English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51903/87065 (60%)
造訪人次 : 8471212      線上人數 : 98
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/99232

    題名: A Job-Oriented Load-Distribution Scheme for Cost-Effective NameNode Service in HDFS
    作者: Lin, Chi-Yi;Liao, Jhih-Kai
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: big data;cloud computing;Hadoop Distributed File System;HDFS;NameNode service;load distribution;fault tolerance;MapReduce;job-oriented scheme;load distribution
    日期: 2014-09-01
    上傳時間: 2014-10-20 15:48:35 (UTC+8)
    出版者: Olney: Inderscience Publishers
    摘要: Apache Hadoop has been widely used in big data processing and distributed computations. In the Hadoop ecosystem, data are stored and managed by the Hadoop Distributed File System (HDFS), in which the NameNode machine is a single point of failure. Although HDFS Federation and HDFS High Availability solve the problem, it comes at significant cost of extra server hardware. Therefore, we aim at improving the availability of the NameNode service in a more cost-effective way. The primary innovation is the joint consideration of MapReduce jobs and the resulting HDFS operations. Specifically, we dynamically allocate a SubNameNode for each job in one of the existing TaskTrackers to provide the NameNode service. Since the load of the single NameNode is naturally distributed to the SubNameNodes, the failure rate of the NameNode machine can be reduced. Moreover, with SubNameNodes more local to the participating TaskTrackers, TaskTrackers can access the NameNode service more efficiently.
    關聯: International Journal of Web and Grid Services 10(4), pp.319-337
    DOI: 10.1504/IJWGS.2014.064933
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋