English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7362703      線上人數 : 70
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/98648


    題名: Comparison of Normal Variance Estimators under Multiple Criteria and Towards a Compromise Estimator
    作者: Lin, Jyh-Jiuan;Pal, Nabendu
    貢獻者: 淡江大學統計學系
    關鍵詞: Affine equivariance;Risk function;chi-square distribution
    日期: 2005-08
    上傳時間: 2014-09-03 19:42:07 (UTC+8)
    出版者: Abingdon: Taylor & Francis
    摘要: For estimating a normal variance under the squared error loss function it is well known that the best affine (location and scale) equivariant estimator, which is better than the maximum likelihood estimator as well as the unbiased estimator, is also inadmissible. The improved estimators, e.g., stein type, brown type and Brewster–Zidek type, are all scale equivariant but not location invariant. Lately, a good amount of research has been done to compare the improved estimators in terms of risk, but comparatively less attention had been paid to compare these estimators in terms of the Pitman nearness criterion (PNC) as well as the stochastic domination criterion (SDC). In this paper, we have undertaken a comprehensive study to compare various variance estimators in terms of the PNC and the SDC, which has been long overdue. Finally, using the results for risk, the PNC and the SDC, we propose a compromise estimator (sort of a robust estimator) which appears to work ‘well’ under all the criteria discussed above.
    關聯: Journal of Statistical Computation and Simulation 75(8), pp.645-665
    DOI: 10.1080/00949650410001729490
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML116檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋