English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58323/91876 (63%)
造访人次 : 14054086      在线人数 : 39
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/98568


    题名: Cross-Flow Microfiltration of Bacillus Subtilis Broths under Various Culture Time
    作者: Hwang, Kuo-Jen;Tsai, Ming-Hsiu
    贡献者: 淡江大學化學工程與材料工程學系
    关键词: cross-flow microfiltration;Bacillus subtilis;membrane filtration;bio-separation;cake properties
    日期: 2014-04-16
    上传时间: 2014-08-14 10:15:15 (UTC+8)
    出版者: Philadelphia, PA: Taylor & Francis Inc.
    摘要: Bacillus subtilis broths under different culture times are filtered in a cross-flow microfilter. The operating condition effects, such as cross-flow velocity, transmembrane pressure, and broth culture time, on the filtration flux, cake properties, and extracellular polymeric substances (EPS) transmissions are discussed thoroughly. The culture broths contain B. subtilis cells and EPS which is characterized as polysaccharides (hydrocarbons) and proteins. An increase in broth culture time leads to higher concentrations of cells, soluble and extractable EPS. The total protein to polysaccharide concentration ratio in the broths is ca 0.2. However, the soluble polysaccharide concentration is 10-fold higher than that of soluble proteins. The filtration flux increases with increasing cross-flow velocity or transmembrane pressure. However, the impact of cross-flow velocity is more significant. The filter cake resistance formed by B. subtilis cells and EPS flocs plays the most important role in determining the overall filtration resistance. The mass and average specific filtration resistance of cake can be estimated using a force balance model and empirical equations. The cake structure and thickness are analyzed using SEM. A thicker and more compact cake may be formed under longer broth culture time. Most soluble polysaccharide and protein molecules have the opportunity to penetrate through the cake and membrane into the filtrate because the solute transmissions are measured as high as 0.75–1.0. The influences of operating conditions on the polysaccharide and protein transmissions are negligible. Therefore, to enhance filtration flux by increasing transmembrane pressure or cross-flow velocity is beneficial to improve separation efficiency, especially by increasing cross-flow velocity.
    關聯: Separation Science and Technology 49(6), pp.803-810
    DOI: 10.1080/01496395.2013.871037
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML207检视/开启
    index.html0KbHTML197检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈