English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62568/95225 (66%)
Visitors : 2510513      Online Users : 252
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/98705

    Title: Conformational analysis of a seven-membered ring azasugar, (3R,4R,6S)-trihydroxyazepane: Comparison of GIAO calculation and experimental NMR spectra on 13C chemical shifts
    Authors: Yeh, Pao-Ling;Tai, Chin-Kuen;Shih, Tzenge-Lien;Hsiao, Hui-Ling;Wang, Bo-Cheng
    Contributors: 淡江大學化學學系
    Keywords: Conformational analysis;NMR calculation;Trihydroxyazepane
    Date: 2012-06-27
    Issue Date: 2014-09-15 16:32:56 (UTC+8)
    Publisher: Elsevier BV
    Abstract: DFT/B3LYP/6-311++G(d,p) calculation of the relative stable conformations of (3R,4R,6S)-trihydroxyazepane are presented. The GIAO/DFT/OPBE, GIAO/DFT/B3LYP and GIAO/HF single point calculations with 6-311++G(d,p), 6-311+G(2d,p), cc-pVDZ and cc-pVTZ basis sets of (3R,4R,6S)-trihydroxyazepane were conducted to generate their 13C NMR chemical shifts. According to calculation results, 14 (3R,4R,6S)-trihydroxyazepane with optimized structure were generated. There were three conformers which contain the intramolecular hydrogen bonding exhibit a lowest electronic energies and TCN1(eq) was the most stable conformer than others. Boltzmann weighting factor analysis exhibits that TCN1(eq), TCN3(eq) and TCN5(eq) dominate a major contribution among the 14 conformers. The individual calculated NMR results of TCN1(eq), TCN3(eq) and TCN5(eq) represents a quite close correlation with experimental data. Moreover, the experimental 13C NMR chemical shifts gave only the average contribution of all conformers. In our investigation, the calculated 13C NMR chemical shifts of mixture (3R,4R,6S)-trihydroxyazepane exhibit a good agreement with the experimental NMR data. Calculated NMR results of mixture (3R,4R,6S)-trihydroxyazepane conformers display a remarkable MAE and RMS improvement over that of each individual conformer. A good calculation method and basis set choice to evaluate the theoretical chemical shifts for these conformers is HF/cc-pVTZ.
    Relation: Journal of Molecular Structure 1018, p.64–71
    DOI: 10.1016/j.molstruc.2011.08.054
    Appears in Collections:[Graduate Institute & Department of Chemistry] Journal Article
    [Doctoral Program in Applied Science] Journal Article

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback