English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56167/90161 (62%)
造訪人次 : 11559146      線上人數 : 106
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/99573


    題名: Myocardial Infarction Classification by Morphological Feature Extraction from Big 12-Lead ECG Data
    作者: Weng, Julia Tzu-Ya;Lin, Jyun-Jie;Chen, Yi-Cheng;Chang, Pei-Chann
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: 12-lead ECG;Myocardial infarction;Principal component;Polynomial approximation analysis;Support vector machine
    日期: 2014-05-13
    上傳時間: 2014-11-30 13:06:20 (UTC+8)
    出版者: Springner
    摘要: Rapid and accurate diagnosis of patients with acute myocardial infarction is vital. The ST segment in Electrocardiography (ECG) represents the change of electric potential during the period from the end of ventricular depolarization to the beginning of repolarization and plays an important role in the detection of myocardial infarction. However, ECG monitoring generates big volumes of data and the underlying complexity must be extracted by a combination of methods. This study combines the advantages of polynomial approximation and principal component analysis. The proposed approach is stable for the 12-lead ECG data collected from the PTB database and achieves an accuracy of 98.07%.
    關聯: Lecture Notes in Artificial Intelligence 8643, pp.689-699
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    2014_Myocardial Infarction Classification by Morphological Feature Extraction from Big 12-Lead ECG Data.pdf590KbAdobe PDF289檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋