淡江大學機構典藏:Item 987654321/99421
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 63246/95943 (66%)
造訪人次 : 4820545      線上人數 : 139
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/99421


    題名: Incrementally Mining Temporal Patterns in Interval-based Databases
    作者: Chen, Yi-Cheng;Weng, Julia Tzu-Ya;Wang, Jun-Zhe;Chou, Chien-Li;Huang, Jiun-Long;Lee, Suh-Yin
    貢獻者: 資訊工程學系暨研究所
    關鍵詞: dynamic representation;incremental mining;interval-based pattern;sequential pattern mining
    日期: 2014-11-01
    上傳時間: 2014-10-30 17:51:02 (UTC+8)
    出版者: IEEE
    摘要: In several applications, sequence databases generally update incrementally with time. Obviously, it is impractical and inefficient to re-mine sequential patterns from scratch every time a number of new sequences are added into the database. Some recent studies have focused on mining sequential patterns in an incremental manner; however, most of them only considered patterns extracted from time point-based data. In this paper, we proposed an efficient algorithm, Inc_TPMiner, to incrementally mine sequential patterns from interval-based data. We also employ some optimization techniques to reduce the search space effectively. The experimental results indicate that Inc_TPMiner is efficient in execution time and possesses scalability. Finally, we show the practicability of incremental mining of interval-based sequential patterns on real datasets.
    關聯: The 2014 International Conference on Data Science and Advanced Analytics
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Incrementally Mining Temporal Patterns in Interval-based Databases.pdf322KbAdobe PDF507檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋