English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58323/91877 (63%)
造訪人次 : 14338450      線上人數 : 91
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/99697

    題名: Singularities for semilinear heat equation with spatially dependent potential
    作者: Guo, Jong-Shenq
    貢獻者: 淡江大學數學學系
    日期: 2014-09-05
    上傳時間: 2014-12-10 13:37:40 (UTC+8)
    摘要: We consider nonnegative solutions for a semilinear heat equation with spatially dependent nonnegative potential. The domain under consideration may be either the whole space or a bounded smooth domain. In the case of nonempty boundary, we impose the zero Dirichlet boundary condition. We assume that the potential function may vanish at some points, so that there are no reactions at these points. Our aim is to study whether these zeros of the potential can be singular points, if the solution develops singularities in finite time. Intuitively, it seems that the answer is negative. However, the answer can be either positive or negative. We shall focus on two types of singularity: blow-up and quenching. Some open questions shall also be given.
    顯示於類別:[數學學系暨研究所] 會議論文


    檔案 描述 大小格式瀏覽次數
    Guo.pdf10KbAdobe PDF150檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋