English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58237/91808 (63%)
造访人次 : 13781933      在线人数 : 64
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/99421

    题名: Incrementally Mining Temporal Patterns in Interval-based Databases
    作者: Chen, Yi-Cheng;Weng, Julia Tzu-Ya;Wang, Jun-Zhe;Chou, Chien-Li;Huang, Jiun-Long;Lee, Suh-Yin
    贡献者: 資訊工程學系暨研究所
    关键词: dynamic representation;incremental mining;interval-based pattern;sequential pattern mining
    日期: 2014-11-01
    上传时间: 2014-10-30 17:51:02 (UTC+8)
    出版者: IEEE
    摘要: In several applications, sequence databases generally update incrementally with time. Obviously, it is impractical and inefficient to re-mine sequential patterns from scratch every time a number of new sequences are added into the database. Some recent studies have focused on mining sequential patterns in an incremental manner; however, most of them only considered patterns extracted from time point-based data. In this paper, we proposed an efficient algorithm, Inc_TPMiner, to incrementally mine sequential patterns from interval-based data. We also employ some optimization techniques to reduce the search space effectively. The experimental results indicate that Inc_TPMiner is efficient in execution time and possesses scalability. Finally, we show the practicability of incremental mining of interval-based sequential patterns on real datasets.
    關聯: The 2014 International Conference on Data Science and Advanced Analytics
    显示于类别:[資訊工程學系暨研究所] 會議論文


    档案 描述 大小格式浏览次数
    Incrementally Mining Temporal Patterns in Interval-based Databases.pdf322KbAdobe PDF435检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈