English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 11129439      線上人數 : 20401
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/99535


    題名: Timed Sequential Pattern Mining Based on Confidence in Accumulated Intervals
    作者: Jou, Chichang;Shyur, Huan-Jyh;Yen, Chih-Yu
    貢獻者: 淡江大學資訊管理學系
    關鍵詞: timed sequential pattern mining;accumulated interval;PrefixSpan
    日期: 2014-08-15
    上傳時間: 2014-11-20 12:59:19 (UTC+8)
    出版者: IEEE
    摘要: Many applications of sequential patterns require a guarantee of a particular event happening within a period of time. We propose CAI-PrefixSpan, a new data mining algorithm to obtain confident timed sequential patterns from sequential databases. Based on PrefixSpan, it takes advantage of the pattern-growth approach. After a particular event sequence, it would first calculate the confidence level regarding the eventual occurrence of a particular event. For those pass the minimal confidence requirement, it then computes the minimal time interval that satisfies the support requirement. It then generates corresponding projected databases, and applies itself recursively on the projected databases. With the timing information, it obtains fewer but more confident sequential patterns. CAI-PrefixSpan is implemented along with PrefixSpan. They are compared in terms of numbers of patterns obtained and execution efficiency. Our effectiveness and performance study shows that CAI-PrefixSpan is a valuable and efficient approach in obtaining timed sequential patterns.
    關聯: Proceedings of the 15th International Conference on Information Reuse and Integration
    顯示於類別:[資訊管理學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    IRI-2014-submitted.pdf220KbAdobe PDF438檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋