson and self-consistency algorithms, is established for the proposed estimation method. We illustrate the performance of the proposal via simulation studies and analysis of ACTG 175 data.
    關聯: Statistica Sinica 24(3), pp.1301-1317
    DOI: 10.5705/ss.2013.081
    显示于类别:[數學學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    Functional inference for interval-censored data in proportional odds model with covariate measurement error.pdf253KbAdobe PDF0检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈