English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54059/88894 (61%)
造访人次 : 10549538      在线人数 : 19
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/98573

    题名: Accurate and robust ROI localization in a camshift tracking application
    作者: Yen, Shwu-Huey;Wang, Chun-Hui;Chien, Jui-Chen
    贡献者: 淡江大學資訊工程學系
    关键词: Camshift;Mean shift;Tracking;Surveillance;Flood-fill
    日期: 2015-12
    上传时间: 2014-08-14 22:34:26 (UTC+8)
    出版者: Springer New York LLC
    摘要: Camshift has been well accepted as one of the most popular methods for object tracking. However, it fails to address complex situations, such as similar color interference, object occlusion, and illumination changes. In this paper, we enhance Camshift to enable it to handle the above-mentioned problems. A two-dimensional (2D) histogram of the hue and luminance is used for the color features of the target. To reduce the influence from irrelevant background pixels, a Flood-fill operation is implemented. The obtained 2D target model can precisely describe the target as well as achromatic points. A similarity score is evaluated to prevent similar color interference. When a target’s colors are not distinguishable from the background colors, motion information will contribute to the tracking task. Finally, an average rate change is adopted to maintain progressive but not abrupt changes in the window size. The proposed algorithm has been extensively tested. The results are satisfactory while maintaining the processing in real time.
    關聯: Multimedia Tools and Applications 74(23), pp.10291–10312
    DOI: 10.1007/s11042-014-2167-z
    显示于类别:[資訊工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    Accurate and robust ROI localization in a camshift tracking application.pdf1984KbAdobe PDF2检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈