English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55990/90025 (62%)
造訪人次 : 11536955      線上人數 : 87
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/98573

    題名: Accurate and robust ROI localization in a camshift tracking application
    作者: Yen, Shwu-Huey;Wang, Chun-Hui;Chien, Jui-Chen
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Camshift;Mean shift;Tracking;Surveillance;Flood-fill
    日期: 2015-12
    上傳時間: 2014-08-14 22:34:26 (UTC+8)
    出版者: Springer New York LLC
    摘要: Camshift has been well accepted as one of the most popular methods for object tracking. However, it fails to address complex situations, such as similar color interference, object occlusion, and illumination changes. In this paper, we enhance Camshift to enable it to handle the above-mentioned problems. A two-dimensional (2D) histogram of the hue and luminance is used for the color features of the target. To reduce the influence from irrelevant background pixels, a Flood-fill operation is implemented. The obtained 2D target model can precisely describe the target as well as achromatic points. A similarity score is evaluated to prevent similar color interference. When a target’s colors are not distinguishable from the background colors, motion information will contribute to the tracking task. Finally, an average rate change is adopted to maintain progressive but not abrupt changes in the window size. The proposed algorithm has been extensively tested. The results are satisfactory while maintaining the processing in real time.
    關聯: Multimedia Tools and Applications 74(23), pp.10291–10312
    DOI: 10.1007/s11042-014-2167-z
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    Accurate and robust ROI localization in a camshift tracking application.pdf1984KbAdobe PDF2檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋