淡江大學機構典藏:Item 987654321/99086
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8255171      在线人数 : 7950
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/99086


    题名: A text mining analysis of US-China joint statements in 2009 and 2011
    作者: Guo, Jiann-Jong;Wu, Shian-Ghau
    贡献者: 淡江大學中國大陸研究所
    关键词: Text Mining;Data Mining;KNIME;R language
    日期: 2012-09-10
    上传时间: 2014-10-13 15:07:32 (UTC+8)
    出版者: Trabzon: Sila Science
    摘要: In recent years, much research has been devoted to the analysis of the US-China relationship. However, few have deployed the content analysis of the joint statements between both countries in order to grasp the change of the relationship in different time frames. In fact, grasping the trend change of the US-China relationship is imperative for academic researchers and policy makers. In this paper, we analyzed the trend change of the US-China relationship by means of applying the text mining analysis to two joint statements in the years of 2009 and 2011. The contribution of this study included the following two points. First, the study has found the main focus of the Joint Statements shifted from mutual cooperation to the focuses of economic development, investment and the continuity of bilateral relations. Second, the study found a new way of literature survey in diplomatic studies by using the text mining method in order to explore the trend change.
    關聯: Energy Education Science and Technology, Part A: Energy Science and Research 30(SI-1), pp.405-416
    DOI: 10.1007/978-3-642-23345-6_109
    显示于类别:[中國大陸研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML5检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈