A new design of the air gap membrane distillation system equipped with a solar absorber was investigated theoretically and experimentally for saline water desalination, which the integration unit possessing an immediate assisted solar absorber for energy resources and air gap membrane distillation for desalination. The theoretical formulations are developed and the resultant equations are solved by the Newton-Raphson method. The theoretical predictions show that the solar assisted AGMD system accomplishes a better device performance in pure water productivity than that of the conventional AGMD system. The good agreement is achieved between the theoretical predictions and the experimental runs in the present study. The effects of the fluid inlet temperature, volumetric flow rate, air gap thickness and incident solar radiation on the heat transfer efficiency and the productivity of pure water are discussed in this study. The theoretical results indicate that the pure water productivity increases with increasing the inlet temperature of hot fluid,volumetric flow rate and incident solar radiation. Moreover, the theoretical prediction of the best thermal efficiency in IAS-AGMD system was obtained as the air gap thickness is of 2.5 mm.
Relation:
Desalination and Water Treatment 57(9), pp.3846-3860