淡江大學機構典藏:Item 987654321/98681
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8444492      在线人数 : 7646
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/98681


    题名: An Intelligent System for Mining and Maintaining Correlation Patterns among Appliances in Smart Home
    作者: Yi-Cheng Chen;Julia Tzu-Ya Weng
    贡献者: 資訊工程學系暨研究所
    关键词: sensor data analysis
    smart home
    correlation pattern
    intelligent system
    incremental mining
    日期: 2014-08-26
    上传时间: 2014-09-10 01:56:38 (UTC+8)
    摘要: Recently, due to the great advent of sensor
    technology, residents can collect the usage data of appliances in a house easily. However, with data progressively generating, it is still a challenge to visualize how these appliances are used. Thus, a mining and maintaining system is needed to incrementally discover appliance usage
    patterns. Most previous studies on usage
    pattern discovery are mainly focused on analyzing the patterns of single appliance and do not consider the incremental maintenance of mining results. In this paper, a novel system, namely, Dynamic Correlation Mining System (DCMS) is
    developed to capture and maintain the correlation patterns among appliances incrementally. The experimental results indicate that proposed system is efficient in execution time and possesses scalability. Furthermore, we apply DCMS on a real-world dataset to show the practicability.
    關聯: The 10-th Workshop on Wireless, Ad Hoc and Sensor Networks (WASN 2014)
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    WASN'14_An Intelligent System for Mining and Maintaining Correlation Patterns among Appliances in Smart Home.pdf365KbAdobe PDF421检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈