English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55176/89445 (62%)
造訪人次 : 10658204      線上人數 : 22
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/98859

    題名: Robust wavelet-based adaptive neural controller design with a fuzzy compensator
    作者: Hsu, Chun-Fei;Cheng, Kuo-Hsiang;Lee, Tsu-Tian
    貢獻者: 淡江大學電機工程學系
    關鍵詞: Adaptive control;Neural control;Chaotic system;Fuzzy compensation;Wavelet neural network
    日期: 2009-12-01
    上傳時間: 2014-09-24 09:52:08 (UTC+8)
    出版者: Amsterdam: Elsevier BV
    摘要: In this paper, a robust wavelet-based adaptive neural control (RWANC) with a PI type learning algorithm is proposed. The proposed RWANC system is composed of a wavelet neural controller and a fuzzy compensation controller. The wavelet neural control is utilized to approximate an ideal controller and the fuzzy compensation controller with a fuzzy logic system in it is used to remove the chattering phenomena of conventional sliding-mode control completely. In the RWANC, the learning algorithm is derived based on the Lyapunov function, thus the closed-loop system's stability can be guaranteed. The chaotic system control has become an emerging topic in engineering community since the uncontrolled system displays complex, noisy-like and unpredictable behavior. Therefore, the proposed RWANC approach is applied to a second-order chaotic nonlinear system to investigate the effectiveness. Through the simulation results, the proposed RWANC scheme can achieve favorable tracking performance and the convergence of the tracking error and control parameters can be accelerated by the developed PI adaptation learning algorithm.
    關聯: Neurocomputing 73(1–3), pp.423–431
    DOI: 10.1016/j.neucom.2009.07.011
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋