English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7367296      線上人數 : 57
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/99562


    題名: Global Dynamics and Traveling Wave Solutions of Two Predators-One Prey Models
    作者: Lin, Jian-Jhong;Wang, Weiming;Yang, Ting-Hui;Zhao, Caidi
    貢獻者: 淡江大學數學學系
    關鍵詞: Two predators-one prey system;extinction;coexistence;global stability;traveling wave solutions;upper-lower solutions
    日期: 2015-06
    上傳時間: 2014-11-27 11:49:15 (UTC+8)
    出版者: American Institute of Mathematical Sciences
    摘要: In this work, we consider an ecological system of three species with two predators-one prey type without or with diffusion. For the system without diffusion, i.e. a system of three ODEs, we clarify global dynamics of all equilibria and find an exact condition to guarantee the existence and global asymptotic stability of the positive equilibrium. However, when the corresponding condition does not hold, the prey becomes extinct due to the over exploitation. On the other hand, for the system with diffusion, using the cross iteration method we find the minimum speed c∗. The existence of traveling wave front connecting the trivial solution and the coexistence state with some sufficient conditions is verified if the wave speed is large than c∗ and we also prove the nonexistence of such solutions if the wave speed is less than c∗. Finally, numerical simulations of system without or with diffusion are implemented and biological meanings are discussed.
    關聯: Discrete and Continuous Dynamical Systems-Series B 20(4), pp.1135–1154
    DOI: 10.3934/dcdsb.2015.20.1135
    顯示於類別:[數學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML42檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋