淡江大學機構典藏:Item 987654321/99573
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 63246/95943 (66%)
造访人次 : 4828765      在线人数 : 171
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/99573


    题名: Myocardial Infarction Classification by Morphological Feature Extraction from Big 12-Lead ECG Data
    作者: Weng, Julia Tzu-Ya;Lin, Jyun-Jie;Chen, Yi-Cheng;Chang, Pei-Chann
    贡献者: 淡江大學資訊工程學系
    关键词: 12-lead ECG;Myocardial infarction;Principal component;Polynomial approximation analysis;Support vector machine
    日期: 2014-05-13
    上传时间: 2014-11-30 13:06:20 (UTC+8)
    出版者: Springner
    摘要: Rapid and accurate diagnosis of patients with acute myocardial infarction is vital. The ST segment in Electrocardiography (ECG) represents the change of electric potential during the period from the end of ventricular depolarization to the beginning of repolarization and plays an important role in the detection of myocardial infarction. However, ECG monitoring generates big volumes of data and the underlying complexity must be extracted by a combination of methods. This study combines the advantages of polynomial approximation and principal component analysis. The proposed approach is stable for the 12-lead ECG data collected from the PTB database and achieves an accuracy of 98.07%.
    關聯: Lecture Notes in Artificial Intelligence 8643, pp.689-699
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    2014_Myocardial Infarction Classification by Morphological Feature Extraction from Big 12-Lead ECG Data.pdf590KbAdobe PDF426检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈