English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54567/89241 (61%)
造访人次 : 10578882      在线人数 : 52
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/99697

    题名: Singularities for semilinear heat equation with spatially dependent potential
    作者: Guo, Jong-Shenq
    贡献者: 淡江大學數學學系
    日期: 2014-09-05
    上传时间: 2014-12-10 13:37:40 (UTC+8)
    摘要: We consider nonnegative solutions for a semilinear heat equation with spatially dependent nonnegative potential. The domain under consideration may be either the whole space or a bounded smooth domain. In the case of nonempty boundary, we impose the zero Dirichlet boundary condition. We assume that the potential function may vanish at some points, so that there are no reactions at these points. Our aim is to study whether these zeros of the potential can be singular points, if the solution develops singularities in finite time. Intuitively, it seems that the answer is negative. However, the answer can be either positive or negative. We shall focus on two types of singularity: blow-up and quenching. Some open questions shall also be given.
    显示于类别:[數學學系暨研究所] 會議論文


    档案 描述 大小格式浏览次数
    Guo.pdf10KbAdobe PDF134检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈